Random Subspaces of a Tensor Product and the Additivity Problem

Ion Nechita

CNRS, Université de Toulouse

joint work with Benoit Collins (Lyon, Ottawa) and Serban Belinschi (Saskatoon)

Lyon, May 14th, 2012

$$X\in \mathcal{M}^{1,+}(\mathbb{C}^d); \qquad \mathrm{Tr} X=1 ext{ and } X\geq 0.$$

 Quantum states with d degrees of freedom are described by density matrices

$$X \in \mathcal{M}^{1,+}(\mathbb{C}^d);$$
 $\operatorname{Tr} X = 1 \text{ and } X \ge 0.$

► Quantum channels N : M(C^{d_{in}}) → M(C^{d_{out}) are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.}

$$X \in \mathcal{M}^{1,+}(\mathbb{C}^d);$$
 $\operatorname{Tr} X = 1 \text{ and } X \ge 0.$

- ► Quantum channels N : M(C^{d_{in}}) → M(C^{d_{out}) are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.}
 - Complete positivity CP: $\mathcal{N} \otimes \mathrm{id}_k$ preserves positivity.

$$X \in \mathcal{M}^{1,+}(\mathbb{C}^d);$$
 $\operatorname{Tr} X = 1 \text{ and } X \ge 0.$

- ► Quantum channels N : M(C^{d_{in}}) → M(C^{d_{out}) are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.}
 - Complete positivity CP: $\mathcal{N} \otimes \mathrm{id}_k$ preserves positivity.
 - Trace preservation TP: $Tr[\mathcal{N}(X)] = Tr(X)$ for all X.

$$X \in \mathcal{M}^{1,+}(\mathbb{C}^d);$$
 $\operatorname{Tr} X = 1 \text{ and } X \ge 0.$

- ► Quantum channels N : M(C^{d_{in}}) → M(C^{d_{out}) are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.}
 - Complete positivity CP: $\mathcal{N} \otimes \mathrm{id}_k$ preserves positivity.
 - Trace preservation TP: $Tr[\mathcal{N}(X)] = Tr(X)$ for all X.
- Quantum channels describe the most general physical transformations a quantum system can undergo.

• The Schatten *p*-norm of $X \in \mathcal{M}^{sa}(\mathbb{C}^d)$

$$\|X\|_{p} = [\operatorname{Tr}(|X|^{p})]^{1/p} = \|\lambda(X)\|_{p}.$$

• The Schatten *p*-norm of $X \in \mathcal{M}^{sa}(\mathbb{C}^d)$

$$\|X\|_{p} = [\operatorname{Tr}(|X|^{p})]^{1/p} = \|\lambda(X)\|_{p}.$$

► The maximum output *p*-norm of a quantum channel \mathcal{N} is $\|\mathcal{N}\|_{1\to p} = \max\{\|\mathcal{N}(X)\|_p, X \in \mathcal{M}^{1,+}(\mathbb{C}^d)\}.$

• The Schatten *p*-norm of $X \in \mathcal{M}^{sa}(\mathbb{C}^d)$

$$\|X\|_{p} = [\operatorname{Tr}(|X|^{p})]^{1/p} = \|\lambda(X)\|_{p}.$$

- ► The maximum output *p*-norm of a quantum channel *N* is $\|N\|_{1 \to p} = \max\{\|N(X)\|_p, X \in \mathcal{M}^{1,+}(\mathbb{C}^d)\}.$
- ► The Rényi entropy of $X \in \mathcal{M}^{1,+}(\mathbb{C}^d)$ $H_p(X) = \frac{1}{1-p} \log \operatorname{Tr} |X|^p.$

• The Schatten *p*-norm of $X \in \mathcal{M}^{sa}(\mathbb{C}^d)$

$$\|X\|_{p} = [\operatorname{Tr}(|X|^{p})]^{1/p} = \|\lambda(X)\|_{p}.$$

- ► The maximum output *p*-norm of a quantum channel *N* is $\|N\|_{1 \to p} = \max\{\|N(X)\|_{p}, X \in \mathcal{M}^{1,+}(\mathbb{C}^{d})\}.$
- ► The Rényi entropy of $X \in \mathcal{M}^{1,+}(\mathbb{C}^d)$ $H_p(X) = \frac{1}{1-p} \log \operatorname{Tr} |X|^p.$
- The minimum output Rényi entropy is a linearization of the above

$$H^{\min}_p(\mathcal{N}) = \min_{X \in \mathcal{M}^{1,+}(\mathbb{C}^d)} H_p(X) = rac{1}{1-p} \log \|\mathcal{N}\|_{1 o p}.$$

• The Schatten *p*-norm of $X \in \mathcal{M}^{sa}(\mathbb{C}^d)$

$$\|X\|_{p} = [\operatorname{Tr}(|X|^{p})]^{1/p} = \|\lambda(X)\|_{p}.$$

- ► The maximum output *p*-norm of a quantum channel *N* is $\|N\|_{1 \to p} = \max\{\|N(X)\|_{p}, X \in \mathcal{M}^{1,+}(\mathbb{C}^{d})\}.$
- ► The Rényi entropy of $X \in \mathcal{M}^{1,+}(\mathbb{C}^d)$ $H_p(X) = \frac{1}{1-p} \log \operatorname{Tr} |X|^p.$
- The minimum output Rényi entropy is a linearization of the above

$$H^{\min}_p(\mathcal{N}) = \min_{X \in \mathcal{M}^{1,+}(\mathbb{C}^d)} H_p(X) = rac{1}{1-p} \log \|\mathcal{N}\|_{1 o p}.$$

The von Neumann entropy is obtained by taking the limit

Additivity of minimum *p*-Rényi entropies

Conjecture (Amosov, Holevo, and Werner '00) For any channels N_1, N_2 , and any $p \ge 1$,

$$H_p^{min}(\mathcal{N}_1\otimes\mathcal{N}_2)=H_p^{min}(\mathcal{N}_1)+H_p^{min}(\mathcal{N}_2).$$

Additivity of minimum p-Rényi entropies

Conjecture (Amosov, Holevo, and Werner '00) For any channels N_1, N_2 , and any $p \ge 1$,

$$H_p^{min}(\mathcal{N}_1 \otimes \mathcal{N}_2) = H_p^{min}(\mathcal{N}_1) + H_p^{min}(\mathcal{N}_2).$$

• Entropies are additive: $H_p(X_1 \otimes X_2) = H_p(X_1) + H_p(X_2)$.

Additivity of minimum p-Rényi entropies

Conjecture (Amosov, Holevo, and Werner '00) For any channels N_1, N_2 , and any $p \ge 1$,

$$H_p^{min}(\mathcal{N}_1 \otimes \mathcal{N}_2) = H_p^{min}(\mathcal{N}_1) + H_p^{min}(\mathcal{N}_2).$$

- Entropies are additive: $H_p(X_1 \otimes X_2) = H_p(X_1) + H_p(X_2)$.
- Given $\mathcal{N}_1, \mathcal{N}_2$, the \leq direction of the equality is trivial, take $X_{12} = X_1 \otimes X_2$.

Additivity of MOE at p = 1 is equivalent to other additivity conjectures in quantum information theory [Shor '03], such as the additivity of Holevo capacity for quantum channels or the additivity of entanglement of formation for quantum bipartite states.

- Additivity of MOE at p = 1 is equivalent to other additivity conjectures in quantum information theory [Shor '03], such as the additivity of Holevo capacity for quantum channels or the additivity of entanglement of formation for quantum bipartite states.
- Additivity has been shown to hold for a large class of channels: unitary, unital qubit, depolarizing, dephasing, entanglement breaking, ...

- Additivity of MOE at p = 1 is equivalent to other additivity conjectures in quantum information theory [Shor '03], such as the additivity of Holevo capacity for quantum channels or the additivity of entanglement of formation for quantum bipartite states.
- Additivity has been shown to hold for a large class of channels: unitary, unital qubit, depolarizing, dephasing, entanglement breaking, ...
- But ... the Additivity Conjecture is false, for all $p \ge 1!$

- Additivity of MOE at p = 1 is equivalent to other additivity conjectures in quantum information theory [Shor '03], such as the additivity of Holevo capacity for quantum channels or the additivity of entanglement of formation for quantum bipartite states.
- Additivity has been shown to hold for a large class of channels: unitary, unital qubit, depolarizing, dephasing, entanglement breaking, ...
- But ... the Additivity Conjecture is false, for all $p \ge 1!$
- How to get counter-examples:
 - 1. Lower bound $H_p^{\min}(\mathcal{N}_{1,2})$;
 - 2. Upper bound $H_p^{\min}(\mathcal{N}_1 \otimes \mathcal{N}_2)$, eg. by finding a particular input X_{12} with low entropy \rightsquigarrow Motohisa's talk;
 - 3. Conclude by

 $H_p^{\min}(\mathcal{N}_1 \otimes \mathcal{N}_2) \leq UB {<} LB_1 + LB_2 \leq H_p^{\min}(\mathcal{N}_1) + H_p^{\min}(\mathcal{N}_2).$

- Additivity of MOE at p = 1 is equivalent to other additivity conjectures in quantum information theory [Shor '03], such as the additivity of Holevo capacity for quantum channels or the additivity of entanglement of formation for quantum bipartite states.
- Additivity has been shown to hold for a large class of channels: unitary, unital qubit, depolarizing, dephasing, entanglement breaking, ...
- But ... the Additivity Conjecture is false, for all $p \ge 1!$
- How to get counter-examples:
 - 1. Lower bound $H_p^{\min}(\mathcal{N}_{1,2})$;
 - 2. Upper bound $H_p^{\min}(\mathcal{N}_1 \otimes \mathcal{N}_2)$, eg. by finding a particular input X_{12} with low entropy \rightsquigarrow Motohisa's talk;
 - 3. Conclude by

 $H_p^{\min}(\mathcal{N}_1 \otimes \mathcal{N}_2) \leq UB < LB_1 + LB_2 \leq H_p^{\min}(\mathcal{N}_1) + H_p^{\min}(\mathcal{N}_2).$

 In this talk, we focus on lower bounding the MOE of a quantum channel.

▶ Let $V \subset \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ be a subspace of dimension d_{in} and consider an isometry $W : \mathbb{C}^{d_{in}} \to \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ with $\operatorname{Im} W = V$.

- ▶ Let $V \subset \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ be a subspace of dimension d_{in} and consider an isometry $W : \mathbb{C}^{d_{in}} \to \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ with $\operatorname{Im} W = V$.
- ▶ One can define a channel $\mathcal{N} : \mathcal{M}(\mathbb{C}^{d_{\text{in}}}) \to \mathcal{M}(\mathbb{C}^{d_{\text{out}}})$ by $\mathcal{N}(X) = \text{Tr}_{\text{env}}(WXW^*).$

- ▶ Let $V \subset \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ be a subspace of dimension d_{in} and consider an isometry $W : \mathbb{C}^{d_{in}} \to \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ with $\operatorname{Im} W = V$.
- ▶ One can define a channel $\mathcal{N} : \mathcal{M}(\mathbb{C}^{d_{\text{in}}}) \to \mathcal{M}(\mathbb{C}^{d_{\text{out}}})$ by $\mathcal{N}(X) = \operatorname{Tr}_{\text{env}}(WXW^*).$
- Every channel can be defined in this way (by choosing d_{env} large enough).

- ▶ Let $V \subset \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ be a subspace of dimension d_{in} and consider an isometry $W : \mathbb{C}^{d_{in}} \to \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ with $\operatorname{Im} W = V$.
- ▶ One can define a channel $\mathcal{N} : \mathcal{M}(\mathbb{C}^{d_{\text{in}}}) \to \mathcal{M}(\mathbb{C}^{d_{\text{out}}})$ by $\mathcal{N}(X) = \operatorname{Tr}_{\text{env}}(WXW^*).$
- Every channel can be defined in this way (by choosing d_{env} large enough).
- By convexity properties, the *p*-MOE is attained on pure states i.e. rank one projectors.

- ▶ Let $V \subset \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ be a subspace of dimension d_{in} and consider an isometry $W : \mathbb{C}^{d_{in}} \to \mathbb{C}^{d_{out}} \otimes C^{d_{env}}$ with $\operatorname{Im} W = V$.
- ▶ One can define a channel $\mathcal{N} : \mathcal{M}(\mathbb{C}^{d_{\text{in}}}) \to \mathcal{M}(\mathbb{C}^{d_{\text{out}}})$ by $\mathcal{N}(X) = \operatorname{Tr}_{\text{env}}(WXW^*).$
- Every channel can be defined in this way (by choosing d_{env} large enough).
- By convexity properties, the *p*-MOE is attained on pure states i.e. rank one projectors.
- Since N(P_x) = Tr_{env}(WP_xW^{*}) = Tr_{env}P_{Wx}, the minimal entropies of the channel N are determined by the image subspace V = ImW.

• Consider an unit vector in a tensor product $x \in \mathbb{C}^{d_{out}} \otimes \mathbb{C}^{d_{env}}$.

- Consider an unit vector in a tensor product $x \in \mathbb{C}^{d_{out}} \otimes \mathbb{C}^{d_{env}}$.
- ▶ The vector x admits a Schmidt decomposition $x = \sum_i \sqrt{\lambda_i(x)} e_i \otimes f_i$. We have $\lambda_i(x) \ge 0$, $\sum_i \lambda_i(x) = 1$ and we choose the order $\lambda_1 \ge \lambda_2 \ge \cdots$.

- Consider an unit vector in a tensor product $x \in \mathbb{C}^{d_{out}} \otimes \mathbb{C}^{d_{env}}$.
- ▶ The vector x admits a Schmidt decomposition $x = \sum_i \sqrt{\lambda_i(x)} e_i \otimes f_i$. We have $\lambda_i(x) \ge 0$, $\sum_i \lambda_i(x) = 1$ and we choose the order $\lambda_1 \ge \lambda_2 \ge \cdots$.
- ► Using the isomorphism C^{d_{out} ⊗ C^{d_{env} ≃ M_{d_{out}×d_{env}(C), x can be seen as a rectangular complex matrix, with singular values λ_i(x).}}}

- Consider an unit vector in a tensor product $x \in \mathbb{C}^{d_{out}} \otimes \mathbb{C}^{d_{env}}$.
- ▶ The vector x admits a Schmidt decomposition $x = \sum_i \sqrt{\lambda_i(x)} e_i \otimes f_i$. We have $\lambda_i(x) \ge 0$, $\sum_i \lambda_i(x) = 1$ and we choose the order $\lambda_1 \ge \lambda_2 \ge \cdots$.
- ► Using the isomorphism C^d_{out} ⊗ C^d_{env} ≃ M_{dout×denv}(C), x can be seen as a rectangular complex matrix, with singular values λ_i(x).
- The eigenvalues of the matrix $\operatorname{Tr}_{env} P_x$ are $\lambda_i(x)$.

- Consider an unit vector in a tensor product $x \in \mathbb{C}^{d_{out}} \otimes \mathbb{C}^{d_{env}}$.
- ▶ The vector x admits a Schmidt decomposition $x = \sum_i \sqrt{\lambda_i(x)} e_i \otimes f_i$. We have $\lambda_i(x) \ge 0$, $\sum_i \lambda_i(x) = 1$ and we choose the order $\lambda_1 \ge \lambda_2 \ge \cdots$.
- ► Using the isomorphism C^d_{out} ⊗ C^d_{env} ≃ M_{dout×denv}(C), x can be seen as a rectangular complex matrix, with singular values λ_i(x).
- The eigenvalues of the matrix $\operatorname{Tr}_{env} P_x$ are $\lambda_i(x)$.
- ► For a channel N defined by an isometry W with image V, we have thus

$$H_p^{\min}(\mathcal{N}) = \min_{x \in V, \|x\|=1} H_p(\lambda(x)).$$

- Consider an unit vector in a tensor product $x \in \mathbb{C}^{d_{out}} \otimes \mathbb{C}^{d_{env}}$.
- ▶ The vector x admits a Schmidt decomposition $x = \sum_i \sqrt{\lambda_i(x)} e_i \otimes f_i$. We have $\lambda_i(x) \ge 0$, $\sum_i \lambda_i(x) = 1$ and we choose the order $\lambda_1 \ge \lambda_2 \ge \cdots$.
- ► Using the isomorphism C^d_{out} ⊗ C^d_{env} ≃ M_{dout×denv}(C), x can be seen as a rectangular complex matrix, with singular values λ_i(x).
- The eigenvalues of the matrix $\operatorname{Tr}_{env} P_x$ are $\lambda_i(x)$.
- ► For a channel N defined by an isometry W with image V, we have thus

$$H_p^{\min}(\mathcal{N}) = \min_{x \in V, \|x\|=1} H_p(\lambda(x)).$$

This is a simple question about subspaces of tensor products (equivalently, about the singular values of matrices inside a given subspace V).

For a subspace V ⊂ C^k ⊗ Cⁿ of dimension d, define the set eigen-/singular values or Schmidt coefficients

For a subspace V ⊂ C^k ⊗ Cⁿ of dimension d, define the set eigen-/singular values or Schmidt coefficients

 $K_V = \{\lambda(x) : x \in V, \|x\| = 1\}.$

The set K_V is a compact subset of the ordered probability simplex Δ[↓]_k = {y ∈ ℝ^k : y_i ≥ 0, ∑_i y_i = 1, y₁ ≥ · · · ≥ y_k}.

For a subspace V ⊂ C^k ⊗ Cⁿ of dimension d, define the set eigen-/singular values or Schmidt coefficients

- The set K_V is a compact subset of the ordered probability simplex Δ[↓]_k = {y ∈ ℝ^k : y_i ≥ 0, ∑_i y_i = 1, y₁ ≥ · · · ≥ y_k}.
- ▶ Local invariance: $K_{(U_1 \otimes U_2)V} = K_V$, for unitary matrices $U_1 \in U(k)$ and $U_2 \in U(n)$.

For a subspace V ⊂ C^k ⊗ Cⁿ of dimension d, define the set eigen-/singular values or Schmidt coefficients

- The set K_V is a compact subset of the ordered probability simplex Δ[↓]_k = {y ∈ ℝ^k : y_i ≥ 0, ∑_i y_i = 1, y₁ ≥ · · · ≥ y_k}.
- Local invariance: K_{(U1⊗U2)V} = K_V, for unitary matrices U₁ ∈ U(k) and U₂ ∈ U(n).
- Monotonicity: if $V_1 \subset V_2$, then $K_{V_1} \subset K_{V_2}$.

For a subspace V ⊂ C^k ⊗ Cⁿ of dimension d, define the set eigen-/singular values or Schmidt coefficients

- The set K_V is a compact subset of the ordered probability simplex Δ[↓]_k = {y ∈ ℝ^k : y_i ≥ 0, ∑_i y_i = 1, y₁ ≥ · · · ≥ y_k}.
- Local invariance: K_{(U1⊗U2)V} = K_V, for unitary matrices U₁ ∈ U(k) and U₂ ∈ U(n).
- Monotonicity: if $V_1 \subset V_2$, then $K_{V_1} \subset K_{V_2}$.
- ► Example: d = 1, $V = \mathbb{C}(k^{-1/2} \sum_{i=1}^{k} e_i \otimes e_i)$. We have $K_V = \{(1/k, \dots, 1/k)\}$ and thus $H_p^{\min}(\mathcal{N}) = \log k$.

For a subspace V ⊂ C^k ⊗ Cⁿ of dimension d, define the set eigen-/singular values or Schmidt coefficients

- The set K_V is a compact subset of the ordered probability simplex Δ[↓]_k = {y ∈ ℝ^k : y_i ≥ 0, ∑_i y_i = 1, y₁ ≥ · · · ≥ y_k}.
- Local invariance: K_{(U1⊗U2)V} = K_V, for unitary matrices U₁ ∈ U(k) and U₂ ∈ U(n).
- Monotonicity: if $V_1 \subset V_2$, then $K_{V_1} \subset K_{V_2}$.
- ► Example: d = 1, $V = \mathbb{C}(k^{-1/2} \sum_{i=1}^{k} e_i \otimes e_i)$. We have $K_V = \{(1/k, \dots, 1/k)\}$ and thus $H_p^{\min}(\mathcal{N}) = \log k$.
- Example: if d > (k-1)n, then $(1,0,\ldots,0) \in K_V$ and thus $H_p^{\min}(\mathcal{N}) = 0$ for all p.

For a subspace V ⊂ C^k ⊗ Cⁿ of dimension d, define the set eigen-/singular values or Schmidt coefficients

- The set K_V is a compact subset of the ordered probability simplex Δ[↓]_k = {y ∈ ℝ^k : y_i ≥ 0, ∑_i y_i = 1, y₁ ≥ · · · ≥ y_k}.
- ▶ Local invariance: $K_{(U_1 \otimes U_2)V} = K_V$, for unitary matrices $U_1 \in U(k)$ and $U_2 \in U(n)$.
- Monotonicity: if $V_1 \subset V_2$, then $K_{V_1} \subset K_{V_2}$.
- ► Example: d = 1, $V = \mathbb{C}(k^{-1/2} \sum_{i=1}^{k} e_i \otimes e_i)$. We have $K_V = \{(1/k, \dots, 1/k)\}$ and thus $H_p^{\min}(\mathcal{N}) = \log k$.
- Example: if d > (k-1)n, then $(1,0,\ldots,0) \in K_V$ and thus $H_p^{\min}(\mathcal{N}) = 0$ for all p.
- We want: subspaces with large MOE and large dimension.

Idea: when you do not know how to find a subspace having some nice properties, pick one at random!

- Idea: when you do not know how to find a subspace having some nice properties, pick one at random!
- ► There is an uniform (or Haar) measure on the set of d-dimensional subspaces of C^{kn}.

- Idea: when you do not know how to find a subspace having some nice properties, pick one at random!
- ► There is an uniform (or Haar) measure on the set of *d*-dimensional subspaces of C^{kn}.
- ► Take a kn × kn Haar distributed random unitary matrix U ∈ U(kn) and take V to be the span of its first d columns.

- Idea: when you do not know how to find a subspace having some nice properties, pick one at random!
- ► There is an uniform (or Haar) measure on the set of *d*-dimensional subspaces of C^{kn}.
- ► Take a kn × kn Haar distributed random unitary matrix U ∈ U(kn) and take V to be the span of its first d columns.
- Alternatively, if W is a kn × d truncation of U, then V = ImW is uniform.

- Idea: when you do not know how to find a subspace having some nice properties, pick one at random!
- ► There is an uniform (or Haar) measure on the set of *d*-dimensional subspaces of C^{kn}.
- ► Take a kn × kn Haar distributed random unitary matrix U ∈ U(kn) and take V to be the span of its first d columns.
- Alternatively, if W is a kn × d truncation of U, then V = ImW is uniform.
- ► From such a radom isometry W, one can construct random quantum channels N(X) = Tr_n(WXW*).

- Idea: when you do not know how to find a subspace having some nice properties, pick one at random!
- ► There is an uniform (or Haar) measure on the set of *d*-dimensional subspaces of C^{kn}.
- ► Take a kn × kn Haar distributed random unitary matrix U ∈ U(kn) and take V to be the span of its first d columns.
- Alternatively, if W is a kn × d truncation of U, then V = ImW is uniform.
- ► From such a radom isometry W, one can construct random quantum channels N(X) = Tr_n(WXW*).
- There are other measures on the Grassmannian one can consider (see Karol's and Motohisa's talks), the one above being the simplest and the most natural.

Main result

Main result

From now one, we consider the following asymptotic regime: k fixed, n→∞, and d ~ tkn, for a fixed parameter t ∈ (0,1).

Main result

From now one, we consider the following asymptotic regime: k fixed, n→∞, and d ~ tkn, for a fixed parameter t ∈ (0,1).

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V_n , the set K_{V_n} of singular values of unit vectors from V_n converges (almost surely, in the Hausdorff distance) to a deterministic convex subset $K_{k,t}$ of the probability simplex Δ_k

$$\mathcal{K}_{k,t} := \{\lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \leq \|x\|_{(t)}\}.$$

Corollary: exact limit of the MOE

▶ By the previous theorem, in the specific asymptotic regime t, k fixed, $n \rightarrow \infty$, $d \sim tkn$, we have the following a.s. convergence result for random quantum channels:

$$\lim_{n\to\infty} H_p^{\min}(\mathcal{N}) = \min_{\lambda\in K_{k,t}} H_p(\lambda).$$

Corollary: exact limit of the MOE

▶ By the previous theorem, in the specific asymptotic regime t, k fixed, $n \rightarrow \infty$, $d \sim tkn$, we have the following a.s. convergence result for random quantum channels:

$$\lim_{n\to\infty} H_p^{\min}(\mathcal{N}) = \min_{\lambda\in K_{k,t}} H_p(\lambda).$$

It is not just a bound, the exact limiting value is obtained.

Corollary: exact limit of the MOE

▶ By the previous theorem, in the specific asymptotic regime t, k fixed, $n \rightarrow \infty$, $d \sim tkn$, we have the following a.s. convergence result for random quantum channels:

$$\lim_{n\to\infty} H_p^{\min}(\mathcal{N}) = \min_{\lambda\in K_{k,t}} H_p(\lambda).$$

- It is not just a bound, the exact limiting value is obtained.
- However, the set of possible output states is not explicit, and minimizing entropy functions is difficult (work in progress).

Question: what is the maximum singular value max_{x∈V,||x||=1} λ₁(x) of a unit vector from V ?

► Question: what is the maximum singular value max_{x∈V,||x||=1} λ₁(x) of a unit vector from V ?

Compute

$$\max_{x \in V, \|x\|=1} \lambda_1(x) = \max_{x \in V, \|x\|=1} \lambda_1(\operatorname{Tr}_n P_x)$$
$$= \max_{x \in V, \|x\|=1} \|\operatorname{Tr}_n P_x\|$$
$$= \max_{x \in V, \|x\|=1} \max_{y \in \mathbb{C}^k, \|y\|=1} \operatorname{Tr}\left[(\operatorname{Tr}_n P_x) \cdot P_y\right]$$
$$= \max_{x \in V, \|x\|=1} \max_{y \in \mathbb{C}^k, \|y\|=1} \operatorname{Tr}\left[P_x \cdot P_y \otimes I_n\right]$$
$$= \max_{y \in \mathbb{C}^k, \|y\|=1} \max_{x \in V, \|x\|=1} \operatorname{Tr}\left[P_x \cdot P_y \otimes I_n\right]$$
$$= \max_{y \in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n\|_{\infty}.$$

• Limit of $||P_V P_y \otimes I_n||_{\infty}$ for fixed y and random V ?

- ► Question: what is the maximum singular value max_{x∈V,||x||=1} λ₁(x) of a unit vector from V ?
- Compute

$$\max_{x \in V, \|x\|=1} \lambda_1(x) = \max_{x \in V, \|x\|=1} \lambda_1(\operatorname{Tr}_n P_x)$$
$$= \max_{x \in V, \|x\|=1} \|\operatorname{Tr}_n P_x\|$$
$$= \max_{x \in V, \|x\|=1} \max_{y \in \mathbb{C}^k, \|y\|=1} \operatorname{Tr}\left[(\operatorname{Tr}_n P_x) \cdot P_y\right]$$
$$= \max_{x \in V, \|x\|=1} \max_{y \in \mathbb{C}^k, \|y\|=1} \operatorname{Tr}\left[P_x \cdot P_y \otimes I_n\right]$$
$$= \max_{y \in \mathbb{C}^k, \|y\|=1} \max_{x \in V, \|x\|=1} \operatorname{Tr}\left[P_x \cdot P_y \otimes I_n\right]$$
$$= \max_{y \in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n\|_{\infty}.$$

► Question: what is the maximum singular value max_{x∈V,||x||=1} λ₁(x) of a unit vector from V ?

Compute

$$\max_{x \in V, \|x\|=1} \lambda_1(x) = \max_{x \in V, \|x\|=1} \lambda_1(\operatorname{Tr}_n P_x)$$
$$= \max_{x \in V, \|x\|=1} \|\operatorname{Tr}_n P_x\|$$
$$= \max_{x \in V, \|x\|=1} \max_{y \in \mathbb{C}^k, \|y\|=1} \operatorname{Tr}\left[(\operatorname{Tr}_n P_x) \cdot P_y\right]$$
$$= \max_{x \in V, \|x\|=1} \max_{y \in \mathbb{C}^k, \|y\|=1} \operatorname{Tr}\left[P_x \cdot P_y \otimes I_n\right]$$
$$= \max_{y \in \mathbb{C}^k, \|y\|=1} \max_{x \in V, \|x\|=1} \operatorname{Tr}\left[P_x \cdot P_y \otimes I_n\right]$$
$$= \max_{y \in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n\|_{\infty}.$$

• Limit of $||P_V P_y \otimes I_n||_{\infty}$ for fixed y and random V ?

• Define $\varphi(\alpha, \beta) = \alpha + \beta - 2\alpha\beta + 2\sqrt{\alpha\beta(1-\alpha)(1-\beta)}$ if $\alpha + \beta \le 1$ and put $\varphi(\alpha, \beta) = 1$ otherwise.

▶ Define $\varphi(\alpha, \beta) = \alpha + \beta - 2\alpha\beta + 2\sqrt{\alpha\beta(1-\alpha)(1-\beta)}$ if $\alpha + \beta \le 1$ and put $\varphi(\alpha, \beta) = 1$ otherwise.

Theorem (Collins '05)

In \mathbb{C}^n , choose at random according to the Haar measure two independent subspaces V_n and V'_n of respective dimensions $q_n \sim \alpha n$ and $q'_n \sim \beta n$ where $\alpha, \beta \in (0, 1)$. Let P_n (resp. P'_n) be the orthogonal projection onto V_n (resp. V'_n). Then,

$$\lim_{n} \|P_{n}P_{n}'P_{n}\|_{\infty} = \varphi(\alpha,\beta).$$

t-norms

Definition

For a positive integer k, embed \mathbb{R}^k as a self-adjoint real subalgebra \mathcal{R} of a II₁ factor \mathcal{A} endowed with trace τ , so that $\tau((x_1, \ldots, x_k)) = (x_1 + \cdots + x_k)/k$. Let p_t be a projection of rank $t \in (0, 1)$ in \mathcal{A} , free from \mathcal{R} . On the real vector space \mathbb{R}^k , we introduce the following norm, called the (t)-norm:

$$\|x\|_{(t)}:=\|p_txp_t\|_{\infty},$$

where the vector $x \in \mathbb{R}^k$ is identified with its image in \mathcal{R} .

t-norms

Definition

For a positive integer k, embed \mathbb{R}^k as a self-adjoint real subalgebra \mathcal{R} of a II₁ factor \mathcal{A} endowed with trace τ , so that $\tau((x_1, \ldots, x_k)) = (x_1 + \cdots + x_k)/k$. Let p_t be a projection of rank $t \in (0, 1)$ in \mathcal{A} , free from \mathcal{R} . On the real vector space \mathbb{R}^k , we introduce the following norm, called the (t)-norm:

$$\|x\|_{(t)}:=\|p_txp_t\|_{\infty},$$

where the vector $x \in \mathbb{R}^k$ is identified with its image in \mathcal{R} .

Proposition

The distribution $\mu_{t^{-1}p_t \times p_t}$ of the (non-commutative) random variable $t^{-1}p_t \times p_t$ in the II₁ factor reduced by the projection p_t is

$$\mu_{t^{-1}p_t \times p_t} = \mu_x^{\boxplus 1/t}, \quad t \in (0, 1],$$

where \boxplus denotes the free additive convolution of Voiculescu.

$$\blacktriangleright \ \mathcal{K}_{k,t} := \{\lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \leq \|x\|_{(t)}\}.$$

$$\blacktriangleright K_{k,t} := \{\lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \le \|x\|_{(t)}\}.$$

$$\max_{x \in V, \|x\|=1} \lambda_1(x) = \max_{y \in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n\|_{\infty}.$$

$$\blacktriangleright K_{k,t} := \{\lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \le \|x\|_{(t)}\}.$$

Recall that

$$\max_{x\in V, \|x\|=1} \lambda_1(x) = \max_{y\in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n\|_{\infty}.$$

For fixed y, P_V and P_y ⊗ I_n are independent projectors of relative ranks t and 1/k respectively.

$$\blacktriangleright \ K_{k,t} := \{ \lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \le \|x\|_{(t)} \}.$$

$$\max_{x \in V, \|x\|=1} \lambda_1(x) = \max_{y \in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n\|_{\infty}.$$

- For fixed y, P_V and P_y ⊗ I_n are independent projectors of relative ranks t and 1/k respectively.
- ► Thus, $||P_V P_Y \otimes I_n||_{\infty}$ converges a.s. to $\varphi(t, 1/k) = ||(1, 0, ..., 0)||_{(t)}$.

$$\blacktriangleright \ K_{k,t} := \{ \lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \le \|x\|_{(t)} \}.$$

$$\max_{x\in V, \|x\|=1} \lambda_1(x) = \max_{y\in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n\|_{\infty}.$$

- For fixed y, P_V and P_y ⊗ I_n are independent projectors of relative ranks t and 1/k respectively.
- ► Thus, $||P_V P_Y \otimes I_n||_{\infty}$ converges a.s. to $\varphi(t, 1/k) = ||(1, 0, ..., 0)||_{(t)}$.
- To get the full result, use $\langle \lambda, x \rangle$ instead of λ_1 .

$$\blacktriangleright \ K_{k,t} := \{ \lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \le \|x\|_{(t)} \}.$$

$$\max_{x\in V, \|x\|=1} \lambda_1(x) = \max_{y\in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n\|_{\infty}.$$

- For fixed y, P_V and P_y ⊗ I_n are independent projectors of relative ranks t and 1/k respectively.
- ► Thus, $||P_V P_Y \otimes I_n||_{\infty}$ converges a.s. to $\varphi(t, 1/k) = ||(1, 0, ..., 0)||_{(t)}$.
- To get the full result, use (λ, x) instead of λ₁.
- Unfortunately, it is difficult to compute (t)-norms...

Thank you !

Collins, N. - Random quantum channels II: Entanglement of random subspaces, Rényi entropy estimates and additivity problems - Advances in Mathematics 226 (2011), 1181-1201.

Belinschi, Collins, N. - Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product to appear in Inventiones Mathematicae.