Random Subspaces of a Tensor Product and the Additivity Problem

Ion Nechita

CNRS, Université de Toulouse & TU München

joint work with

Benoit Collins (Lyon, Ottawa) and Serban Belinschi (Saskatoon)

Saarbrücken, September 18th 2012

Eigen- and singular values

▶ Singular value decomposition of a matrix $X \in \mathcal{M}_{k \times n}(\mathbb{C})$

$$X = \sum \sqrt{\lambda_i(X)} e_i \otimes f_i^*,$$

where e_i , f_i are orthonormal families in \mathbb{C}^k , \mathbb{C}^n , and $\lambda_1(X) \ge \lambda_2(X) \ge \cdots \ge 0$ are the singular values of X.

- ▶ The eigenvalues of the matrix XX^* are $\lambda_i(x)$.
- Question: What are the singular values of a random matrix ?

Singular values of random matrices, k fixed, $n \to \infty$ regime

- Let X be a $k \times n$ Ginibre random matrix, i.e. $\{X_{ij}\}$ are i.i.d. complex Gaussian random variables.
- ▶ We are interested in long matrices: k fixed, $n \to \infty$.
- ▶ We normalize our matrices, by taking them on the unit Euclidean sphere $TrXX^* = 1$.
- ▶ Thus, the singular values vector $\lambda(X)$ is a probability vector

$$\lambda(X) \in \Delta_k^{\downarrow} = \{ y \in \mathbb{R}^k : y_i \geq 0, \sum_i y_i = 1, y_1 \geq \cdots \geq y_k \}.$$

It is an easy exercise to show that, almost surely,

$$\forall i, \qquad \lambda_i(X) \rightarrow 1/k.$$

Vector formulation

▶ Recall: SVD of $X \in \mathcal{M}_{k \times n}(\mathbb{C})$

$$X = \sum \sqrt{\lambda_i(X)} e_i \otimes f_i^*.$$

- ▶ Using the isomorphism $\mathbb{C}^k \otimes C^n \simeq \mathcal{M}_{k \times n}(\mathbb{C})$, X can be seen as a vector in a tensor product $x \in \mathbb{C}^k \otimes \mathbb{C}^n$.
- ► The vector x admits a Schmidt decomposition $x = \sum_{i} \sqrt{\lambda_i(x)} e_i \otimes f_i$.
- ▶ The eigenvalues of the matrix $XX^* = [id_k \otimes Tr_n]P_x$ are $\lambda_i(x)$.
- Problem: What are the singular values of ALL vectors [matrices] inside a (random) subspace V of a tensor product [matrix space] ?
- ► This is a simple question about subspaces of tensor products (equivalently, about the singular values of matrices inside a given subspace *V*).

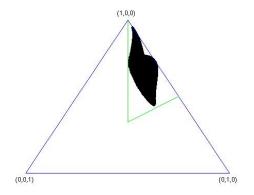
Singular values of vectors from a subspace

▶ For a subspace $V \subset \mathbb{C}^k \otimes \mathbb{C}^n$ of dimension d, define the set eigen-/singular values or Schmidt coefficients

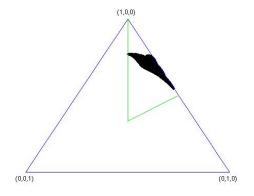
$$K_V = {\lambda(x) : x \in V, ||x|| = 1}.$$

- Our goal is to understand K_V.
- ► The set K_V is a compact subset of the ordered probability simplex Δ_k^{\downarrow} .
- ▶ Local invariance: $K_{(U_1 \otimes U_2)V} = K_V$, for unitary matrices $U_1 \in \mathcal{U}(k)$ and $U_2 \in \mathcal{U}(n)$.
- ▶ Monotonicity: if $V_1 \subset V_2$, then $K_{V_1} \subset K_{V_2}$.
- ▶ Example: d = 1, $V = \mathbb{C}x$. We have $K_V = \{\lambda(x)\}$.
- ▶ Example: if d > (k-1)n, then $(1,0,\ldots,0) \in K_V$.

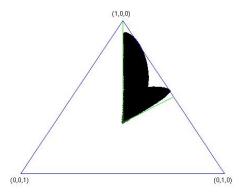
• : $V = \text{span}\{G_1, G_2\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.



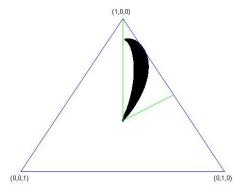
• : $V = \text{span}\{G_1, G_2\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.



• : $V = \operatorname{span}\{I_3, G\}$, where G is a 3×3 Ginibre random matrix.



• : $V = \operatorname{span}\{I_3, G\}$, where G is a 3×3 Ginibre random matrix.



Why do we care? Quantum channels!

Quantum states with d degrees of freedom are described by density matrices

$$X \in \mathcal{M}^{\mathsf{sa}}(\mathbb{C}^d); \qquad \mathrm{Tr} X = 1 \text{ and } X \geq 0.$$

- ▶ Quantum channels $\mathcal{N}: \mathcal{M}(\mathbb{C}^d) \to \mathcal{M}(\mathbb{C}^k)$ are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.
 - ▶ Complete positivity CP : $\mathcal{N} \otimes \mathrm{id}_n$ preserves positivity.
 - ▶ Trace preservation TP: $Tr[\mathcal{N}(X)] = Tr(X)$ for all X.
- Quantum channels describe the most general physical transformations a quantum system can undergo.

Additivity of minimum p-Rényi entropies

▶ The von Neumann entropy of $X \in \mathcal{M}^{1,+}(\mathbb{C}^d)$

$$H(X) = -\mathrm{Tr}(X \log X).$$

- ▶ The entropy is additive: $H(X_1 \otimes X_2) = H(X_1) + H(X_2)$.
- ► The minimum output entropy of a quantum channel is

$$H^{\min}(\mathcal{N}) = \min_{X \in \mathcal{M}^{1,+}(\mathbb{C}^d)} H(\mathcal{N}(X)).$$

Conjecture (Amosov, Holevo, and Werner '00)

For any channels $\mathcal{N}_1, \mathcal{N}_2$

$$H^{min}(\mathcal{N}_1 \otimes \mathcal{N}_2) = H^{min}(\mathcal{N}_1) + H^{min}(\mathcal{N}_2).$$

- ▶ Given $\mathcal{N}_1, \mathcal{N}_2$, the ≤ direction of the equality is trivial, take $X_{12} = X_1 \otimes X_2$.
- ▶ But ... the Additivity Conjecture is false! [Hayden, Winter '08, Hastings '09]

Random channels and random subspaces

- ▶ Consider an isometry $W : \mathbb{C}^d \to \mathbb{C}^k \otimes \mathbb{C}^n$ and let V be its image $\operatorname{Im} W = V$ so that $V \subset \mathbb{C}^k \otimes \mathbb{C}^n$ is a subspace of dimension d.
- ▶ One can define a channel $\mathcal{N}: \mathcal{M}(\mathbb{C}^d) \to \mathcal{M}(\mathbb{C}^k)$ by $\mathcal{N}(X) = [\mathrm{id}_k \otimes \mathrm{Tr}_n](WXW^*).$
- ► Every channel can be defined in this way (by choosing *n* large enough).
- ► By convexity properties, the MOE is attained on pure states i.e. rank one projectors.
- ▶ Since $\mathcal{N}(P_x) = [\mathrm{id}_k \otimes \mathrm{Tr}_n](WP_xW^*) = [\mathrm{id}_k \otimes \mathrm{Tr}_n]P_{Wx}$, the minimal entropies of the channel \mathcal{N} are determined by the image subspace $V = \mathrm{Im}W$.
- There is an uniform (or Haar) measure on the set of d-dimensional subspaces of C^{kn}.
- ▶ Take a $kn \times kn$ Haar distributed random unitary matrix $U \in \mathcal{U}(kn)$ and take V to be the span of its first d columns.

Main result

▶ For the rest of the talk, we consider the following asymptotic regime: k fixed, $n \to \infty$, and $d \sim tkn$, for a fixed parameter $t \in (0,1)$.

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V_n , the set K_{V_n} of singular values of unit vectors from V_n converges (almost surely, in the Hausdorff distance) to a deterministic convex subset $K_{k,t}$ of the probability simplex Δ_k

$$K_{k,t} := \{ \lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \le ||x||_{(t)} \}.$$

The *t*-norm

Definition

For a positive integer k, embed \mathbb{R}^k as a self-adjoint real subalgebra \mathcal{R} of a II_1 factor (\mathcal{A},τ) , so that $\tau(x)=(x_1+\cdots+x_k)/k$. Let p_t be a projection of rank $t\in(0,1]$ in \mathcal{A} , free from \mathcal{R} . On the real vector space \mathbb{R}^k , we introduce the following norm, called the (t)-norm:

$$||x||_{(t)} := ||p_t x p_t||_{\infty},$$

where the vector $x \in \mathbb{R}^k$ is identified with its image in \mathcal{R} .

Proposition

The distribution $\mu_{t^{-1}p_t \times p_t}$ of the (non-commutative) random variable $t^{-1}p_t \times p_t$ in the Π_1 factor reduced by the projection p_t is $\mu_{t^{-1}p_t \times p_t} = \mu_x^{\boxplus 1/t}, \quad t \in (0,1]$, where \boxplus denotes the free additive convolution of Voiculescu.

Corollary: exact limit of the MOE

▶ By the previous theorem, in the specific asymptotic regime t, k fixed, $n \to \infty$, $d \sim tkn$, we have the following a.s. convergence result for random quantum channels:

$$\lim_{n\to\infty} H^{\min}(\mathcal{N}) = \min_{\lambda\in K_{k,t}} H(\lambda).$$

- ▶ It is not just a bound, the exact limit value is obtained ☺
- ▶ However, the set $K_{k,t}$ is not explicit, and minimizing entropy functions is difficult \odot

Idea of the proof

- ▶ Question: what is the maximum singular value $\max_{x \in V, ||x||=1} \lambda_1(x)$ of a unit vector from V?
- Compute

$$\begin{aligned} \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \lambda_1(\mathbf{x}) &= \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \lambda_1([\mathrm{id}_k \otimes \mathrm{Tr}_n] P_{\mathbf{x}}) \\ &= \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \|[\mathrm{id}_k \otimes \mathrm{Tr}_n] P_{\mathbf{x}}\| \\ &= \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \max_{\mathbf{y} \in \mathbb{C}^k, \|\mathbf{y}\| = 1} \mathrm{Tr}\left[([\mathrm{id}_k \otimes \mathrm{Tr}_n] P_{\mathbf{x}}) \cdot P_{\mathbf{y}}\right] \\ &= \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \max_{\mathbf{y} \in \mathbb{C}^k, \|\mathbf{y}\| = 1} \mathrm{Tr}\left[P_{\mathbf{x}} \cdot P_{\mathbf{y}} \otimes \mathrm{I}_n\right] \\ &= \max_{\mathbf{y} \in \mathbb{C}^k, \|\mathbf{y}\| = 1} \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \mathrm{Tr}\left[P_{\mathbf{x}} \cdot P_{\mathbf{y}} \otimes \mathrm{I}_n\right] \\ &= \max_{\mathbf{y} \in \mathbb{C}^k, \|\mathbf{y}\| = 1} \|P_{\mathbf{y}} \cdot P_{\mathbf{y}} \otimes \mathrm{I}_n\|_{\infty}. \end{aligned}$$

▶ Limit of $||P_V \cdot P_v \otimes I_n||_{\infty}$ for fixed y and random V?

Theorem (Collins '05)

In \mathbb{C}^n , choose at random according to the Haar measure two independent subspaces V_n and V'_n of respective dimensions $q_n \sim \alpha n$ and $q'_n \sim \beta n$ where $\alpha, \beta \in (0,1)$. Let P_n (resp. P'_n) be the orthogonal projection onto V_n (resp. V'_n). Then,

$$\lim_{n} \|P_{n}P'_{n}P_{n}\|_{\infty} = \varphi(\alpha,\beta).$$

• One can compute $\varphi(\alpha,\beta) = \alpha + \beta - 2\alpha\beta + 2\sqrt{\alpha\beta(1-\alpha)(1-\beta)}$ if $\alpha + \beta \leq 1$ and $\varphi(\alpha,\beta) = 1$ if $\alpha + \beta > 1$ (subspaces V_n and V'_n have non-trivial intersection).

The set $K_{k,t}$ and t-norms

- Recall that

$$\max_{x\in V, \|x\|=1} \lambda_1(x) = \max_{y\in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n\|_{\infty}.$$

- ▶ For fixed y, P_V and $P_y \otimes I_n$ are independent projectors of relative ranks t and 1/k respectively.
- ▶ Thus, $||P_V \cdot P_y \otimes I_n||_{\infty} \rightarrow \varphi(t, 1/k) = ||(1, 0, \dots, 0)||_{(t)}$.
- ▶ We can take the max over y at no cost, by considering a finite net of y's, since k is fixed.
- ▶ To get the full result, use $\langle \lambda, x \rangle$ (for all directions x) instead of λ_1 .
- ▶ Unfortunately, it is difficult to compute (t)-norms, so we do not have an explicit formula for $K_{k,t}$.

Thank you!

Collins, N. - Random quantum channels II: Entanglement of random subspaces, Rényi entropy estimates and additivity problems.

Belinschi, Collins, N. - Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product.