Random Subspaces of a Tensor Product and the Additivity Problem

Ion Nechita

CNRS, Université de Toulouse \& TU München
joint work with
Benoit Collins (Lyon, Ottawa) and Serban Belinschi (Saskatoon)
München, September 12th, 2012

Eigen- and singular values

- Singular value decomposition of a matrix $X \in \mathcal{M}_{k \times n}(\mathbb{C})$

$$
X=\sum \sqrt{\lambda_{i}(X)} e_{i} \otimes f_{i}^{*}
$$

where e_{i}, f_{i} are orthonormal families in $\mathbb{C}^{k}, \mathbb{C}^{n}$, and $\lambda_{1}(X) \geq \lambda_{2}(X) \geq \cdots \geq 0$ are the singular values of X.

- The eigenvalues of the matrix $X X^{*}$ are $\lambda_{i}(x)$.
- Question: What are the singular values of a random matrix ?

Singular values of random matrices, k fixed, $n \rightarrow \infty$ regime

- Let X be a $k \times n$ Ginibre random matrix, i.e. $\left\{X_{i j}\right\}$ are i.i.d. complex Gaussian random variables.
- We are interested in long matrices: k fixed, $n \rightarrow \infty$.
- We normalize our matrices, by taking them on the unit Euclidean sphere $\operatorname{Tr} X X^{*}=1$.
- Thus, the singular values vector $\lambda(X)$ is a probability vector

$$
\lambda(X) \in \Delta_{k}^{\downarrow}=\left\{y \in \mathbb{R}^{k}: y_{i} \geq 0, \sum_{i} y_{i}=1, y_{1} \geq \cdots \geq y_{k}\right\} .
$$

- It is an easy exercise to show that, almost surely,

$$
\forall i, \quad \lambda_{i}(X) \rightarrow 1 / k
$$

Vector formulation

- Recall: SVD of $X \in \mathcal{M}_{k \times n}(\mathbb{C})$

$$
X=\sum \sqrt{\lambda_{i}(X)} e_{i} \otimes f_{i}^{*}
$$

- Using the isomorphism $\mathbb{C}^{k} \otimes C^{n} \simeq \mathcal{M}_{k \times n}(\mathbb{C}), X$ can be seen as a vector in a tensor product $x \in \mathbb{C}^{k} \otimes \mathbb{C}^{n}$.
- The vector x admits a Schmidt decomposition $x=\sum_{i} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}$.
- The eigenvalues of the matrix $X X^{*}=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}$ are $\lambda_{i}(x)$.
- Problem: What are the singular values of ALL vectors [matrices] inside a (random) subspace V of a tensor product [matrix space] ?
- This is a simple question about subspaces of tensor products (equivalently, about the singular values of matrices inside a given subspace V).

Singular values of vectors from a subspace

- For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension d, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}=\{\lambda(x): x \in V,\|x\|=1\} .
$$

- Our goal is to understand K_{V}.
- The set K_{V} is a compact subset of the ordered probability simplex Δ_{k}^{\downarrow}.
- Local invariance: $K_{\left(U_{1} \otimes U_{2}\right) V}=K_{V}$, for unitary matrices $U_{1} \in \mathcal{U}(k)$ and $U_{2} \in \mathcal{U}(n)$.
- Monotonicity: if $V_{1} \subset V_{2}$, then $K_{V_{1}} \subset K_{V_{2}}$.
- Example: $d=1, V=\mathbb{C} x$. We have $K_{V}=\{\lambda(x)\}$.
- Example: if $d>(k-1)(n-1)$, then $(1,0, \ldots, 0) \in K_{V}$.

Examples

- $: V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.

Examples

- $: V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.

Examples

- : $V=\operatorname{span}\left\{\mathrm{I}_{3}, G\right\}$, where G is a 3×3 Ginibre random matrix.

Examples

- : $V=\operatorname{span}\left\{\mathrm{I}_{3}, G\right\}$, where G is a 3×3 Ginibre random matrix.

Why do we care ? Quantum channels!

- Quantum states with d degrees of freedom are described by density matrices

$$
X \in \mathcal{M}^{\text {sa }}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} X=1 \text { and } X \geq 0
$$

- Quantum channels $\mathcal{N}: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{k}\right)$ are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.
- Complete positivity $\mathrm{CP}: \mathcal{N} \otimes \mathrm{id}_{n}$ preserves positivity.
- Trace preservation TP: $\operatorname{Tr}[\mathcal{N}(X)]=\operatorname{Tr}(X)$ for all X.
- Quantum channels describe the most general physical transformations a quantum system can undergo.

The additivity problem

- The von Neumann entropy of $X \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$

$$
H(X)=-\operatorname{Tr}(X \log X)
$$

- The entropy is additive: $H\left(X_{1} \otimes X_{2}\right)=H\left(X_{1}\right)+H\left(X_{2}\right)$.
- The minimum output entropy of a quantum channel is

$$
H^{\min }(\mathcal{N})=\min _{X \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)} H(\mathcal{N}(X))
$$

Conjecture (Amosov, Holevo, and Werner '00)
For any channels $\mathcal{N}_{1}, \mathcal{N}_{2}$

$$
H^{\min }\left(\mathcal{N}_{1} \otimes \mathcal{N}_{2}\right)=H^{\min }\left(\mathcal{N}_{1}\right)+H^{\min }\left(\mathcal{N}_{2}\right)
$$

- Given $\mathcal{N}_{1}, \mathcal{N}_{2}$, the \leq direction of the equality is trivial, take $X_{12}=X_{1} \otimes X_{2}$.

An important problem

- Additivity of MOE is equivalent to other additivity conjectures in quantum information theory [Shor '03], such as the additivity of Holevo capacity for quantum channels or the additivity of entanglement of formation for quantum bipartite states.
- Additivity has been shown to hold for a large class of channels: unitary, unital qubit, depolarizing, dephasing, entanglement breaking, ...
- But ... the Additivity Conjecture is false!
- How to get counter-examples:

1. Lower bound $H^{\text {min }}\left(\mathcal{N}_{1,2}\right)$;
2. Upper bound $H^{\text {min }}\left(\mathcal{N}_{1} \otimes \mathcal{N}_{2}\right)$, eg. by finding a particular input X_{12} with low entropy;
3. Conclude by

$$
H^{\min }\left(\mathcal{N}_{1} \otimes \mathcal{N}_{2}\right) \leq U B<L B_{1}+L B_{2} \leq H^{\min }\left(\mathcal{N}_{1}\right)+H^{\min }\left(\mathcal{N}_{2}\right) .
$$

- In this talk, we focus on lower bounding the MOE of a quantum channel.

Channels as subspaces

- Let $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ be a subspace of dimension d and consider an isometry $W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ with $\operatorname{Im} W=V$.
- One can define a channel $\mathcal{N}: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{k}\right)$ by

$$
\mathcal{N}(X)=\left[\mathrm{id}_{\mathrm{k}} \otimes \operatorname{Tr}_{\mathrm{n}}\right]\left(W X W^{*}\right)
$$

- Every channel can be defined in this way (by choosing n large enough).
- By convexity properties, the MOE is attained on pure states i.e. rank one projectors.
- Since $\mathcal{N}\left(P_{x}\right)=\left[\mathrm{id}_{\mathrm{k}} \otimes \operatorname{Tr}_{\mathrm{n}}\right]\left(W P_{x} W^{*}\right)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{W_{x}}$, the minimal entropies of the channel \mathcal{N} are determined by the image subspace $V=\operatorname{Im} W$.

Random subspaces

- Idea: when you do not know how to find a subspace having some nice properties, pick one at random!
- There is an uniform (or Haar) measure on the set of d-dimensional subspaces of $\mathbb{C}^{k n}$.
- Take a kn $\times k n$ Haar distributed random unitary matrix $U \in \mathcal{U}(k n)$ and take V to be the span of its first d columns.
- Alternatively, if W is a $k n \times d$ truncation of U, then $V=\operatorname{Im} W$ is uniform.
- From such a radom isometry W, one can construct random quantum channels $\mathcal{N}(X)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right]\left(W X W^{*}\right)$.
- There are other measures on the Grassmannian one can consider, the one above being the simplest and the most natural.

Main result

- For the rest of the talk, we consider the following asymptotic regime: k fixed, $n \rightarrow \infty$, and $d \sim t k n$, for a fixed parameter $t \in(0,1)$.

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V_{n}, the set $K_{V_{n}}$ of singular values of unit vectors from V_{n} converges (almost surely, in the Hausdorff distance) to a deterministic convex subset $K_{k, t}$ of the probability simplex Δ_{k}

$$
K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\} .
$$

Corollary: exact limit of the MOE

- By the previous theorem, in the specific asymptotic regime t, k fixed, $n \rightarrow \infty, d \sim t k n$, we have the following a.s. convergence result for random quantum channels:

$$
\lim _{n \rightarrow \infty} H^{\min }(\mathcal{N})=\min _{\lambda \in K_{k, t}} H(\lambda)
$$

- It is not just a bound, the exact limit value is obtained $)^{-}$
- However, the set $K_{k, t}$ is not explicit, and minimizing entropy functions is difficult $:+$

Idea of the proof

- Question: what is the maximum singular value $\max _{x \in V,\|x\|=1} \lambda_{1}(x)$ of a unit vector from V ?
- Compute

$$
\begin{aligned}
\max _{x \in V,\|x\|=1} \lambda_{1}(x) & =\max _{x \in V,\|x\|=1} \lambda_{1}\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \\
& =\max _{x \in V,\|x\|=1}\left\|\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right\| \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \cdot P_{y}\right] \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1} \max _{x \in V,\|x\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
\end{aligned}
$$

- Limit of $\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty}$ for fixed y and random V ?

Theorem (Collins '05)

In \mathbb{C}^{n}, choose at random according to the Haar measure two independent subspaces V_{n} and V_{n}^{\prime} of respective dimensions $q_{n} \sim \alpha n$ and $q_{n}^{\prime} \sim \beta n$ where $\alpha, \beta \in(0,1)$. Let $P_{n}\left(r e s p . P_{n}^{\prime}\right)$ be the orthogonal projection onto V_{n} (resp. V_{n}^{\prime}). Then,

$$
\lim _{n}\left\|P_{n} P_{n}^{\prime} P_{n}\right\|_{\infty}=\varphi(\alpha, \beta) .
$$

- One can compute $\varphi(\alpha, \beta)=\alpha+\beta-2 \alpha \beta+2 \sqrt{\alpha \beta(1-\alpha)(1-\beta)}$ if $\alpha+\beta \leq 1$ and $\varphi(\alpha, \beta)=1$ if $\alpha+\beta>1$ (subspaces V_{n} and V_{n}^{\prime} have non-trivial intersection).

t-norms

Definition

For a positive integer k, embed \mathbb{R}^{k} as a self-adjoint real subalgebra \mathcal{R} of a II_{1} factor (\mathcal{A}, τ), so that $\tau(x)=\left(x_{1}+\cdots+x_{k}\right) / k$. Let p_{t} be a projection of rank $t \in(0,1)$ in \mathcal{A}, free from \mathcal{R}. On the real vector space \mathbb{R}^{k}, we introduce the following norm, called the (t)-norm:

$$
\|x\|_{(t)}:=\left\|p_{t} x p_{t}\right\|_{\infty}
$$

where the vector $x \in \mathbb{R}^{k}$ is identified with its image in \mathcal{R}.

Proposition

The distribution $\mu_{t^{-1} p_{t} \times p_{t}}$ of the (non-commutative) random variable $t^{-1} p_{t} \times p_{t}$ in the I_{1} factor reduced by the projection p_{t} is $\mu_{t^{-1} p_{t} \times p_{t}}=\mu_{x}^{\boxplus 1 / t}, \quad t \in(0,1]$, where \boxplus denotes the free additive convolution of Voiculescu.

The set $K_{k, t}$ and t-norms

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.
- Recall that

$$
\max _{x \in V,\|x\|=1} \lambda_{1}(x)=\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
$$

- For fixed y, P_{V} and $P_{y} \otimes \mathrm{I}_{n}$ are independent projectors of relative ranks t and $1 / k$ respectively.
- Thus, $\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} \rightarrow \varphi(t, 1 / k)=\|(1,0, \ldots, 0)\|_{(t)}$.
- We can take the max over y at no cost, by considering a finite net of y 's, since k is fixed.
- To get the full result, use $\langle\lambda, x\rangle$ (for all directions x) instead of λ_{1}.
- Unfortunately, it is difficult to compute (t)-norms, so we do not have an explicit formula for $K_{k, t}$.

Thank you!

Collins, N. - Random quantum channels II: Entanglement of random subspaces, Rényi entropy estimates and additivity problems.

Belinschi, Collins, N. - Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product.

