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We introduce the notion of
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A bipartite symmetric quantum state p = is G = ‘\A/’ -extendible if
*o—0
there exists a global state o = on G such that
for all edges e = € G, the reduced state o, = is equal to
o—e (e—e)

For given d and n, what is the largest value of the noise pa-
rameter for which highly symmetric states (such as Werner,
Brauer, and isotropic states) on C? @ C9 are K-extendible?




Separability of quantum states



Quantum entanglement

@ Quantum states are unit trace positive semidefinite matrices [NC10, Wat18]:
p € M¥(C) such that p >0, Trp = 1.

@ A bipartite quantum state p € M¥(C) ® M3 (C) is separable if it can be
decomposed as a convex combination of product quantum states:

pzzai(@ﬁi with a;, 8; > 0

@ A pure (i.e. unit rank) state p = |x)(x| is separable iff it is product:
x) = [a) @ |b)

@ The maximally entangled state
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@ Deciding whether a given state p is separable is an NP-hard problem [Gur03].



Detecting entanglement

@ There exist various criteria to detect entanglement or separability

p € SEP = p' := [id®transp](p) = Zoz,- ®B >0
lo-zeal, < 37
P=ad%dl: = qvar—1

@ The DPS hierarchy [DPSo2, DPs04] can certify entanglement using a sequence of

— p e SEP

semidefinite programs

EXT, = {pAB - Joap,8, 8, > 0t o4 = pag Vi€ [k]}
all states = EXT; D EXT, D --- D EXT, D --- D EXT,, = SEP
e Easy direction: if p is separable, p =), a; ® i ~ take 0 = >, i ® BEk

@ Quantitative version [CKMR07]:
2
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EXT, — i = <
pEBXT = min llp—oll <



Graph extendability




Monogamy of entanglement & exchangeability

@ Monogamy is a fundamental property of quantum entanglement [Kwoa4].
Informally, given 3 quantum parties Alice, Bob, and Charlie:

Alice cannot be maximally entangled with Bob and Charlie
Bpac st pap=w and pac =w
@ Actually, we have more: given a quantum state pagc,

PAB =W == pPABC = waB & pc

@ A bipartite symmetric state p is called n-exchangeable if there exists a n-partite
symmetric state ¢ such that p = Tr,_2 0

@ The quantum de Finetti theorem [HM76, CFS02, KRO5, CKMR07]: a bipartite state p
is n-exchangable for every n iff
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A bipartite symmetric quantum state p = is G = ‘74\/’ -extendible if
*o—0
there exists a global state o = on G such that
for all edges e = € G, the reduced state o, = is equal to
*o—0

@ This notion generalizes the two previous ones:
n-extendibility : 3oap,B,-.-B, S-t. 0aB, = pap == Ki ,-extendibility
n-exchangeability : o4, 4,..-4, S-t. OAA = PAB = K, -extendibility

@ The property above can be formulated as a semidefinite program.



Main result

o Consider

I
pi(d) = pw+ (1 =p)5 ®

The largest p for which the isotropic state p;(d) is K,-extendible is:

2d+1 1
2dn+1’ n—1

pl(n, d) _ { n—1+4n mod 2

min{

if d > n or either d or n is even
if n > d and both d and n are odd

e Compare with optimal p for Ky ,-extensibility ( <= [Kw99])

@ Similar results for
Mg
Tr HH

pw(d) == p
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d+n
Pl(Kl,md) = m

and for

(= Mg M
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Proof techniques




o Consider the simpler Werner states p - T/ TrMg 4+ (1 — p) - N/ Tr MNa.
@ We want to solve, for a graph G with n vertices

pw(G,d) :=maxp st. Tr[llep] =p VecE, Trp=1, p>0
p.P
where [, acts like g on the tensor factors associated to the vertices of e and
as the identity elsewhere; p is a state on (C9)®".

@ Given an optimal p, we can assume wlog that it has symmetry:
YU € U(d) U®" p(U®")* = p
vVr e G, T.p=p

with T A R A ® -+ - R A, = Aﬂ-—l(l) & AX.,T—l(Q) K- Aﬂ.—l(,,).
o By Schur-Weyl duality [Aub18, GO22, Bra37], we have

p="_ B

Abn
I(N)<d

where /3y is a probability distribution {3\ : A+ n} and p, are the normalized

isotypical projectors.



Representation theory

@ The groups U(d) and &, act on (C9)®"
Ulx1)) @ x) @ @ |xp) == Ux) @ Ulx) @ - @ U |x,)
T %) @ [x2) @ - @ [xa) 1= [xXr-11)) ® |Xe-1(2) @+ @ [Xr-1())
@ Schur—Weyl duality: the algebras spanned by the matrices associated to these

actions are mutual commutants of each other. Equivalently, the space (C?)®"
decomposes into isotypic sectors consisting of tensor products of irreps:

cdw~/@)v

Abn
I(N)<d

@ Since an optimal p commutes is invariant w.r.t. both actions, it must act like
the identity on each tensor factor, for every term of the direct sum.
o We have [ckMR07] Trjm\e px = 0f'€g + 02em, where
o = — BN __ 1
mg(H)n(n — 1)’

where s%()) is the shifted Schur function [0097] and mg(A) = dim V/Su).



Optimization

@ Plugging the partial trace expression into the formula for py, in the case

G = K, we obtain
dB)sz(N)
Z 5 (n— 1

()\)<d

@ Since (3, are probability weights, we need to maximize the expression above

over partitions A - n with /(\) < d.
@ Using a formula for the shifted Schur function [0097] we obtain
Dasisji>1Ai(A +1)

n(n—1)

@ The optimal A is the tallest approximate rectangle possible, and gives
d—1 (n+k+d)(n—k) k(k—1)

2d n(n—1) n(n—1)
o Clearly, if d > n, pyy = 1 is achieved by A = 1", and p is the normalized

wind)= T
I\)<d

w(n,d) = where k = n mod d

projection on the anti-symmetric subspace A"(C?) C (C9)®".
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Monogamy of highly symmetric states
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A bipartite symmetric quantum state p = is G = ‘74\/’ -extendible if
*o—0
there exists a global state o = on G such that
for all edges e = € G, the reduced state o, = is equal to
@ — 0

@ For G = Ky, or G = Ky, 5, we obtain the standard DPS hierarchy.
@ For given d and n, we compute the value noise parameter p for which highly

symmetric states (Werner, Brauer, isotropic) on C¢ ® C? are K,-extendible
/

1 ) /
P/:P'gzij:|“><u\+(l—P)'g®g

@ G-extendibility of isotropic states for all n: separability vs. K,-extendibility

Graph family | Form of co-extendible states | Range of p
Kin Of K.n pP=3,0i®p (721 71
K, p:Z;ai®ai {0}
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