Positive and completely positive maps via free additive powers of probability measures

Ion Nechita
CNRS, Laboratoire de Physique Théorique, Université de Toulouse
joint work with Benoit Collins (uOttawa) and Patrick Hayden (McGill)

St John's, January 25th, 2013

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information.

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information.
- Quantum information $=$ information held in a quantum physical system.

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information.
- Quantum information $=$ information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $\operatorname{span}\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information.
- Quantum information $=$ information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $\operatorname{span}\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information.
- Quantum information $=$ information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $\operatorname{span}\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:

1 Secure transmission of data, protocol security guaranteed by the laws of nature

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information.
- Quantum information $=$ information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $\operatorname{span}\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:

1 Secure transmission of data, protocol security guaranteed by the laws of nature
2 Fast integer factorization \leadsto current algorithms (RSA, etc) obsolete

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information.
- Quantum information $=$ information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $\operatorname{span}\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:

1 Secure transmission of data, protocol security guaranteed by the laws of nature
2 Fast integer factorization \leadsto current algorithms (RSA, etc) obsolete
3 Fast database search

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information.
- Quantum information $=$ information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $\operatorname{span}\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:

1 Secure transmission of data, protocol security guaranteed by the laws of nature
2 Fast integer factorization \leadsto current algorithms (RSA, etc) obsolete
3 Fast database search
4 Fast simulation of quantum systems

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information.
- Quantum information $=$ information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $\operatorname{span}\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:

1 Secure transmission of data, protocol security guaranteed by the laws of nature
2 Fast integer factorization \leadsto current algorithms (RSA, etc) obsolete
3 Fast database search
4 Fast simulation of quantum systems
5 etc...

Entanglement in Quantum Information Theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right)=: \mathbb{M}_{n}^{1,+} ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

Entanglement in Quantum Information Theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right)=: \mathbb{M}_{n}^{1,+} ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0
$$

■ Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m n}^{1,+}$.

Entanglement in Quantum Information Theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right)=: \mathbb{M}_{n}^{1,+} ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m n}^{1,+}$.
- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)
$$

where $t_{i} \geqslant 0, \sum_{i} t_{i}=1, \rho_{1}(i) \in \mathbb{M}_{m}^{1,+}, \rho_{2}(i) \in \mathbb{M}_{n}^{1,+}$.

Entanglement in Quantum Information Theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right)=: \mathbb{M}_{n}^{1,+} ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m n}^{1,+}$.
- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)
$$

where $t_{i} \geqslant 0, \sum_{i} t_{i}=1, \rho_{1}(i) \in \mathbb{M}_{m}^{1,+}, \rho_{2}(i) \in \mathbb{M}_{n}^{1,+}$.

- Equivalently, $\mathcal{S E P}=\operatorname{conv}\left[\mathbb{M}_{m}^{1,+} \otimes \mathbb{M}_{n}^{1,+}\right]$.

Entanglement in Quantum Information Theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right)=: \mathbb{M}_{n}^{1,+} ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m}^{1,+}$.
- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)
$$

where $t_{i} \geqslant 0, \sum_{i} t_{i}=1, \rho_{1}(i) \in \mathbb{M}_{m}^{1,+}, \rho_{2}(i) \in \mathbb{M}_{n}^{1,+}$.

- Equivalently, $\mathcal{S E P}=\operatorname{conv}\left[\mathbb{M}_{m}^{1,+} \otimes \mathbb{M}_{n}^{1,+}\right]$.
- Non-separable states are called entangled.

More on entanglement - pure states

- Separable rank one (pure) states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.

More on entanglement - pure states

- Separable rank one (pure) states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.
- Bell state or maximally entangled state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right) \neq x \otimes y
$$

More on entanglement - pure states

- Separable rank one (pure) states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.

■ Bell state or maximally entangled state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right) \neq x \otimes y
$$

- For rank one quantum states, entanglement can be detected and quantified by the entropy of entanglement

$$
E_{\mathrm{ent}}\left(P_{x}\right)=H(s(x))=-\sum_{i=1}^{\min (m, n)} s_{i}(x) \log s_{i}(x)
$$

where $x \in \mathbb{C}^{m} \otimes \mathbb{C}^{n} \cong \mathbb{M}_{m \times n}(\mathbb{C})$ is seen as a $m \times n$ matrix and $s_{i}(x)$ are its singular values.

More on entanglement - pure states

- Separable rank one (pure) states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.
- Bell state or maximally entangled state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right) \neq x \otimes y
$$

- For rank one quantum states, entanglement can be detected and quantified by the entropy of entanglement

$$
E_{\mathrm{ent}}\left(P_{x}\right)=H(s(x))=-\sum_{i=1}^{\min (m, n)} s_{i}(x) \log s_{i}(x)
$$

where $x \in \mathbb{C}^{m} \otimes \mathbb{C}^{n} \cong \mathbb{M}_{m \times n}(\mathbb{C})$ is seen as a $m \times n$ matrix and $s_{i}(x)$ are its singular values.

- A pure state $x \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ is separable $\Longleftrightarrow E_{\text {ent }}\left(P_{x}\right)=0$.

An image of entanglement

Deciding separability vs. entanglement

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]

Deciding separability vs. entanglement

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.

Deciding separability vs. entanglement

- "I woit-11 ...tt of quant Shor's quantum factoring algorithm
lines, - Runs on a quantum computer with polynomial time
- Entar $O\left(\log ^{3} N\right)$.
algori ■ Classical sieve algorithms run in sub-exponential time $O\left(\exp \left(\log ^{1 / 3} N\right)\right)$.
- Entanglement is necessary for the exponential speed-up.
- State of the art factorization in labs: $21=3 \times 7$ [2011], 143 (?) [2012].

Deciding separability vs. entanglement

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].

Deciding separability vs. entanglement

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].
- Detecting entanglement for general states in low dimension $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ and $\mathbb{C}^{2} \otimes \mathbb{C}^{3}$ is possible via the PPT criterion [Horodecki].

Deciding separability vs. entanglement

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].
- Detecting entanglement for general states in low dimension $\mathbb{C}^{2} \otimes \mathbb{C}^{2}$ and $\mathbb{C}^{2} \otimes \mathbb{C}^{3}$ is possible via the PPT criterion [Horodecki].
- In general, there exists a countable hierarchy of conditions characterizing separability [Doherty et al] that can be checked by semidefinite programming.

Separability via positive, but not completely positive maps

- Let \mathcal{A} be a C^{*} algebra. A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called

Separability via positive, but not completely positive maps

- Let \mathcal{A} be a C^{*} algebra. A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called
- positive if $A \geqslant 0 \Longrightarrow \mathcal{N}(A) \geqslant 0$;

Separability via positive, but not completely positive maps

- Let \mathcal{A} be a C^{*} algebra. A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called
- positive if $A \geqslant 0 \Longrightarrow \mathcal{N}(A) \geqslant 0$;
- completely positive (CP) if $\mathrm{id}_{k} \otimes \mathcal{N}$ is positive for all $k \geqslant 1$.

Separability via positive, but not completely positive maps

- Let \mathcal{A} be a C^{*} algebra. A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called
- positive if $A \geqslant 0 \Longrightarrow \mathcal{N}(A) \geqslant 0$;
- completely positive (CP) if $\mathrm{id}_{k} \otimes \mathcal{N}$ is positive for all $k \geqslant 1$.
- Let $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a completely positive map. Then, for every state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.

Separability via positive, but not completely positive maps

- Let \mathcal{A} be a C^{*} algebra. A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called
- positive if $A \geqslant 0 \Longrightarrow \mathcal{N}(A) \geqslant 0$;
- completely positive (CP) if $\mathrm{id}_{k} \otimes \mathcal{N}$ is positive for all $k \geqslant 1$.
- Let $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a completely positive map. Then, for every state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.
- Let $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a positive map. Then, for every separable state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.
$1 \rho_{12}$ separable $\Longrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)$.
2 $\left[\operatorname{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right)=\sum_{i} t_{i} \rho_{1}(i) \otimes \mathcal{N}\left[\rho_{2}(i)\right]$.
3 For all $i, \mathcal{N}\left[\rho_{2}(i)\right] \geqslant 0$, so $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.

Separability via positive, but not completely positive maps

- Let \mathcal{A} be a C^{*} algebra. A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called
- positive if $A \geqslant 0 \Longrightarrow \mathcal{N}(A) \geqslant 0$;
- completely positive (CP) if $\mathrm{id}_{k} \otimes \mathcal{N}$ is positive for all $k \geqslant 1$.
- Let $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a completely positive map. Then, for every state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.
- Let $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a positive map. Then, for every separable state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.
$1 \rho_{12}$ separable $\Longrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)$.
2 $\left[\operatorname{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right)=\sum_{i} t_{i} \rho_{1}(i) \otimes \mathcal{N}\left[\rho_{2}(i)\right]$.
3 For all $i, \mathcal{N}\left[\rho_{2}(i)\right] \geqslant 0$, so $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.
■ Hence, positive, but not $C P$ maps \mathcal{N} provide sufficient entanglement criteria: if $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \nsupseteq 0$, then ρ_{12} is entangled.

Separability via positive, but not completely positive maps

- Let \mathcal{A} be a C^{*} algebra. A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called
- positive if $A \geqslant 0 \Longrightarrow \mathcal{N}(A) \geqslant 0$;
- completely positive (CP) if $\mathrm{id}_{k} \otimes \mathcal{N}$ is positive for all $k \geqslant 1$.
- Let $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a completely positive map. Then, for every state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.
- Let $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a positive map. Then, for every separable state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.
$1 \rho_{12}$ separable $\Longrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)$.
2 $\left[\operatorname{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right)=\sum_{i} t_{i} \rho_{1}(i) \otimes \mathcal{N}\left[\rho_{2}(i)\right]$.
3 For all $i, \mathcal{N}\left[\rho_{2}(i)\right] \geqslant 0$, so $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$.
■ Hence, positive, but not CP maps \mathcal{N} provide sufficient entanglement criteria: if $\left[\mathrm{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \nsupseteq 0$, then ρ_{12} is entangled.
- Moreover, if $\left[\operatorname{id}_{m} \otimes \mathcal{N}\right]\left(\rho_{12}\right) \geqslant 0$ for all positive, but not CP maps \mathcal{N}, then ρ_{12} is separable.

Positive Partial Transpose matrices

- The transposition map t is positive, but not CP. Define the convex set

$$
\mathcal{P} \mathcal{P} \mathcal{T}=\left\{\rho_{12} \in \mathbb{M}_{m n}^{1,+} \mid\left[\operatorname{id}_{m} \otimes \mathrm{t}_{n}\right]\left(\rho_{12}\right) \geqslant 0\right\} .
$$

Positive Partial Transpose matrices

- The transposition map t is positive, but not CP . Define the convex set

$$
\mathcal{P} \mathcal{P} \mathcal{T}=\left\{\rho_{12} \in \mathbb{M}_{m n}^{1,+} \mid\left[\operatorname{id}_{m} \otimes \mathrm{t}_{n}\right]\left(\rho_{12}\right) \geqslant 0\right\} .
$$

- For $(m, n) \in\{(2,2),(2,3)\}$ we have $\mathcal{S E P}=\mathcal{P P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P} \mathcal{P} \mathcal{T}$ is strict.

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

- Written as a matrix in $\mathbb{M}_{2.2}^{1,+}$

$$
\rho_{12}=\frac{1}{2}\left(\begin{array}{cc|cc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

- Written as a matrix in $\mathbb{M}_{2 \cdot 2}^{1,+}$

$$
\rho_{12}=\frac{1}{2}\left(\begin{array}{cc|cc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

■ Partial transposition: transpose each block $B_{i j}$:

$$
\rho_{12}^{\Gamma}=\left[\mathrm{id}_{2} \otimes \mathrm{t}_{2}\right]\left(\rho_{12}\right)=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

- Written as a matrix in $\mathbb{M}_{2 \cdot 2}^{1,+}$

$$
\rho_{12}=\frac{1}{2}\left(\begin{array}{cc|cc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

■ Partial transposition: transpose each block $B_{i j}$:

$$
\rho_{12}^{\Gamma}=\left[\mathrm{id}_{2} \otimes \mathrm{t}_{2}\right]\left(\rho_{12}\right)=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

- This matrix is no longer positive \Longrightarrow the state is entangled.

Three convex sets

Three convex sets

- States in $\mathcal{P} \mathcal{P} \mathcal{T} \backslash \mathcal{S E P}$ are called bound entangled: no "maximal" entangled can be distilled from them.

Three convex sets

- States in $\mathcal{P} \mathcal{P} \mathcal{T} \backslash \mathcal{S E P}$ are called bound entangled: no "maximal" entangled can be distilled from them.
- All these sets contain an open ball around the identity.

The Choi matrix of a map

- For any n, recall that the maximally entangled state is the orthogonal projection onto

$$
\mathbb{C}^{n} \otimes \mathbb{C}^{n} \ni \text { Bell }=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i} \otimes e_{i}
$$

The Choi matrix of a map

- For any n, recall that the maximally entangled state is the orthogonal projection onto

$$
\mathbb{C}^{n} \otimes \mathbb{C}^{n} \ni \text { Bell }=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i} \otimes e_{i}
$$

- To any map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$, associate its Choi matrix

$$
C_{\mathcal{N}}=\left[\mathrm{id}_{n} \otimes \mathcal{N}\right]\left(P_{\text {Bell }}\right) \in \mathbb{M}_{n} \otimes \mathcal{A} .
$$

The Choi matrix of a map

- For any n, recall that the maximally entangled state is the orthogonal projection onto

$$
\mathbb{C}^{n} \otimes \mathbb{C}^{n} \ni \text { Bell }=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i} \otimes e_{i}
$$

- To any map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$, associate its Choi matrix

$$
\mathcal{C}_{\mathcal{N}}=\left[\mathrm{id}_{n} \otimes \mathcal{N}\right]\left(P_{\text {Bell }}\right) \in \mathbb{M}_{n} \otimes \mathcal{A}
$$

- Equivalently, if $E_{i j}$ are the matrix units in \mathbb{M}_{n}, then

$$
C_{\mathcal{N}}=\sum_{i, j=1}^{n} E_{i j} \otimes \mathcal{N}\left(E_{i j}\right)
$$

The Choi matrix of a map

- For any n, recall that the maximally entangled state is the orthogonal projection onto

$$
\mathbb{C}^{n} \otimes \mathbb{C}^{n} \ni \text { Bell }=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i} \otimes e_{i}
$$

- To any map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$, associate its Choi matrix

$$
\mathcal{C}_{\mathcal{N}}=\left[\mathrm{id}_{n} \otimes \mathcal{N}\right]\left(P_{\text {Bell }}\right) \in \mathbb{M}_{n} \otimes \mathcal{A}
$$

- Equivalently, if $E_{i j}$ are the matrix units in \mathbb{M}_{n}, then

$$
C_{\mathcal{N}}=\sum_{i, j=1}^{n} E_{i j} \otimes \mathcal{N}\left(E_{i j}\right)
$$

Theorem (Choi '72)

A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is $C P$ iff its Choi matrix $C_{\mathcal{N}}$ is positive.

The Choi-Jamiolkowski isomorphism

- Recall (here $\mathcal{A}=\mathbb{M}_{d}$)

$$
C_{\mathcal{N}}=\left[\mathrm{id}_{n} \otimes \mathcal{N}\right]\left(P_{\text {Bell }}\right)=\sum_{i, j=1}^{n} E_{i j} \otimes \mathcal{N}\left(E_{i j}\right) \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}
$$

The Choi-Jamiolkowski isomorphism

- Recall (here $\mathcal{A}=\mathbb{M}_{d}$)

$$
C_{\mathcal{N}}=\left[\mathrm{id}_{n} \otimes \mathcal{N}\right]\left(P_{\text {Bell }}\right)=\sum_{i, j=1}^{n} E_{i j} \otimes \mathcal{N}\left(E_{i j}\right) \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}
$$

- The map $\mathcal{N} \mapsto C_{\mathcal{N}}$ is called the Choi-Jamiolkowski isomorphism.

The Choi-Jamiolkowski isomorphism

- Recall (here $\mathcal{A}=\mathbb{M}_{d}$)

$$
C_{\mathcal{N}}=\left[\mathrm{id}_{n} \otimes \mathcal{N}\right]\left(P_{\text {Bell }}\right)=\sum_{i, j=1}^{n} E_{i j} \otimes \mathcal{N}\left(E_{i j}\right) \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}
$$

- The map $\mathcal{N} \mapsto C_{\mathcal{N}}$ is called the Choi-Jamiolkowski isomorphism.
- It sends:

1 All linear maps to all operators;
2 Hermicity preserving maps to hermitian operators;
3 Entanglement breaking maps to separable quantum states;
4 Unital maps to operators with unit left partial trace ($[\operatorname{Tr} \otimes \mathrm{id}] C_{\mathcal{N}}=\mathrm{I}_{d}$);
5 Trace preserving maps to operators with unit left partial trace $\left([\mathrm{id} \otimes \operatorname{Tr}] C_{\mathcal{N}}=\mathrm{I}_{n}\right)$.

Intermediate positivity notions

- A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called k-positive if $\operatorname{id}_{k} \otimes \mathcal{N}$ is positive.

Intermediate positivity notions

- A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called k-positive if $\mathrm{id}_{k} \otimes \mathcal{N}$ is positive.
- A matrix $C \in \mathbb{M}_{n d}$ is called k-positive if $\langle x, C x\rangle \geqslant 0$ for all vectors $x \in \mathbb{C}^{n} \otimes \mathbb{C}^{d}$ of rank at most k.

Intermediate positivity notions

- A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called k-positive $\operatorname{if~}^{i_{k}} \otimes \mathcal{N}$ is positive.
- A matrix $C \in \mathbb{M}_{n d}$ is called k-positive if $\langle x, C x\rangle \geqslant 0$ for all vectors $x \in \mathbb{C}^{n} \otimes \mathbb{C}^{d}$ of rank at most k.
- In particular, C is 1-positive (or block-positive) if

$$
\forall x \in \mathbb{C}^{n}, \forall y \in \mathbb{C}^{d} \quad\langle x \otimes y, C \cdot x \otimes y\rangle \geqslant 0
$$

Intermediate positivity notions

- A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called k-positive if $\mathrm{id}_{k} \otimes \mathcal{N}$ is positive.
- A matrix $C \in \mathbb{M}_{n d}$ is called k-positive if $\langle x, C x\rangle \geqslant 0$ for all vectors $x \in \mathbb{C}^{n} \otimes \mathbb{C}^{d}$ of rank at most k.
- In particular, C is 1-positive (or block-positive) if

$$
\forall x \in \mathbb{C}^{n}, \forall y \in \mathbb{C}^{d} \quad\langle x \otimes y, C \cdot x \otimes y\rangle \geqslant 0
$$

Theorem

A map $\mathcal{N}: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is k-positive iff its Choi matrix $C_{\mathcal{N}}$ is k-positive. In particular, \mathcal{N} is positive iff $C_{\mathcal{N}}$ is block-positive.

Random Choi matrices

- Let μ be a compactly supported probability measure on \mathbb{R}.

Random Choi matrices

- Let μ be a compactly supported probability measure on \mathbb{R}.
- For each d we introduce a real valued diagonal matrix X_{d} of $\mathbb{M}_{n} \otimes \mathbb{M}_{d}$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ.

Random Choi matrices

■ Let μ be a compactly supported probability measure on \mathbb{R}.
■ For each d we introduce a real valued diagonal matrix X_{d} of $\mathbb{M}_{n} \otimes \mathbb{M}_{d}$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ.
■ Let U_{d} be a random Haar unitary matrix in the unitary group $\mathcal{U}_{n d}$.

Random Choi matrices

■ Let μ be a compactly supported probability measure on \mathbb{R}.
■ For each d we introduce a real valued diagonal matrix X_{d} of $\mathbb{M}_{n} \otimes \mathbb{M}_{d}$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ.
■ Let U_{d} be a random Haar unitary matrix in the unitary group $\mathcal{U}_{n d}$.
■ Let $\mathcal{N}_{\mu}^{(d)}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{d}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.

Random Choi matrices

■ Let μ be a compactly supported probability measure on \mathbb{R}.
■ For each d we introduce a real valued diagonal matrix X_{d} of $\mathbb{M}_{n} \otimes \mathbb{M}_{d}$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ.
■ Let U_{d} be a random Haar unitary matrix in the unitary group $\mathcal{U}_{n d}$.
■ Let $\mathcal{N}_{\mu}^{(d)}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{d}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.

Theorem

Under the above assumptions, if $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \subset(0, \infty)$ then, almost surely as $d \rightarrow \infty$, the $\operatorname{map} \mathcal{N}_{\mu}^{(d)}$ is k-positive.

Random Choi matrices

- Let μ be a compactly supported probability measure on \mathbb{R}.
- For each d we introduce a real valued diagonal matrix X_{d} of $\mathbb{M}_{n} \otimes \mathbb{M}_{d}$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ.
- Let U_{d} be a random Haar unitary matrix in the unitary group $\mathcal{U}_{n d}$.
- Let $\mathcal{N}_{\mu}^{(d)}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{d}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.

Theorem

Under the above assumptions, if $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \subset(0, \infty)$ then, almost surely as $d \rightarrow \infty$, the $\operatorname{map} \mathcal{N}_{\mu}^{(d)}$ is k-positive. On the other hand, if $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \cap(-\infty, 0) \neq \emptyset$ then, almost surely as $d \rightarrow \infty, \mathcal{N}_{\mu}^{(d)}$ is not k-positive.

Free Probability Theory

- Invented by Voiculescu in the 80s to solve problems in operator algebras.

Free Probability Theory

- Invented by Voiculescu in the 80 s to solve problems in operator algebras.
- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.

Free Probability Theory

- Invented by Voiculescu in the 80 s to solve problems in operator algebras.
- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples: $\left.\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right), \mathbb{M}_{d}(\mathbb{C}), d^{-1} \operatorname{Tr}\right),\left(\mathbb{C} G, \delta_{e}\right)$.

Free Probability Theory

- Invented by Voiculescu in the 80 s to solve problems in operator algebras.
- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples: $\left.\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right), \mathbb{M}_{d}(\mathbb{C}), d^{-1} \operatorname{Tr}\right),\left(\mathbb{C} G, \delta_{e}\right)$.
- Several notions of independence: classical independence, free independence.

Free Probability Theory

- Invented by Voiculescu in the 80 s to solve problems in operator algebras.
- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples: $\left.\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right), \mathbb{M}_{d}(\mathbb{C}), d^{-1} \operatorname{Tr}\right)$, $\left(\mathbb{C} G, \delta_{e}\right)$.
- Several notions of independence: classical independence, free independence.
- If a, b are freely independent random variables, the law of (a, b) can be computed in terms of the laws of a and b.

Free Probability Theory

- Invented by Voiculescu in the 80 s to solve problems in operator algebras.
- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples: $\left.\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right), \mathbb{M}_{d}(\mathbb{C}), d^{-1} \operatorname{Tr}\right)$, $\left(\mathbb{C} G, \delta_{e}\right)$.
- Several notions of independence: classical independence, free independence.
- If a, b are freely independent random variables, the law of (a, b) can be computed in terms of the laws of a and b.
- Random matrices are asymptotically free.

Free Probability Theory

- Invented by Voiculescu in the 80s to solve problems in operator algebras.
- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples: $\left.\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right), \mathbb{M}_{d}(\mathbb{C}), d^{-1} \operatorname{Tr}\right),\left(\mathbb{C} G, \delta_{e}\right)$.
- Several notions of independence: classical independence, free independence.
- If a, b are freely independent random variables, the law of (a, b) can be computed in terms of the laws of a and b.
- Random matrices are asymptotically free.
- If A_{d}, B_{d} are matrices of size d, whose spectra converge towards a, b, what is the spectrum of $A_{d}+B_{d}$?

Free Probability Theory

- Invented by Voiculescu in the 80s to solve problems in operator algebras.
- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples: $\left.\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right), \mathbb{M}_{d}(\mathbb{C}), d^{-1} \operatorname{Tr}\right),\left(\mathbb{C} G, \delta_{e}\right)$.
- Several notions of independence: classical independence, free independence.
- If a, b are freely independent random variables, the law of (a, b) can be computed in terms of the laws of a and b.
- Random matrices are asymptotically free.
- If A_{d}, B_{d} are matrices of size d, whose spectra converge towards a, b, what is the spectrum of $A_{d}+B_{d}$?
- When $d \rightarrow \infty$, the spectrum of $A_{d}+B_{d}$ converges to $a \boxplus b$.

Proof ingredients

Let $\mathcal{N}_{\mu}^{(d)}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{d}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.

Theorem

If $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \subset(0, \infty)$ then, almost surely as $d \rightarrow \infty$, the map $\mathcal{N}_{\mu}^{(d)}$ is k-positive. If $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \cap(-\infty, 0) \neq \emptyset$ then, almost surely as $d \rightarrow \infty, \mathcal{N}_{\mu}^{(d)}$ is not k-positive.

Proof ingredients

Let $\mathcal{N}_{\mu}^{(d)}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{d}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.

Theorem

If $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \subset(0, \infty)$ then, almost surely as $d \rightarrow \infty$, the map $\mathcal{N}_{\mu}^{(d)}$ is k-positive. If $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \cap(-\infty, 0) \neq \emptyset$ then, almost surely as $d \rightarrow \infty, \mathcal{N}_{\mu}^{(d)}$ is not k-positive.

Proposition

A map \mathcal{N} is k-positive iff for any self-adjoint projection $P \in \mathbb{M}_{n}$ of rank k, the operator $P \otimes \mathrm{I}_{\mathcal{A}} \cdot C_{\mathcal{N}} \cdot P \otimes 1_{\mathcal{A}}$ is positive.

Proof ingredients

Let $\mathcal{N}_{\mu}^{(d)}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{d}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.

Theorem

If $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \subset(0, \infty)$ then, almost surely as $d \rightarrow \infty$, the map $\mathcal{N}_{\mu}^{(d)}$ is k-positive. If $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \cap(-\infty, 0) \neq \emptyset$ then, almost surely as $d \rightarrow \infty, \mathcal{N}_{\mu}^{(d)}$ is not k-positive.

Proposition

A map \mathcal{N} is k-positive iff for any self-adjoint projection $P \in \mathbb{M}_{n}$ of rank k, the operator $P \otimes \mathrm{I}_{\mathcal{A}} \cdot C_{\mathcal{N}} \cdot P \otimes 1_{\mathcal{A}}$ is positive.

Proposition (Nica and Speicher)

Let x, p be free elements in a ncps (M, τ) and assume that p is a selfadjoint projection of rank $\tau(p)=1 / t(t \geqslant 1)$ and that x has distribution μ. Then, the distribution of $t^{-1} p \times p$ inside the contracted ncps ($p M p, \tau(p \cdot p)$) is $\mu^{\boxplus t}$

Maps associated to probability measures

- Let μ be a compactly supported probability measure on \mathbb{R}.

Maps associated to probability measures

- Let μ be a compactly supported probability measure on \mathbb{R}.
- The vN algebra $L^{\infty}(\mathbb{R}, \mu)$, endowed with the expectation trace \mathbb{E} is a non-commutative probability space. Let $X \in L^{\infty}(\mathbb{R}, \mu)$ be the identity map $x \mapsto x$.

Maps associated to probability measures

- Let μ be a compactly supported probability measure on \mathbb{R}.
- The vN algebra $L^{\infty}(\mathbb{R}, \mu)$, endowed with the expectation trace \mathbb{E} is a non-commutative probability space. Let $X \in L^{\infty}(\mathbb{R}, \mu)$ be the identity map $x \mapsto x$.
- Consider the vN ncps free product $(\tilde{M}, \operatorname{tr} * \mathbb{E})=\left(\mathbb{M}_{n}, \operatorname{tr}\right) *\left(L^{\infty}(\mathbb{R}, \mu), \mathbb{E}\right)$.

Maps associated to probability measures

- Let μ be a compactly supported probability measure on \mathbb{R}.
- The vN algebra $L^{\infty}(\mathbb{R}, \mu)$, endowed with the expectation trace \mathbb{E} is a non-commutative probability space. Let $X \in L^{\infty}(\mathbb{R}, \mu)$ be the identity map $x \mapsto x$.
- Consider the vN ncps free product $(\tilde{M}, \operatorname{tr} * \mathbb{E})=\left(\mathbb{M}_{n}, \operatorname{tr}\right) *\left(L^{\infty}(\mathbb{R}, \mu), \mathbb{E}\right)$.
- Finally, let (M, τ) be the contracted $\mathrm{vN} \mathrm{ncps} M=E_{11} \tilde{M} E_{11}$.

Maps associated to probability measures

- Let μ be a compactly supported probability measure on \mathbb{R}.
- The vN algebra $L^{\infty}(\mathbb{R}, \mu)$, endowed with the expectation trace \mathbb{E} is a non-commutative probability space. Let $X \in L^{\infty}(\mathbb{R}, \mu)$ be the identity map $x \mapsto x$.
- Consider the vN ncps free product $(\tilde{M}, \operatorname{tr} * \mathbb{E})=\left(\mathbb{M}_{n}, \operatorname{tr}\right) *\left(L^{\infty}(\mathbb{R}, \mu), \mathbb{E}\right)$.
- Finally, let (M, τ) be the contracted $\mathrm{vN} \mathrm{ncps} M=E_{11} \tilde{M} E_{11}$.
- Define

$$
\begin{aligned}
\mathcal{N}_{\mu}: \mathbb{M}_{n} & \rightarrow M \\
E_{i j} & \mapsto E_{1 i} X E_{j 1}
\end{aligned}
$$

Maps associated to probability measures

- Define

$$
\begin{aligned}
\mathcal{N}_{\mu}: \mathbb{M}_{n} & \rightarrow M \\
E_{i j} & \mapsto E_{1 i} X E_{j 1}
\end{aligned}
$$

Theorem
The map \mathcal{N}_{μ} is k-positive iff $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \subseteq \mathbb{R}_{+}$.

Example: semicircular measures

- Let $s_{a, \sigma}$ be the semi-circle distribution of mean a and variance σ^{2}.

Example: semicircular measures

- Let $s_{a, \sigma}$ be the semi-circle distribution of mean a and variance σ^{2}.
- Its support is $[a-2 \sigma, a+2 \sigma]$.

Example: semicircular measures

- Let $s_{a, \sigma}$ be the semi-circle distribution of mean a and variance σ^{2}.
- Its support is [a-2 $a, a+2 \sigma]$.
- In free probability theory, $s_{0,1}$ plays the role of the standard Gaussian in classical probability, cf Free Central Limit Theorem.

Example: semicircular measures

- Let $s_{a, \sigma}$ be the semi-circle distribution of mean a and variance σ^{2}.
- Its support is [a-2 $a, a+2 \sigma]$.
- In free probability theory, $s_{0,1}$ plays the role of the standard Gaussian in classical probability, cf Free Central Limit Theorem.
- We have $s_{a, \sigma}^{\boxplus n / k}=s_{a n / k, \sigma \sqrt{n / k}}$, with support
$\operatorname{supp}\left(s_{a, \sigma}^{\boxplus n / k}\right)=[a n / k-2 \sigma \sqrt{n / k}, a n / k+2 \sigma \sqrt{n / k}]$.

Theorem

Let n be an integer and a, σ some positive parameters. The map
$\mathcal{N}_{a, \sigma}: \mathbb{M}_{n} \rightarrow M$ associated to a semi-circular distribution $s_{a, \sigma}$ is k-positive iff $k \leqslant 4 n \sigma / a^{2}$. In particular, for any n and any $k<n$, there exist parameters a, $\sigma>0$ such that the above map is k-positive but not $k+1$-positive.

Merci !

