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Eigen- and singular values

» Singular value decomposition of a matrix X € My ,(C)

X=) ViX)eof,

where ¢;, f; are orthonormal families in C¥, C", and
A1(X) > Ao(X) > --- > 0 are the singular values of X.

» The eigenvalues of the matrix XX* are \;(x).

» Question: What are the singular values of a random matrix ?



Singular values of random matrices, k fixed, n — oo regime

» Let X be a k x n Ginibre random matrix, i.e. {Xj} are i.i.d.
complex Gaussian random variables.

» We are interested in long matrices: k fixed, n — oc.

» We normalize our matrices, by taking them on the unit
Euclidean sphere TrXX* = 1.

» Thus, the singular values vector A(X) is a probability vector

MX)eA ={yeRF : ;>0 yi=1y1 > >y}

1

> It is an easy exercise to show that, almost surely,

Vi, M(X) = 1/k.



Vector formulation

v

Recall: SVD of X € Mx,(C)

X = VA(X)e®f.

» Using the isomorphism CX ® C" ~ M ,(C), X can be seen
as a vector in a tensor product x € Ck @ C".

» The vector x admits a Schmidt decomposition
X = E,- \/)\,'(x)e,- ® fi.

» The eigenvalues of the matrix XX* = [idx ® Tr,]Pyx are \j(x).

» Problem: What are the singular values of ALL vectors
[matrices] inside a (random) subspace V of a tensor product
[matrix space] ?

» This is a simple question about subspaces of tensor products
(equivalently, about the singular values of matrices inside a
given subspace V).



Singular values of vectors from a subspace

» For a subspace V C Ck @ C" of dimension d, define the set
eigen-/singular values or Schmidt coefficients

Ky = {A(x) : x € V,||x|| = 1}

» Qur goal is to understand Ky .

» The set Ky is a compact subset of the ordered probability
simplex At.

» Local invariance: K(y,gu,)v = Ky, for unitary matrices
Ui € U(k) and U, € U(n).

» Monotonicity: if Vi C Vs, then Ky, C Ky,.

» Example: d =1, V = Cx. We have Ky = {A(x)}.

» Example: if d > (k — 1)n, then (1,0,...,0) € Ky.



Examples

» : V =span{Gy, G2}, where G; > are 3 x 3 independent
Ginibre random matrices.

(1,003

(0o (01,00



Examples

» : V =span{Gy, G2}, where G; > are 3 x 3 independent
Ginibre random matrices.
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Examples

» . V =span{l3, G}, where G is a 3 x 3 Ginibre random matrix.
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Examples

» . V =span{l3, G}, where G is a 3 x 3 Ginibre random matrix.
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(0o (01,00



Why do we care 7 Quantum channels !

» Quantum states with d degrees of freedom are described by
density matrices

X eM=3(CY; TrX=1and X >0.

» Quantum channels A" : M(C%) — M(Ck) are completely
positive, trace-preserving maps. In particular, they send
quantum states to quantum states.

» Complete positivity CP: N ® id,, preserves positivity.

» Trace preservation TP: Tr[N(X)] = Tr(X) for all X.

» Quantum channels describe the most general physical
transformations a quantum system can undergo.



Additivity of minimum p-Rényi entropies
» The von Neumann entropy of X € MY+(C9)
H(X) = —Tr(X log X).
» The entropy is additive: H(X; ® Xo) = H(X1) + H(X2).
» The minimum output entropy of a quantum channel is

H™M(N) = in  HWN(X)).
W)= _min , HX(C0)
Conjecture (Amosov, Holevo, and Werner '00)
For any channels N1, N>

Hmi"(/\/l ®@N2) = Hmi"(/\/l) + Hmi"(/\/z)-

» Given N1, N>, the < direction of the equality is trivial, take
X2 = X1 ® Xa.

» But ... the Additivity Conjecture is false ! [Hayden, Winter
'08, Hastings '09]



Channels as subspaces

» Let V C Ck® C" be a subspace of dimension d and consider
an isometry W : C4 — Ck @ C" with ImW = V.

» One can define a channel A/ : M(C?) — M(CK) by

N(X) = [idy ® Tro](WXW*).

» Every channel can be defined in this way (by choosing n large
enough).

» By convexity properties, the MOE is attained on pure states
i.e. rank one projectors.

» Since N(Py) = [idk @ Trp](WP,W*) = [idk ® Try]Pwx, the
minimal entropies of the channel N are determined by the
image subspace V =ImW.



Random subspaces

» Idea: when you do not know how to find a subspace having
some nice properties, pick one at random!

» There is an uniform (or Haar) measure on the set of
d-dimensional subspaces of C<".
» Take a kn x kn Haar distributed random unitary matrix
U € U(kn) and take V to be the span of its first d columns.
> Alternatively, if W is a kn x d truncation of U, then
V =ImW is uniform.
» From such a radom isometry W, one can construct random
quantum channels N'(X) = [idg @ Tr,](WXW*).

» There are other measures on the Grassmannian one can
consider, the one above being the simplest and the most
natural.



Main result

> For the rest of the talk, we consider the following asymptotic

regime: k fixed, n — oo, and d ~ tkn, for a fixed parameter
te(0,1).

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V,,, the
set Ky, of singular values of unit vectors from V, converges
(almost surely, in the Hausdorff distance) to a deterministic convex
subset Ky ; of the probability simplex A

Kk,t = {/\ € Ak | Vx € Ak, <)\,X> < HXH(t)}



Corollary: exact limit of the MOE

» By the previous theorem, in the specific asymptotic regime
t, k fixed, n — oo, d ~ tkn, we have the following a.s.
convergence result for random quantum channels:

lim H™"(N) = min H(\).

n—o00 AEK ¢

> It is not just a bound, the exact limit value is obtained ®

» However, the set K ; is not explicit, and minimizing entropy
functions is difficult ®



Idea of the proof

» Question: what is the maximum singular value
MaX,cy |x|=1 A1(x) of a unit vector from V' ?

» Compute
max A1(x) = max A ([idx ® Tr,|Py
e 00 = e Aallidie © Tl )
= max |[|[idx ® Trp]P«l|
xeV,|x|]|=1
= max max  Tr[([ids ® Trp)Px) - Py]

xeV,|Ix||=1yeCk,|ly|=1

=  max max Tr[P,- P, ®1,]
x€V,|Ix||=1yeCk|ly|=1

= max max Tr[Py- P, ®1,]
yeCK |lyll=1xeV,[Ix|=1

= max Py -P,®I1 .
yedr2_ 1P - By @ Talleo

» Limit of ||Py - P, ® I||o for fixed y and random V' 7



Theorem (Collins '05)

In C", choose at random according to the Haar measure two
independent subspaces V,, and V! of respective dimensions

gn ~ an and g, ~ Bn where a, 8 € (0,1). Let P, (resp. P}) be
the orthogonal projection onto V), (resp. V). Then,

|irr1n HPnP;PnHoo = p(a, B).

» One can compute
ola,B) =a+B-2a8+2y/aB(l—a)(l-p)ifa+B<1
and p(a, ) =1if a+ > 1 (subspaces V, and V] have
non-trivial intersection).




t-norms

Definition
For a positive integer k, embed R as a self-adjoint real subalgebra
R of a I factor (A, ), so that 7(x) = (x1 + - + xx)/k. Let p;
be a projection of rank t € (0,1) in A, free from R. On the real
vector space RX. we introduce the following norm, called the
(t)-norm:

Il = lpexpelloos

where the vector x € R¥ is identified with its image in R.

Proposition

The distribution fi;-1p,,, of the (non-commutative) random
variable t~Lp:xp; in the 111 factor reduced by the projection p; is
Pt pexpy = /El/t, t € (0,1], where B denotes the free additive
convolution of Voiculescu.



The set Ky and t-norms

> Kk,t = {)\ E Ak ‘ VX 6 Ak7 <>\7X> S ||X||(t)}
» Recall that

max Ai(x) = max PyP, ®1 .
xeV,xl=1 ) yeck,nynzl” y @ Lol

» For fixed y, Py and P, ® I, are independent projectors of
relative ranks t and 1/k respectively.

> Thus, [Py - Py @ Inlloc — @(t,1/k) = [I(1,0,...,0)[ -

» We can take the max over y at no cost, by considering a finite
net of y's, since k is fixed.

» To get the full result, use (A, x) (for all directions x) instead
of )\1.

» Unfortunately, it is difficult to compute (t)-norms, so we do
not have an explicit formula for Kj ;.



Thank you !

Collins, N. - Random quantum channels Il: Entanglement of
random subspaces, Rényi entropy estimates and additivity
problems.

Belinschi, Collins, N. - Laws of large numbers for eigenvectors and
eigenvalues associated to random subspaces in a tensor product.



