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Outline

We introduce the notion of graph-extendability

A bipartite symmetric quantum state ρ = is G = -extendible if

there exists a global state σ = on G such that

for all edges e = ∈ G , the reduced state σe = is equal to ρ.

For given d and n, what is the largest value of the noise pa-
rameter for which highly symmetric states (such as Werner,
Brauer, and isotropic states) on Cd ⊗ Cd are Kn-extendible?



Separability of quantum states



Quantum entanglement

Quantum states are unit trace positive semidefinite matrices [NC10, Wat18]:
ρ ∈ Msa

d (C) such that ρ ≥ 0, Tr ρ = 1.
A bipartite quantum state ρ ∈ Msa

d (C) ⊗ Msa
d (C) is separable if it can be

decomposed as a convex combination of product quantum states:

ρ =
∑

i
αi ⊗ βi with αi , βi ≥ 0

A pure (i.e. unit rank) state ρ = |x⟩⟨x | is separable iff it is product:

|x⟩ = |a⟩ ⊗ |b⟩

The maximally entangled state

ω := 1
d

d∑
i,j=1

|ii⟩⟨jj | = 1
d

i

j

j

i

Deciding whether a given state ρ is separable is an NP-hard problem [Gur03].



Detecting entanglement

There exist various criteria to detect entanglement or separability

ρ ∈ SEP =⇒ ρΓ := [id ⊗ transp](ρ) =
∑

i
αi ⊗ β⊤

i ≥ 0

∥∥∥ρ − I
d ⊗ I

d

∥∥∥
2

≤ 1
d

√
d2 − 1

=⇒ ρ ∈ SEP

The DPS hierarchy [DPS02, DPS04] can certify entanglement using a sequence of
semidefinite programs

EXTk :=
{

ρAB : ∃ σAB1B2···Bk ≥ 0 s.t. σABi = ρAB ∀i ∈ [k]
}

all states = EXT1 ⊇ EXT2 ⊇ · · · ⊇ EXTk ⊇ · · · ⊇ EXT∞ = SEP

Easy direction: if ρ is separable, ρ =
∑

i αi ⊗ βi ⇝ take σ =
∑

i αi ⊗ β⊗k
i

Quantitative version [CKMR07]:

ρ ∈ EXTk =⇒ min
σ∈SEP

∥ρ − σ∥1 ≤ 4d2

k



Graph extendability



Monogamy of entanglement & exchangeability

Monogamy is a fundamental property of quantum entanglement [KW04].
Informally, given 3 quantum parties Alice, Bob, and Charlie:

Alice cannot be maximally entangled with Bob and Charlie
∄ ρABC s.t. ρAB = ω and ρAC = ω

Actually, we have more: given a quantum state ρABC ,

ρAB = ω =⇒ ρABC = ωAB ⊗ ρC

A bipartite symmetric state ρ is called n-exchangeable if there exists a n-partite
symmetric state σ such that ρ = Trn−2 σ

The quantum de Finetti theorem [HM76, CFS02, KR05, CKMR07]: a bipartite state ρ

is n-exchangable for every n iff

ρ =
∑

i
αi ⊗ αi



Main definition

A bipartite symmetric quantum state ρ = is G = -extendible if

there exists a global state σ = on G such that

for all edges e = ∈ G , the reduced state σe = is equal to ρ.

This notion generalizes the two previous ones:

n-extendibility : ∃ σAB1B2···Bn s.t. σABi = ρAB ⇐⇒ K1,n-extendibility
n-exchangeability : ∃ σA1A2···An s.t. σAi Aj = ρAB ⇐⇒ Kn-extendibility

The property above can be formulated as a semidefinite program.



Main result

Consider isotropic states

ρI(d) := pω + (1 − p) I
d ⊗ I

d

The largest p for which the isotropic state ρI(d) is Kn-extendible is:

pI(n, d) =
{

1
n−1+n mod 2 if d > n or either d or n is even
min

{ 2d+1
2dn+1 , 1

n−1
}

if n ≥ d and both d and n are odd

Compare with optimal p for K1,n-extensibility ( ⇐⇒ quantum cloning [KW99])

pI(K1,n, d) = d + n
n(d + 1)

Similar results for Werner states and for Brauer states

ρW (d) := p Π
Tr Π +(1−p) Π

Tr Π , ρB(d) := pω+q Π
Tr Π +(1−p−q)

[ Π
Tr Π −ω

]
Π := I − F

2 , Π := I + F
2 , F :=

d∑
i,j=1

|ij⟩⟨ji | =
i

i

j

j



Proof techniques



Symmetry

Consider the simpler Werner states p · Π / Tr Π + (1 − p) · Π / Tr Π .
We want to solve, for a graph G with n vertices

pW (G , d) := max
ρ,p

p s.t. Tr[Πeρ] = p ∀e ∈ E , Tr ρ = 1, ρ ≥ 0

where Πe acts like Π on the tensor factors associated to the vertices of e and
as the identity elsewhere; ρ is a state on (Cd)⊗n.
Given an optimal ρ, we can assume wlog that it has symmetry:

∀U ∈ U(d) U⊗n ρ (U⊗n)∗ = ρ

∀π ∈ Sn π.ρ = ρ

with π.A1 ⊗ A2 ⊗ · · · ⊗ An := Aπ−1(1) ⊗ Axπ−1(2) ⊗ · · · ⊗ Aπ−1(n).
By Schur–Weyl duality [Aub18, GO22, Bra37], we have

ρ =
∑
λ⊢n

l(λ)≤d

βλρλ

where βλ is a probability distribution {βλ : λ ⊢ n} and ρλ are the normalized
isotypical projectors.



Representation theory

The groups U(d) and Sn act on (Cd)⊗n:

U. |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩ := U |x1⟩ ⊗ U |x2⟩ ⊗ · · · ⊗ U |xn⟩
π. |x1⟩ ⊗ |x2⟩ ⊗ · · · ⊗ |xn⟩ :=

∣∣xπ−1(1)
〉

⊗
∣∣xπ−1(2)

〉
⊗ · · · ⊗

∣∣xπ−1(n)
〉

Schur–Weyl duality: the algebras spanned by the matrices associated to these
actions are mutual commutants of each other. Equivalently, the space (Cd)⊗n

decomposes into isotypic sectors consisting of tensor products of irreps:

(Cd)⊗n ≃
⊕
λ⊢n

l(λ)≤d

V (U)
λ ⊗ V (S)

λ .

Since an optimal ρ commutes is invariant w.r.t. both actions, it must act like
the identity on each tensor factor, for every term of the direct sum.
We have [CKMR07] Tr[n]\e ρλ = αλε + αλε , where

αλ =
s∗(λ)

md( )n(n − 1) , (1)

where s∗
µ(λ) is the shifted Schur function [OO97] and md(λ) = dim V (U)

λ .



Optimization

Plugging the partial trace expression into the formula for pW , in the case
G = Kn, we obtain

pW (ρ) =
∑
λ⊢n

l(λ)≤d

βλ
d( )s∗(λ)
n(n − 1)

Since βλ are probability weights, we need to maximize the expression above
over partitions λ ⊢ n with l(λ) ≤ d .
Using a formula for the shifted Schur function [OO97] we obtain

pW (n, d) = max
λ⊢n

l(λ)≤d

∑
d≥i>j≥1 λi(λj + 1)

n(n − 1)

The optimal λ is the tallest approximate rectangle possible, and gives

pW (n, d) = d − 1
2d · (n + k + d)(n − k)

n(n − 1) + k(k − 1)
n(n − 1) where k = n mod d

Clearly, if d ≥ n, pW = 1 is achieved by λ = 1n, and ρ is the normalized
projection on the anti-symmetric subspace Λn(Cd) ⊆ (Cd)⊗n.



Take home slide



Monogamy of highly symmetric states

A bipartite symmetric quantum state ρ = is G = -extendible if

there exists a global state σ = on G such that

for all edges e = ∈ G , the reduced state σe = is equal to ρ.

For G = K1,n or G = Km,n, we obtain the standard DPS hierarchy.
For given d and n, we compute the value noise parameter p for which highly
symmetric states (Werner, Brauer, isotropic) on Cd ⊗ Cd are Kn-extendible

ρI = p · 1
d

∑
ij

|ii⟩⟨jj | + (1 − p) · I
d ⊗ I

d
G-extendibility of isotropic states for all n: separability vs. Kn-extendibility

Graph family Form of ∞-extendible states Range of p
K1,n or Km,n ρ =

∑
i αi ⊗ βi

[ −1
d2−1 , 1

d+1
]

Kn ρ =
∑

i αi ⊗ αi {0}
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