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» Quantum states with d degrees of freedom are described by
density matrices

X e MbH(C9);  TrX=1and X >0.

» Quantum channels N/ : M(C%) — M(C%=) are completely
positive, trace-preserving maps. In particular, they send
quantum states to quantum states.

» Complete positivity CP: N ® idy preserves positivity.

» Trace preservation TP: Tr[N(X)] = Tr(X) for all X.

» Quantum channels describe the most general physical
transformations a quantum system can undergo.
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» The Schatten p-norm of X € M%2(C)
IX[lp = [Te(IXIP)]YP = [IAX)l.
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The maximum output p-norm of a quantum channel N is

INll15p = max{ [N (X)]p, X € MM (C)}.
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The Rényi entropy of X € MY+(CY)

HP(X) = 1 !

log Tr| X |P.
—p
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The minimum output Rényi entropy is a linearization of the
above

min _ . _ 1
HEPN) = min | Hp(X) = 1 log [ s

v

The von Neumann entropy is obtained by taking the limit

. N
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Conjecture (Amosov, Holevo, and Werner '00)
For any channels N1, N>, and any p > 1,

HIM(AG @ Na) = HI(AG) + HI(AG).

» Entropies are additive: Hy(X1 ® X2) = Hp(X1) + Hp(X2).

» Given N1, N3, the < direction of the equality is trivial, take
X2 = X1 ® Xa.



An important problem

» Additivity of MOE at p = 1 is equivalent to other additivity
conjectures in quantum information theory [Shor '03], such as
the additivity of Holevo capacity for quantum channels or the
additivity of entanglement of formation for quantum bipartite
states.



An important problem

» Additivity of MOE at p = 1 is equivalent to other additivity
conjectures in quantum information theory [Shor '03], such as
the additivity of Holevo capacity for quantum channels or the
additivity of entanglement of formation for quantum bipartite
states.

» Additivity has been shown to hold for a large class of
channels: unitary, unital qubit, depolarizing, dephasing,
entanglement breaking, ...



An important problem

» Additivity of MOE at p = 1 is equivalent to other additivity
conjectures in quantum information theory [Shor '03], such as
the additivity of Holevo capacity for quantum channels or the
additivity of entanglement of formation for quantum bipartite
states.

» Additivity has been shown to hold for a large class of
channels: unitary, unital qubit, depolarizing, dephasing,
entanglement breaking, ...

» But ... the Additivity Conjecture is false, for all p > 1!



An important problem

» Additivity of MOE at p = 1 is equivalent to other additivity
conjectures in quantum information theory [Shor '03], such as
the additivity of Holevo capacity for quantum channels or the
additivity of entanglement of formation for quantum bipartite
states.

» Additivity has been shown to hold for a large class of
channels: unitary, unital qubit, depolarizing, dephasing,
entanglement breaking, ...

» But ... the Additivity Conjecture is false, for all p > 1!

» How to get counter-examples:

1. Lower bound HJ"™(N2);

2. Upper bound H,’;“i”(/\/l ® N>), eg. by finding a particular input
X12 with low entropy ~» Motohisa’s talk;

3. Conclude by
HI" (NG @ No) < UB<LBy + LBy < H(NY) + HI™M(A3).



An important problem

>

Additivity of MOE at p = 1 is equivalent to other additivity
conjectures in quantum information theory [Shor '03], such as
the additivity of Holevo capacity for quantum channels or the
additivity of entanglement of formation for quantum bipartite
states.

Additivity has been shown to hold for a large class of
channels: unitary, unital qubit, depolarizing, dephasing,
entanglement breaking, ...

» But ... the Additivity Conjecture is false, for all p > 1!
» How to get counter-examples:

1. Lower bound HJ"™(N2);
2. Upper bound H,’;“i”(/\/l ® N>), eg. by finding a particular input
X12 with low entropy ~» Motohisa’s talk;
3. Conclude by
HY"(N1 @ N2) < UB<LBy + LBy < HY™(N7) 4+ HY'"(N2).
In this talk, we focus on lower bounding the MOE of a
quantum channel.
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Channels as subspaces

» Let V C Cut @ C%m be a subspace of dimension d;, and
consider an isometry W : C%n — Cut @ C%nm with
ImW = V.

» One can define a channel A/ : M(C¢n) — M(C%ut) by
N(X) = Tren ( WXWH).

» Every channel can be defined in this way (by choosing deny
large enough).

» By convexity properties, the p-MOE is attained on pure states
i.e. rank one projectors.

» Since N(Px) = Tren(WPxW*) = Treny Pwx, the minimal
entropies of the channel N are determined by the image
subspace V = ImW.



Eigen- and singular values, Schmidt coefficients

» Consider an unit vector in a tensor product x € C%ut @ Cn



Eigen- and singular values, Schmidt coefficients

» Consider an unit vector in a tensor product x € C%ut @ Cn

» The vector x admits a Schmidt decomposition

x = :y/Ai(x)e; @ fi. We have \j(x) >0, > ; Xi(x) =1 and

we choose the order A\ > \p > -+ -.



Eigen-

and singular values, Schmidt coefficients

Consider an unit vector in a tensor product x € Cut @ C%nv.

The vector x admits a Schmidt decomposition

x = :y/Ai(x)e; @ fi. We have \j(x) >0, > ; Xi(x) =1 and
we choose the order A\ > \p > -+ -.

Using the isomorphism C%ut @ Cv ~ My o (C), x can
be seen as a rectangular complex matrix, with singular values

Ai(x).



Eigen-

and singular values, Schmidt coefficients

Consider an unit vector in a tensor product x € Cut @ C%nv.

The vector x admits a Schmidt decomposition

x = :y/Ai(x)e; @ fi. We have \j(x) >0, > ; Xi(x) =1 and

we choose the order A\ > \p > -+ -.

Using the isomorphism C%ut @ Cv ~ My o (C), x can
be seen as a rectangular complex matrix, with singular values

Ai(x).

The eigenvalues of the matrix Tren, Px are Aj(x).



Eigen-

and singular values, Schmidt coefficients

Consider an unit vector in a tensor product x € Cut @ C%nv.

The vector x admits a Schmidt decomposition

x = :y/Ai(x)e; @ fi. We have \j(x) >0, > ; Xi(x) =1 and
we choose the order A\ > \p > -+ -.

Using the isomorphism C%ut @ C%v ~ My 4 (C), x can
be seen as a rectangular complex matrix, with singular values
Ai(x).

The eigenvalues of the matrix Tren, Px are Aj(x).

For a channel AV defined by an isometry W with image V/, we
have thus

HE™(N) = Hp(A(x))-

min
xeV,||x||=1



Eigen-

v

and singular values, Schmidt coefficients

Consider an unit vector in a tensor product x € Cut @ C%nv.

The vector x admits a Schmidt decomposition

x = :y/Ai(x)e; @ fi. We have \j(x) >0, > ; Xi(x) =1 and
we choose the order A\ > \p > -+ -.

Using the isomorphism C%ut @ C%v ~ My 4 (C), x can
be seen as a rectangular complex matrix, with singular values
Ai(x).

The eigenvalues of the matrix Tren, Px are Aj(x).

For a channel AV defined by an isometry W with image V/, we
have thus

HE™(N) = Hp(A(x))-

min
xeV,||x||=1

This is a simple question about subspaces of tensor products
(equivalently, about the singular values of matrices inside a
given subspace V).
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» For a subspace V C Ck @ C" of dimension d, define the set
eigen-/singular values or Schmidt coefficients

Ky = {A(x) : x € V,||x|| = 1}

» The set Ky is a compact subset of the ordered probability
simplex AL = {y € R¥ : y; >0, Y, yi=1,y1 > - > yi}.
» Local invariance: K(y,gu,)v = Ky, for unitary matrices
Ui € U(k) and U, € U(n).
» Monotonicity: if Vi C Vs, then Ky, C Ky,.
> Example: d =1, V =C(k" Y235, e; ® &;). We have
Kv ={(1/k,...,1/k)} and thus H"(N') = log k.
» Example: if d > (k — 1)n, then (1,0,...,0) € Ky and thus
H™(N) = 0 for all p.

» We want: subspaces with large MOE and large dimension.
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Random subspaces

» |dea: when you do not know how to find a subspace having
some nice properties, pick one at random!

» There is an uniform (or Haar) measure on the set of
d-dimensional subspaces of Ck".
> Take a kn x kn Haar distributed random unitary matrix
U € U(kn) and take V to be the span of its first d columns.
> Alternatively, if W is a kn x d truncation of U, then
V =ImW is uniform.

» From such a radom isometry W, one can construct random
quantum channels N (X) = Tro(WXW*).

» There are other measures on the Grassmannian one can
consider (see Karol's and Motohisa's talks), the one above
being the simplest and the most natural.
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» From now one, we consider the following asymptotic regime:
k fixed, n — oo, and d ~ tkn, for a fixed parameter t € (0,1).

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V,,, the
set Ky, of singular values of unit vectors from V,, converges
(almost surely, in the Hausdorff distance) to a deterministic convex
subset Ki ; of the probability simplex A

Kk,t = {)\ 6 Ak | \V/X E Ak7 <)\’X> S ”XH(t)}
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Corollary: exact limit of the MOE

» By the previous theorem, in the specific asymptotic regime
t, k fixed, n — oo, d ~ tkn, we have the following a.s.
convergence result for random quantum channels:

lim HM"(N) = min Hy()\).

n—oco P >\6Kk,t

» It is not just a bound, the exact limiting value is obtained.

» However, the set of possible output states is not explicit, and
minimizing entropy functions is difficult (work in progress).
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» Define p(a, 8) = a+ B —2a8 +2\/aB(l — a)(1 — B) if
a+ <1 and put p(a, 5) =1 otherwise.

Theorem (Collins '05)

In C", choose at random according to the Haar measure two
independent subspaces V,, and V! of respective dimensions

gn ~ an and g, ~ 3n where o, 3 € (0,1). Let P, (resp. P)) be
the orthogonal projection onto V,, (resp. V). Then,

lim ||PnP:/1Pn”oo = (o, B).
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t-norms

Definition

For a positive integer k, embed R¥ as a self-adjoint real subalgebra
R of a II; factor A endowed with trace 7, so that

T((x1,- .-, xk)) = (x1 + - -+ + xk)/k. Let p; be a projection of rank
t € (0,1) in A, free from R. On the real vector space R¥, we
introduce the following norm, called the (t)-norm:

Ix[l¢ey == llpexpelloo.
where the vector x € R¥ is identified with its image in R.

Proposition

The distribution fi;-1p,,, of the (non-commutative) random
variable t~Lp.xp; in the 111 factor reduced by the projection p; is

H1/t
Hi=1p,xp, — Hx / , t€ (Oa 1]a

where B denotes the free additive convolution of Voiculescu.
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> Kk,t = {)\ S Ak ‘ Vx € Ak, (/\,X> < HXH(t)}
» Recall that

max Ai(x) = max PyP, ®1 .
xeV,[x|=1 1) yew,nynzlu vFy ® Tl

» For fixed y, Py and P, ® I, are independent projectors of
relative ranks t and 1/k respectively.

» Thus, [|[PyP, ®I,|« converges a.s. to
e(t,1/k) = (1,0,...,0)[[()-
» To get the full result, use (A, x) instead of A;.

» Unfortunately, it is difficult to compute (t)-norms...



Thank you !

Collins, N. - Random quantum channels Il: Entanglement of
random subspaces, Rényi entropy estimates and additivity
problems - Advances in Mathematics 226 (2011), 1181-1201.

Belinschi, Collins, N. - Laws of large numbers for eigenvectors and
eigenvalues associated to random subspaces in a tensor product -
to appear in Inventiones Mathematicae.
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