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joint work with
Benoit Collins (Lyon, Ottawa) and Serban Belinschi (Saskatoon)

Lyon, May 14th, 2012



Quantum channels

I Quantum states with d degrees of freedom are described by
density matrices

X ∈M1,+(Cd); TrX = 1 and X ≥ 0.

I Quantum channels N :M(Cdin)→M(Cdout) are completely
positive, trace-preserving maps. In particular, they send
quantum states to quantum states.

I Complete positivity CP: N ⊗ idk preserves positivity.
I Trace preservation TP: Tr[N (X )] = Tr(X ) for all X .

I Quantum channels describe the most general physical
transformations a quantum system can undergo.
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p-norms and p-Rényi entropies
I The Schatten p-norm of X ∈Msa(Cd)

‖X‖p = [Tr(|X |p)]1/p = ‖λ(X )‖p.

I The maximum output p-norm of a quantum channel N is

‖N‖1→p = max{‖N (X )‖p,X ∈M1,+(Cd)}.

I The Rényi entropy of X ∈M1,+(Cd)

Hp(X ) =
1

1− p
logTr|X |p.

I The minimum output Rényi entropy is a linearization of the
above

Hmin
p (N ) = min

X∈M1,+(Cd )
Hp(X ) =

1

1− p
log ‖N‖1→p.

I The von Neumann entropy is obtained by taking the limit
p → 1.
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I The Schatten p-norm of X ∈Msa(Cd)

‖X‖p = [Tr(|X |p)]1/p = ‖λ(X )‖p.

I The maximum output p-norm of a quantum channel N is

‖N‖1→p = max{‖N (X )‖p,X ∈M1,+(Cd)}.
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Additivity of minimum p-Rényi entropies

Conjecture (Amosov, Holevo, and Werner ’00)

For any channels N1,N2, and any p ≥ 1,

Hmin
p (N1 ⊗N2) = Hmin

p (N1) + Hmin
p (N2).

I Entropies are additive: Hp(X1 ⊗ X2) = Hp(X1) + Hp(X2).

I Given N1,N2, the ≤ direction of the equality is trivial, take
X12 = X1 ⊗ X2.
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An important problem

I Additivity of MOE at p = 1 is equivalent to other additivity
conjectures in quantum information theory [Shor ’03], such as
the additivity of Holevo capacity for quantum channels or the
additivity of entanglement of formation for quantum bipartite
states.

I Additivity has been shown to hold for a large class of
channels: unitary, unital qubit, depolarizing, dephasing,
entanglement breaking, ...

I But ... the Additivity Conjecture is false, for all p ≥ 1!
I How to get counter-examples:

1. Lower bound Hmin
p (N1,2);

2. Upper bound Hmin
p (N1 ⊗N2), eg. by finding a particular input

X12 with low entropy  Motohisa’s talk;
3. Conclude by

Hmin
p (N1 ⊗N2) ≤ UB<LB1 + LB2 ≤ Hmin

p (N1) + Hmin
p (N2).

I In this talk, we focus on lower bounding the MOE of a
quantum channel.
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Channels as subspaces

I Let V ⊂ Cdout ⊗ Cdenv be a subspace of dimension din and
consider an isometry W : Cdin → Cdout ⊗ Cdenv with
ImW = V .

I One can define a channel N :M(Cdin)→M(Cdout) by
N (X ) = Trenv(WXW ∗).

I Every channel can be defined in this way (by choosing denv

large enough).

I By convexity properties, the p-MOE is attained on pure states
i.e. rank one projectors.

I Since N (Px) = Trenv(WPxW ∗) = TrenvPWx , the minimal
entropies of the channel N are determined by the image
subspace V = ImW .
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Eigen- and singular values, Schmidt coefficients

I Consider an unit vector in a tensor product x ∈ Cdout ⊗ Cdenv .

I The vector x admits a Schmidt decomposition
x =

∑
i

√
λi (x)ei ⊗ fi . We have λi (x) ≥ 0,

∑
i λi (x) = 1 and

we choose the order λ1 ≥ λ2 ≥ · · · .
I Using the isomorphism Cdout ⊗ Cdenv 'Mdout×denv(C), x can

be seen as a rectangular complex matrix, with singular values
λi (x).

I The eigenvalues of the matrix TrenvPx are λi (x).

I For a channel N defined by an isometry W with image V , we
have thus

Hmin
p (N ) = min

x∈V ,‖x‖=1
Hp(λ(x)).

I This is a simple question about subspaces of tensor products
(equivalently, about the singular values of matrices inside a
given subspace V ).
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Our approach

I For a subspace V ⊂ Ck ⊗ Cn of dimension d , define the set
eigen-/singular values or Schmidt coefficients

KV = {λ(x) : x ∈ V , ‖x‖ = 1}.

I The set KV is a compact subset of the ordered probability
simplex ∆↓k = {y ∈ Rk : yi ≥ 0,

∑
i yi = 1, y1 ≥ · · · ≥ yk}.

I Local invariance: K(U1⊗U2)V = KV , for unitary matrices
U1 ∈ U(k) and U2 ∈ U(n).

I Monotonicity: if V1 ⊂ V2, then KV1 ⊂ KV2 .

I Example: d = 1, V = C(k−1/2
∑k

i=1 ei ⊗ ei ). We have
KV = {(1/k, . . . , 1/k)} and thus Hmin

p (N ) = log k .

I Example: if d > (k − 1)n, then (1, 0, . . . , 0) ∈ KV and thus
Hmin
p (N ) = 0 for all p.

I We want: subspaces with large MOE and large dimension.
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I We want: subspaces with large MOE and large dimension.
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Random subspaces

I Idea: when you do not know how to find a subspace having
some nice properties, pick one at random!

I There is an uniform (or Haar) measure on the set of
d-dimensional subspaces of Ckn.

I Take a kn × kn Haar distributed random unitary matrix
U ∈ U(kn) and take V to be the span of its first d columns.

I Alternatively, if W is a kn × d truncation of U, then
V = ImW is uniform.

I From such a radom isometry W , one can construct random
quantum channels N (X ) = Trn(WXW ∗).

I There are other measures on the Grassmannian one can
consider (see Karol’s and Motohisa’s talks), the one above
being the simplest and the most natural.
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Main result

I From now one, we consider the following asymptotic regime:
k fixed, n→∞, and d ∼ tkn, for a fixed parameter t ∈ (0, 1).

Theorem (Belinschi, Collins, N. ’10)

For a sequence of uniformly distributed random subspaces Vn, the
set KVn of singular values of unit vectors from Vn converges
(almost surely, in the Hausdorff distance) to a deterministic convex
subset Kk,t of the probability simplex ∆k

Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.



Main result

I From now one, we consider the following asymptotic regime:
k fixed, n→∞, and d ∼ tkn, for a fixed parameter t ∈ (0, 1).

Theorem (Belinschi, Collins, N. ’10)

For a sequence of uniformly distributed random subspaces Vn, the
set KVn of singular values of unit vectors from Vn converges
(almost surely, in the Hausdorff distance) to a deterministic convex
subset Kk,t of the probability simplex ∆k

Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.



Main result

I From now one, we consider the following asymptotic regime:
k fixed, n→∞, and d ∼ tkn, for a fixed parameter t ∈ (0, 1).

Theorem (Belinschi, Collins, N. ’10)

For a sequence of uniformly distributed random subspaces Vn, the
set KVn of singular values of unit vectors from Vn converges
(almost surely, in the Hausdorff distance) to a deterministic convex
subset Kk,t of the probability simplex ∆k

Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.



Corollary: exact limit of the MOE

I By the previous theorem, in the specific asymptotic regime
t, k fixed, n→∞, d ∼ tkn, we have the following a.s.
convergence result for random quantum channels:

lim
n→∞

Hmin
p (N ) = min

λ∈Kk,t

Hp(λ).

I It is not just a bound, the exact limiting value is obtained.

I However, the set of possible output states is not explicit, and
minimizing entropy functions is difficult (work in progress).
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How the proof works

I Question: what is the maximum singular value
maxx∈V ,‖x‖=1 λ1(x) of a unit vector from V ?

I Compute

max
x∈V ,‖x‖=1

λ1(x) = max
x∈V ,‖x‖=1

λ1(TrnPx)

= max
x∈V ,‖x‖=1

‖TrnPx‖

= max
x∈V ,‖x‖=1

max
y∈Ck ,‖y‖=1

Tr [(TrnPx) · Py ]

= max
x∈V ,‖x‖=1

max
y∈Ck ,‖y‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck ,‖y‖=1

max
x∈V ,‖x‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck ,‖y‖=1

‖PV Py ⊗ In‖∞.

I Limit of ‖PV Py ⊗ In‖∞ for fixed y and random V ?
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I Define ϕ(α, β) = α + β − 2αβ + 2
√
αβ(1− α)(1− β) if

α + β ≤ 1 and put ϕ(α, β) = 1 otherwise.

Theorem (Collins ’05)

In Cn, choose at random according to the Haar measure two
independent subspaces Vn and V ′n of respective dimensions
qn ∼ αn and q′n ∼ βn where α, β ∈ (0, 1). Let Pn (resp. P ′n) be
the orthogonal projection onto Vn (resp. V ′n). Then,

lim
n
‖PnP ′nPn‖∞ = ϕ(α, β).
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t-norms

Definition
For a positive integer k , embed Rk as a self-adjoint real subalgebra
R of a II1 factor A endowed with trace τ, so that
τ((x1, . . . , xk)) = (x1 + · · ·+ xk)/k . Let pt be a projection of rank
t ∈ (0, 1) in A, free from R. On the real vector space Rk , we
introduce the following norm, called the (t)-norm:

‖x‖(t) := ‖ptxpt‖∞,

where the vector x ∈ Rk is identified with its image in R.

Proposition

The distribution µt−1ptxpt of the (non-commutative) random
variable t−1ptxpt in the II1 factor reduced by the projection pt is

µt−1ptxpt = µ
�1/t
x , t ∈ (0, 1],

where � denotes the free additive convolution of Voiculescu.
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The set Kk ,t and t-norms

I Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.

I Recall that

max
x∈V ,‖x‖=1

λ1(x) = max
y∈Ck ,‖y‖=1

‖PV Py ⊗ In‖∞.

I For fixed y , PV and Py ⊗ In are independent projectors of
relative ranks t and 1/k respectively.

I Thus, ‖PV Py ⊗ In‖∞ converges a.s. to
ϕ(t, 1/k) = ‖(1, 0, . . . , 0)‖(t).

I To get the full result, use 〈λ, x〉 instead of λ1.

I Unfortunately, it is difficult to compute (t)-norms...
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Thank you !

Collins, N. - Random quantum channels II: Entanglement of
random subspaces, Rényi entropy estimates and additivity

problems - Advances in Mathematics 226 (2011), 1181-1201.

Belinschi, Collins, N. - Laws of large numbers for eigenvectors and
eigenvalues associated to random subspaces in a tensor product -

to appear in Inventiones Mathematicae.
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