Positive and completely positive maps via free additive powers of probability measures

Ion Nechita

CNRS, Laboratoire de Physique Théorique, Université de Toulouse

joint work with Benoit Collins (uOttawa) and Patrick Hayden (McGill)

St John's, January 25th, 2013

• New branches of {Physics, Computer Science, Mathematics} dealing with quantum information.

- New branches of {Physics, Computer Science, Mathematics} dealing with quantum information.
- Quantum information = information held in a quantum physical system.

- New branches of {Physics, Computer Science, Mathematics} dealing with quantum information.
- Quantum information = information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $span\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.

- New branches of {Physics, Computer Science, Mathematics} dealing with quantum information.
- Quantum information = information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $span\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:

- New branches of {Physics, Computer Science, Mathematics} dealing with quantum information.
- Quantum information = information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $span\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:
 - **1** Secure transmission of data, protocol security guaranteed by the laws of nature

- New branches of {Physics, Computer Science, Mathematics} dealing with quantum information.
- Quantum information = information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $span\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:
 - 1 Secure transmission of data, protocol security guaranteed by the laws of nature
 - 2 Fast integer factorization \sim current algorithms (RSA, etc) obsolete

- New branches of {Physics, Computer Science, Mathematics} dealing with quantum information.
- Quantum information = information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $span\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:
 - **1** Secure transmission of data, protocol security guaranteed by the laws of nature
 - 2 Fast integer factorization \sim current algorithms (RSA, etc) obsolete
 - 3 Fast database search

- New branches of {Physics, Computer Science, Mathematics} dealing with quantum information.
- Quantum information = information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $span\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:
 - **1** Secure transmission of data, protocol security guaranteed by the laws of nature
 - 2 Fast integer factorization \rightsquigarrow current algorithms (RSA, etc) obsolete
 - 3 Fast database search
 - 4 Fast simulation of quantum systems

- New branches of {Physics, Computer Science, Mathematics} dealing with quantum information.
- Quantum information = information held in a quantum physical system.
- Basic idea: replace $\{0,1\}$ with $span\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system.
- Shows great promise:
 - **1** Secure transmission of data, protocol security guaranteed by the laws of nature
 - 2 Fast integer factorization \rightsquigarrow current algorithms (RSA, etc) obsolete
 - 3 Fast database search
 - 4 Fast simulation of quantum systems
 - 5 etc...

Quantum states with n degrees of freedom are described by density matrices

$$ho \in \operatorname{End}^{1,+}(\mathbb{C}^n) =: \mathbb{M}_n^{1,+}; \qquad \operatorname{Tr}
ho = 1 \text{ and }
ho \geqslant 0.$$

Quantum states with n degrees of freedom are described by density matrices

$$\rho \in \operatorname{End}^{1,+}(\mathbb{C}^n) =: \mathbb{M}_n^{1,+}; \quad \operatorname{Tr} \rho = 1 \text{ and } \rho \ge 0.$$

• Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}(\mathbb{C}^m \otimes \mathbb{C}^n) = \mathbb{M}^{1,+}_{mn}$.

Quantum states with n degrees of freedom are described by density matrices

$$\rho \in \operatorname{End}^{1,+}(\mathbb{C}^n) =: \mathbb{M}_n^{1,+}; \quad \operatorname{Tr} \rho = 1 \text{ and } \rho \ge 0.$$

• Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}(\mathbb{C}^m \otimes \mathbb{C}^n) = \mathbb{M}^{1,+}_{mn}$.

A state ρ₁₂ is called separable if it can be written as a convex combination of product states

$$\rho_{12} \in \mathcal{SEP} \iff \rho_{12} = \sum_i t_i \rho_1(i) \otimes \rho_2(i),$$

where $t_i \ge 0$, $\sum_i t_i = 1$, $\rho_1(i) \in \mathbb{M}_m^{1,+}$, $\rho_2(i) \in \mathbb{M}_n^{1,+}$.

Quantum states with n degrees of freedom are described by density matrices

$$\rho \in \operatorname{End}^{1,+}(\mathbb{C}^n) =: \mathbb{M}_n^{1,+}; \qquad \operatorname{Tr} \rho = 1 \text{ and } \rho \geqslant 0.$$

• Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}(\mathbb{C}^m \otimes \mathbb{C}^n) = \mathbb{M}^{1,+}_{mn}$.

A state ρ₁₂ is called separable if it can be written as a convex combination of product states

$$\rho_{12} \in \mathcal{SEP} \iff \rho_{12} = \sum_i t_i \rho_1(i) \otimes \rho_2(i),$$

where $t_i \ge 0$, $\sum_i t_i = 1$, $\rho_1(i) \in \mathbb{M}_m^{1,+}$, $\rho_2(i) \in \mathbb{M}_n^{1,+}$. Equivalently, $S\mathcal{EP} = \operatorname{conv} \left[\mathbb{M}_m^{1,+} \otimes \mathbb{M}_n^{1,+}\right]$.

Quantum states with n degrees of freedom are described by density matrices

$$\rho \in \operatorname{End}^{1,+}(\mathbb{C}^n) =: \mathbb{M}_n^{1,+}; \qquad \operatorname{Tr} \rho = 1 \text{ and } \rho \geqslant 0.$$

- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}(\mathbb{C}^m \otimes \mathbb{C}^n) = \mathbb{M}^{1,+}_{mn}$.
- A state ρ₁₂ is called separable if it can be written as a convex combination of product states

$$\rho_{12} \in \mathcal{SEP} \iff \rho_{12} = \sum_i t_i \rho_1(i) \otimes \rho_2(i),$$

where $t_i \ge 0$, $\sum_i t_i = 1$, $\rho_1(i) \in \mathbb{M}_m^{1,+}$, $\rho_2(i) \in \mathbb{M}_n^{1,+}$.

- Equivalently, $\mathcal{SEP} = \operatorname{conv} \left[\mathbb{M}_m^{1,+} \otimes \mathbb{M}_n^{1,+} \right].$
- Non-separable states are called entangled.

• Separable rank one (pure) states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.

- Separable rank one (pure) states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.
- Bell state or maximally entangled state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \ni \operatorname{Bell} = \frac{1}{\sqrt{2}} (e_1 \otimes f_1 + e_2 \otimes f_2) \neq x \otimes y.$$

- Separable rank one (pure) states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.
- Bell state or maximally entangled state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \ni \operatorname{Bell} = \frac{1}{\sqrt{2}} (e_1 \otimes f_1 + e_2 \otimes f_2) \neq x \otimes y.$$

 For rank one quantum states, entanglement can be detected and quantified by the entropy of entanglement

$$E_{\text{ent}}(P_x) = H(s(x)) = -\sum_{i=1}^{\min(m,n)} s_i(x) \log s_i(x),$$

where $x \in \mathbb{C}^m \otimes \mathbb{C}^n \cong \mathbb{M}_{m \times n}(\mathbb{C})$ is seen as a $m \times n$ matrix and $s_i(x)$ are its singular values.

- Separable rank one (pure) states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.
- Bell state or maximally entangled state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \ni \operatorname{Bell} = \frac{1}{\sqrt{2}} (e_1 \otimes f_1 + e_2 \otimes f_2) \neq x \otimes y.$$

 For rank one quantum states, entanglement can be detected and quantified by the entropy of entanglement

$$E_{\text{ent}}(P_x) = H(s(x)) = -\sum_{i=1}^{\min(m,n)} s_i(x) \log s_i(x),$$

where $x \in \mathbb{C}^m \otimes \mathbb{C}^n \cong \mathbb{M}_{m \times n}(\mathbb{C})$ is seen as a $m \times n$ matrix and $s_i(x)$ are its singular values.

• A pure state $x \in \mathbb{C}^m \otimes \mathbb{C}^n$ is separable $\iff E_{ent}(P_x) = 0$.

Positive and completely positive maps via free additive powers of probability measures

An image of entanglement

 "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].
- Detecting entanglement for general states in low dimension $\mathbb{C}^2 \otimes \mathbb{C}^2$ and $\mathbb{C}^2 \otimes \mathbb{C}^3$ is possible via the PPT criterion [Horodecki].

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].
- Detecting entanglement for general states in low dimension $\mathbb{C}^2 \otimes \mathbb{C}^2$ and $\mathbb{C}^2 \otimes \mathbb{C}^3$ is possible via the PPT criterion [Horodecki].
- In general, there exists a countable hierarchy of conditions characterizing separability [Doherty et al] that can be checked by semidefinite programming.

• Let \mathcal{A} be a C^* algebra. A map $\mathcal{N} : \mathbb{M}_n \to \mathcal{A}$ is called

Let A be a C* algebra. A map N : M_n → A is called
 positive if A ≥ 0 ⇒ N(A) ≥ 0;

• Let \mathcal{A} be a C^* algebra. A map $\mathcal{N} : \mathbb{M}_n \to \mathcal{A}$ is called

- positive if $A \ge 0 \implies \mathcal{N}(A) \ge 0$;
- completely positive (CP) if $id_k \otimes \mathcal{N}$ is positive for all $k \ge 1$.

• Let \mathcal{A} be a \mathcal{C}^* algebra. A map $\mathcal{N}: \mathbb{M}_n \to \mathcal{A}$ is called

- positive if $A \ge 0 \implies \mathcal{N}(A) \ge 0$;
- completely positive (CP) if $id_k \otimes \mathcal{N}$ is positive for all $k \ge 1$.
- Let $\mathcal{N}: \mathbb{M}_n \to \mathcal{A}$ be a completely positive map. Then, for every state $\rho_{12} \in \mathbb{M}_{mn}^{1,+}$, one has $[\mathrm{id}_m \otimes \mathcal{N}](\rho_{12}) \ge 0$.

• Let \mathcal{A} be a \mathcal{C}^* algebra. A map $\mathcal{N}:\mathbb{M}_n\to\mathcal{A}$ is called

- positive if $A \ge 0 \implies \mathcal{N}(A) \ge 0$;
- completely positive (CP) if $id_k \otimes \mathcal{N}$ is positive for all $k \ge 1$.
- Let $\mathcal{N}: \mathbb{M}_n \to \mathcal{A}$ be a completely positive map. Then, for every state $\rho_{12} \in \mathbb{M}_{mn}^{1,+}$, one has $[\mathrm{id}_m \otimes \mathcal{N}](\rho_{12}) \ge 0$.
- Let $\mathcal{N} : \mathbb{M}_n \to \mathcal{A}$ be a positive map. Then, for every separable state $\rho_{12} \in \mathbb{M}_{mn}^{1,+}$, one has $[\mathrm{id}_m \otimes \mathcal{N}](\rho_{12}) \ge 0$.
 - **1** ρ_{12} separable $\implies \rho_{12} = \sum_i t_i \rho_1(i) \otimes \rho_2(i)$.
 - 2 $[\mathrm{id}_m \otimes \mathcal{N}](\rho_{12}) = \sum_i t_i \rho_1(i) \otimes \mathcal{N}[\rho_2(i)].$
 - **3** For all i, $\mathcal{N}[\rho_2(i)] \ge 0$, so $[\mathrm{id}_m \otimes \mathcal{N}](\rho_{12}) \ge 0$.

Let A be a C* algebra. A map N : M_n → A is called
positive if A≥ 0 ⇒ N(A) ≥ 0;
completely positive (CP) if id_k ⊗ N is positive for all k≥ 1.
Let N : M_n → A be a completely positive map. Then, for every state ρ₁₂ ∈ M^{1,+}_{mn}, one has [id_m ⊗ N](ρ₁₂) ≥ 0.
Let N : M_n → A be a positive map. Then, for every separable state ρ₁₂ ∈ M^{1,+}_{mn}, one has [id_m ⊗ N](ρ₁₂) ≥ 0.
Let N : M_n → A be a positive map. Then, for every separable state ρ₁₂ ∈ M^{1,+}_{mn}, one has [id_m ⊗ N](ρ₁₂) ≥ 0.
P₁₂ separable ⇒ ρ₁₂ = ∑_i t_iρ₁(i) ⊗ ρ₂(i).
[id_m ⊗ N](ρ₁₂) = ∑_i t_iρ₁(i) ⊗ N[ρ₂(i)].
For all i, N[ρ₂(i)] ≥ 0, so [id_m ⊗ N](ρ₁₂) ≥ 0.

■ Hence, positive, but not CP maps \mathcal{N} provide sufficient entanglement criteria: if $[id_m \otimes \mathcal{N}](\rho_{12}) \not\geq 0$, then ρ_{12} is entangled.

Let A be a C* algebra. A map N : M_n → A is called
positive if A ≥ 0 ⇒ N(A) ≥ 0;
completely positive (CP) if id_k ⊗ N is positive for all k ≥ 1.
Let N : M_n → A be a completely positive map. Then, for every state ρ₁₂ ∈ M^{1,+}_{mn}, one has [id_m ⊗ N](ρ₁₂) ≥ 0.
Let N : M_n → A be a positive map. Then, for every separable state ρ₁₂ ∈ M^{1,+}_{mn}, one has [id_m ⊗ N](ρ₁₂) ≥ 0.
Let N : M_n → A be a positive map. Then, for every separable state ρ₁₂ ∈ M^{1,+}_{nn}, one has [id_m ⊗ N](ρ₁₂) ≥ 0.
ρ₁₂ separable ⇒ ρ₁₂ = ∑_i t_iρ₁(i) ⊗ ρ₂(i).
[id_m ⊗ N](ρ₁₂) = ∑_i t_iρ₁(i) ⊗ N[ρ₂(i)].
B For all i, N[ρ₂(i)] ≥ 0, so [id_m ⊗ N](ρ₁₂) ≥ 0.

- Hence, positive, but not CP maps \mathcal{N} provide sufficient entanglement criteria: if $[id_m \otimes \mathcal{N}](\rho_{12}) \not\geq 0$, then ρ_{12} is entangled.
- Moreover, if $[id_m \otimes \mathcal{N}](\rho_{12}) \ge 0$ for all positive, but not CP maps \mathcal{N} , then ρ_{12} is separable.

Positive Partial Transpose matrices

The transposition map t is positive, but not CP. Define the convex set

$$\mathcal{PPT} = \{ \rho_{12} \in \mathbb{M}_{mn}^{1,+} \mid [\mathrm{id}_m \otimes \mathrm{t}_n](\rho_{12}) \ge 0 \}.$$

Positive Partial Transpose matrices

 $\hfill\blacksquare$ The transposition map t is positive, but not CP. Define the convex set

$$\mathcal{PPT} = \{ \rho_{12} \in \mathbb{M}_{mn}^{1,+} \mid [\mathrm{id}_m \otimes \mathrm{t}_n](\rho_{12}) \ge 0 \}.$$

For (m, n) ∈ {(2,2), (2,3)} we have SEP = PPT. In other dimensions, the inclusion SEP ⊂ PPT is strict.

Positive and completely positive maps via free additive powers of probability measures

The PPT criterion at work

• Recall the Bell state $\rho_{12} = P_{\rm Bell}$, where

$$\mathbb{C}^2\otimes\mathbb{C}^2\ni\operatorname{Bell}=rac{1}{\sqrt{2}}(e_1\otimes f_1+e_2\otimes f_2).$$
The PPT criterion at work

• Recall the Bell state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2\otimes\mathbb{C}^2\ni\operatorname{Bell}=rac{1}{\sqrt{2}}(e_1\otimes f_1+e_2\otimes f_2).$$

• Written as a matrix in $\mathbb{M}^{1,+}_{2\cdot 2}$

$$\rho_{12} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

The PPT criterion at work

• Recall the Bell state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2\otimes\mathbb{C}^2\ni\operatorname{Bell}=rac{1}{\sqrt{2}}(e_1\otimes f_1+e_2\otimes f_2).$$

• Written as a matrix in $\mathbb{M}^{1,+}_{2\cdot 2}$

$$\rho_{12} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

Partial transposition: transpose each block *B*_{ij}:

$$\rho_{12}^{\mathsf{F}} = [\mathrm{id}_2 \otimes \mathrm{t}_2](\rho_{12}) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

The PPT criterion at work

• Recall the Bell state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2\otimes\mathbb{C}^2\ni\operatorname{Bell}=rac{1}{\sqrt{2}}(e_1\otimes f_1+e_2\otimes f_2).$$

• Written as a matrix in $\mathbb{M}^{1,+}_{2\cdot 2}$

$$\rho_{12} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

Partial transposition: transpose each block *B*_{ij}:

$$\rho_{12}^{\mathsf{F}} = [\mathrm{id}_2 \otimes \mathrm{t}_2](\rho_{12}) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• This matrix is no longer positive \implies the state is entangled.

Three convex sets

Three convex sets

■ States in *PPT* \ *SEP* are called bound entangled: no "maximal" entangled can be distilled from them.

Three convex sets

- States in *PPT* \ *SEP* are called bound entangled: no "maximal" entangled can be distilled from them.
- All these sets contain an open ball around the identity.

The Choi matrix of a map

■ For any *n*, recall that the maximally entangled state is the orthogonal projection onto

$$\mathbb{C}^n \otimes \mathbb{C}^n \ni \operatorname{Bell} = \frac{1}{\sqrt{n}} \sum_{i=1}^n e_i \otimes e_i.$$

The Choi matrix of a map

• For any *n*, recall that the maximally entangled state is the orthogonal projection onto

$$\mathbb{C}^n \otimes \mathbb{C}^n \ni \operatorname{Bell} = \frac{1}{\sqrt{n}} \sum_{i=1}^n e_i \otimes e_i.$$

• To any map $\mathcal{N}: \mathbb{M}_n \to \mathcal{A}$, associate its Choi matrix

$$\mathcal{C}_{\mathcal{N}} = [\mathrm{id}_n \otimes \mathcal{N}](\mathcal{P}_{\mathrm{Bell}}) \in \mathbb{M}_n \otimes \mathcal{A}.$$

The Choi matrix of a map

■ For any *n*, recall that the maximally entangled state is the orthogonal projection onto

$$\mathbb{C}^n \otimes \mathbb{C}^n \ni \operatorname{Bell} = \frac{1}{\sqrt{n}} \sum_{i=1}^n e_i \otimes e_i.$$

• To any map $\mathcal{N}: \mathbb{M}_n \to \mathcal{A}$, associate its Choi matrix

$$\mathcal{C}_{\mathcal{N}} = [\mathrm{id}_n \otimes \mathcal{N}](\mathcal{P}_{\mathrm{Bell}}) \in \mathbb{M}_n \otimes \mathcal{A}.$$

Equivalently, if E_{ij} are the matrix units in \mathbb{M}_n , then

$$C_{\mathcal{N}} = \sum_{i,j=1}^{n} E_{ij} \otimes \mathcal{N}(E_{ij}).$$

The Choi matrix of a map

■ For any *n*, recall that the maximally entangled state is the orthogonal projection onto

$$\mathbb{C}^n \otimes \mathbb{C}^n \ni \operatorname{Bell} = \frac{1}{\sqrt{n}} \sum_{i=1}^n e_i \otimes e_i.$$

• To any map $\mathcal{N}: \mathbb{M}_n \to \mathcal{A}$, associate its Choi matrix

$$\mathcal{C}_{\mathcal{N}} = [\mathrm{id}_n \otimes \mathcal{N}](\mathcal{P}_{\mathrm{Bell}}) \in \mathbb{M}_n \otimes \mathcal{A}.$$

Equivalently, if E_{ij} are the matrix units in \mathbb{M}_n , then

$$C_{\mathcal{N}} = \sum_{i,j=1}^{n} E_{ij} \otimes \mathcal{N}(E_{ij}).$$

Theorem (Choi '72)

A map $\mathcal{N} : \mathbb{M}_n \to \mathcal{A}$ is CP iff its Choi matrix $C_{\mathcal{N}}$ is positive.

The Choi-Jamiolkowski isomorphism

Recall (here $\mathcal{A} = \mathbb{M}_d$)

$$\mathcal{C}_{\mathcal{N}} = [\mathrm{id}_n \otimes \mathcal{N}](\mathcal{P}_{\mathrm{Bell}}) = \sum_{i,j=1}^n \mathcal{E}_{ij} \otimes \mathcal{N}(\mathcal{E}_{ij}) \in \mathbb{M}_n \otimes \mathbb{M}_d.$$

The Choi-Jamiolkowski isomorphism

Recall (here $\mathcal{A} = \mathbb{M}_d$)

$$\mathcal{C}_{\mathcal{N}} = [\mathrm{id}_n \otimes \mathcal{N}](\mathcal{P}_{\mathrm{Bell}}) = \sum_{i,j=1}^n \mathcal{E}_{ij} \otimes \mathcal{N}(\mathcal{E}_{ij}) \in \mathbb{M}_n \otimes \mathbb{M}_d.$$

• The map $\mathcal{N} \mapsto \mathcal{C}_{\mathcal{N}}$ is called the Choi-Jamiolkowski isomorphism.

The Choi-Jamiolkowski isomorphism

• Recall (here $\mathcal{A} = \mathbb{M}_d$)

$$\mathcal{C}_{\mathcal{N}} = [\mathrm{id}_n \otimes \mathcal{N}](\mathcal{P}_{\mathrm{Bell}}) = \sum_{i,j=1}^n \mathcal{E}_{ij} \otimes \mathcal{N}(\mathcal{E}_{ij}) \in \mathbb{M}_n \otimes \mathbb{M}_d.$$

• The map $\mathcal{N} \mapsto \mathcal{C}_{\mathcal{N}}$ is called the Choi-Jamiolkowski isomorphism.

It sends:

- 1 All linear maps to all operators;
- Hermicity preserving maps to hermitian operators;
- 3 Entanglement breaking maps to separable quantum states;
- 4 Unital maps to operators with unit left partial trace $([Tr \otimes id]C_{\mathcal{N}} = I_d);$
- 5 Trace preserving maps to operators with unit left partial trace $([id \otimes Tr]C_{\mathcal{N}} = I_n).$

• A map $\mathcal{N} : \mathbb{M}_n \to \mathcal{A}$ is called *k*-positive if $\mathrm{id}_k \otimes \mathcal{N}$ is positive.

- A map $\mathcal{N} : \mathbb{M}_n \to \mathcal{A}$ is called *k*-positive if $\mathrm{id}_k \otimes \mathcal{N}$ is positive.
- A matrix $C \in \mathbb{M}_{nd}$ is called *k*-positive if $\langle x, Cx \rangle \ge 0$ for all vectors $x \in \mathbb{C}^n \otimes \mathbb{C}^d$ of rank at most *k*.

- A map $\mathcal{N} : \mathbb{M}_n \to \mathcal{A}$ is called *k*-positive if $\mathrm{id}_k \otimes \mathcal{N}$ is positive.
- A matrix $C \in \mathbb{M}_{nd}$ is called *k*-positive if $\langle x, Cx \rangle \ge 0$ for all vectors $x \in \mathbb{C}^n \otimes \mathbb{C}^d$ of rank at most *k*.
- In particular, C is 1-positive (or block-positive) if

$$\forall x \in \mathbb{C}^n, \forall y \in \mathbb{C}^d \qquad \langle x \otimes y, C \cdot x \otimes y \rangle \ge 0.$$

- A map $\mathcal{N} : \mathbb{M}_n \to \mathcal{A}$ is called *k*-positive if $\mathrm{id}_k \otimes \mathcal{N}$ is positive.
- A matrix $C \in \mathbb{M}_{nd}$ is called *k*-positive if $\langle x, Cx \rangle \ge 0$ for all vectors $x \in \mathbb{C}^n \otimes \mathbb{C}^d$ of rank at most *k*.
- In particular, C is 1-positive (or block-positive) if

$$\forall x \in \mathbb{C}^n, \forall y \in \mathbb{C}^d \qquad \langle x \otimes y, C \cdot x \otimes y \rangle \ge 0.$$

Theorem

A map $\mathcal{N} : \mathbb{M}_n \to \mathcal{A}$ is k-positive iff its Choi matrix $C_{\mathcal{N}}$ is k-positive. In particular, \mathcal{N} is positive iff $C_{\mathcal{N}}$ is block-positive.

• Let μ be a compactly supported probability measure on \mathbb{R} .

- Let μ be a compactly supported probability measure on \mathbb{R} .
- For each *d* we introduce a real valued diagonal matrix X_d of $\mathbb{M}_n \otimes \mathbb{M}_d$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ .

- Let μ be a compactly supported probability measure on \mathbb{R} .
- For each *d* we introduce a real valued diagonal matrix X_d of $\mathbb{M}_n \otimes \mathbb{M}_d$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ .
- Let U_d be a random Haar unitary matrix in the unitary group U_{nd} .

- Let μ be a compactly supported probability measure on \mathbb{R} .
- For each *d* we introduce a real valued diagonal matrix X_d of $\mathbb{M}_n \otimes \mathbb{M}_d$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ .
- Let U_d be a random Haar unitary matrix in the unitary group U_{nd} .
- Let $\mathcal{N}_{\mu}^{(d)}: \mathbb{M}_n \to \mathbb{M}_d$ be the map whose Choi matrix is $U_d X_d U_d^*$.

- Let μ be a compactly supported probability measure on \mathbb{R} .
- For each *d* we introduce a real valued diagonal matrix X_d of $\mathbb{M}_n \otimes \mathbb{M}_d$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ .
- Let U_d be a random Haar unitary matrix in the unitary group U_{nd} .
- Let $\mathcal{N}_{\mu}^{(d)}:\mathbb{M}_n o\mathbb{M}_d$ be the map whose Choi matrix is $U_dX_dU_d^*$.

Theorem

Under the above assumptions, if $\operatorname{supp}(\mu^{\boxplus n/k}) \subset (0,\infty)$ then, almost surely as $d \to \infty$, the map $\mathcal{N}_{\mu}^{(d)}$ is k-positive.

- Let μ be a compactly supported probability measure on \mathbb{R} .
- For each *d* we introduce a real valued diagonal matrix X_d of $\mathbb{M}_n \otimes \mathbb{M}_d$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ .
- Let U_d be a random Haar unitary matrix in the unitary group U_{nd} .
- Let $\mathcal{N}_{\mu}^{(d)}: \mathbb{M}_n \to \mathbb{M}_d$ be the map whose Choi matrix is $U_d X_d U_d^*$.

Theorem

Under the above assumptions, if $\operatorname{supp}(\mu^{\boxplus n/k}) \subset (0,\infty)$ then, almost surely as $d \to \infty$, the map $\mathcal{N}_{\mu}^{(d)}$ is k-positive. On the other hand, if $\operatorname{supp}(\mu^{\boxplus n/k}) \cap (-\infty, 0) \neq \emptyset$ then, almost surely as $d \to \infty$, $\mathcal{N}_{\mu}^{(d)}$ is not *k*-positive.

Invented by Voiculescu in the 80s to solve problems in operator algebras.

- Invented by Voiculescu in the 80s to solve problems in operator algebras.
- A non-commutative probability space (A, τ) is an algebra A with a unital state τ : A → C. Elements a ∈ A are called random variables.

- Invented by Voiculescu in the 80s to solve problems in operator algebras.
- A non-commutative probability space (A, τ) is an algebra A with a unital state τ : A → C. Elements a ∈ A are called random variables.
- Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}), \mathbb{M}_d(\mathbb{C}), d^{-1}\mathrm{Tr}), (\mathbb{C}G, \delta_e).$

- Invented by Voiculescu in the 80s to solve problems in operator algebras.
- A non-commutative probability space (A, τ) is an algebra A with a unital state τ : A → C. Elements a ∈ A are called random variables.
- Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}), \mathbb{M}_d(\mathbb{C}), d^{-1}\mathrm{Tr}), (\mathbb{C}G, \delta_e).$
- Several notions of independence: classical independence, free independence.

- Invented by Voiculescu in the 80s to solve problems in operator algebras.
- A non-commutative probability space (A, τ) is an algebra A with a unital state τ : A → C. Elements a ∈ A are called random variables.
- Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}), \mathbb{M}_d(\mathbb{C}), d^{-1}\mathrm{Tr}), (\mathbb{C}G, \delta_e).$
- Several notions of independence: classical independence, free independence.
- If *a*, *b* are freely independent random variables, the law of (*a*, *b*) can be computed in terms of the laws of *a* and *b*.

- Invented by Voiculescu in the 80s to solve problems in operator algebras.
- A non-commutative probability space (A, τ) is an algebra A with a unital state τ : A → C. Elements a ∈ A are called random variables.
- Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}), \mathbb{M}_d(\mathbb{C}), d^{-1}\mathrm{Tr}), (\mathbb{C}G, \delta_e).$
- Several notions of independence: classical independence, free independence.
- If *a*, *b* are freely independent random variables, the law of (*a*, *b*) can be computed in terms of the laws of *a* and *b*.
- Random matrices are asymptotically free.

- Invented by Voiculescu in the 80s to solve problems in operator algebras.
- A non-commutative probability space (A, τ) is an algebra A with a unital state τ : A → C. Elements a ∈ A are called random variables.
- Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}), \mathbb{M}_d(\mathbb{C}), d^{-1}\mathrm{Tr}), (\mathbb{C}G, \delta_e).$
- Several notions of independence: classical independence, free independence.
- If *a*, *b* are freely independent random variables, the law of (*a*, *b*) can be computed in terms of the laws of *a* and *b*.
- Random matrices are asymptotically free.
- If A_d , B_d are matrices of size d, whose spectra converge towards a, b, what is the spectrum of $A_d + B_d$?

- Invented by Voiculescu in the 80s to solve problems in operator algebras.
- A non-commutative probability space (A, τ) is an algebra A with a unital state τ : A → C. Elements a ∈ A are called random variables.
- Examples: $(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}), \mathbb{M}_d(\mathbb{C}), d^{-1}\mathrm{Tr}), (\mathbb{C}G, \delta_e).$
- Several notions of independence: classical independence, free independence.
- If *a*, *b* are freely independent random variables, the law of (*a*, *b*) can be computed in terms of the laws of *a* and *b*.
- Random matrices are asymptotically free.
- If A_d , B_d are matrices of size d, whose spectra converge towards a, b, what is the spectrum of $A_d + B_d$?
- When $d \to \infty$, the spectrum of $A_d + B_d$ converges to $a \boxplus b$.

Proof ingredients

Let $\mathcal{N}_{\mu}^{(d)}: \mathbb{M}_n \to \mathbb{M}_d$ be the map whose Choi matrix is $U_d X_d U_d^*$.

Theorem

If $\operatorname{supp}(\mu^{\boxplus n/k}) \subset (0,\infty)$ then, almost surely as $d \to \infty$, the map $\mathcal{N}_{\mu}^{(d)}$ is *k*-positive. If $\operatorname{supp}(\mu^{\boxplus n/k}) \cap (-\infty, 0) \neq \emptyset$ then, almost surely as $d \to \infty$, $\mathcal{N}_{\mu}^{(d)}$ is not *k*-positive.

Proof ingredients

Let $\mathcal{N}^{(d)}_{\mu}: \mathbb{M}_n \to \mathbb{M}_d$ be the map whose Choi matrix is $U_d X_d U_d^*$.

Theorem

If $\operatorname{supp}(\mu^{\boxplus n/k}) \subset (0,\infty)$ then, almost surely as $d \to \infty$, the map $\mathcal{N}_{\mu}^{(d)}$ is *k*-positive. If $\operatorname{supp}(\mu^{\boxplus n/k}) \cap (-\infty, 0) \neq \emptyset$ then, almost surely as $d \to \infty$, $\mathcal{N}_{\mu}^{(d)}$ is not *k*-positive.

Proposition

A map \mathcal{N} is k-positive iff for any self-adjoint projection $P \in \mathbb{M}_n$ of rank k, the operator $P \otimes I_{\mathcal{A}} \cdot C_{\mathcal{N}} \cdot P \otimes 1_{\mathcal{A}}$ is positive.

Proof ingredients

Let $\mathcal{N}^{(d)}_{\mu}: \mathbb{M}_n \to \mathbb{M}_d$ be the map whose Choi matrix is $U_d X_d U_d^*$.

Theorem

If $\operatorname{supp}(\mu^{\boxplus n/k}) \subset (0,\infty)$ then, almost surely as $d \to \infty$, the map $\mathcal{N}_{\mu}^{(d)}$ is *k*-positive. If $\operatorname{supp}(\mu^{\boxplus n/k}) \cap (-\infty, 0) \neq \emptyset$ then, almost surely as $d \to \infty$, $\mathcal{N}_{\mu}^{(d)}$ is not *k*-positive.

Proposition

A map \mathcal{N} is k-positive iff for any self-adjoint projection $P \in \mathbb{M}_n$ of rank k, the operator $P \otimes I_{\mathcal{A}} \cdot C_{\mathcal{N}} \cdot P \otimes 1_{\mathcal{A}}$ is positive.

Proposition (Nica and Speicher)

Let x, p be free elements in a ncps (M, τ) and assume that p is a selfadjoint projection of rank $\tau(p) = 1/t$ $(t \ge 1)$ and that x has distribution μ . Then, the distribution of $t^{-1}pxp$ inside the contracted ncps $(pMp, \tau(p \cdot p))$ is $\mu^{\boxplus t}$

Maps associated to probability measures

• Let μ be a compactly supported probability measure on \mathbb{R} .

Maps associated to probability measures

- Let μ be a compactly supported probability measure on \mathbb{R} .
- The vN algebra L[∞](ℝ, μ), endowed with the expectation trace E is a non-commutative probability space. Let X ∈ L[∞](ℝ, μ) be the identity map x ↦ x.
- Let μ be a compactly supported probability measure on \mathbb{R} .
- The vN algebra L[∞](ℝ, μ), endowed with the expectation trace E is a non-commutative probability space. Let X ∈ L[∞](ℝ, μ) be the identity map x ↦ x.
- Consider the vN ncps free product $(\tilde{M}, \operatorname{tr} * \mathbb{E}) = (\mathbb{M}_n, \operatorname{tr}) * (L^{\infty}(\mathbb{R}, \mu), \mathbb{E}).$

- Let μ be a compactly supported probability measure on \mathbb{R} .
- The vN algebra L[∞](ℝ, μ), endowed with the expectation trace E is a non-commutative probability space. Let X ∈ L[∞](ℝ, μ) be the identity map x ↦ x.
- Consider the vN ncps free product $(\tilde{M}, \operatorname{tr} * \mathbb{E}) = (\mathbb{M}_n, \operatorname{tr}) * (L^{\infty}(\mathbb{R}, \mu), \mathbb{E}).$
- Finally, let (M, τ) be the contracted vN ncps $M = E_{11}\tilde{M}E_{11}$.

- Let μ be a compactly supported probability measure on \mathbb{R} .
- The vN algebra L[∞](ℝ, μ), endowed with the expectation trace E is a non-commutative probability space. Let X ∈ L[∞](ℝ, μ) be the identity map x ↦ x.
- Consider the vN ncps free product $(\tilde{M}, \operatorname{tr} * \mathbb{E}) = (\mathbb{M}_n, \operatorname{tr}) * (L^{\infty}(\mathbb{R}, \mu), \mathbb{E}).$
- Finally, let (M, τ) be the contracted vN ncps $M = E_{11}\tilde{M}E_{11}$.
- Define

$$egin{array}{lll} \mathcal{N}_{\mu}:\mathbb{M}_{n}
ightarrow M\ E_{ij}\mapsto E_{1i}XE_{j} \end{array}$$

Define

 $\mathcal{N}_{\mu}: \mathbb{M}_{n} \to M$ $E_{ij} \mapsto E_{1i} X E_{j1}$

Theorem

The map \mathcal{N}_{μ} is k-positive iff $\operatorname{supp}(\mu^{\boxplus n/k}) \subseteq \mathbb{R}_+$.

• Let $s_{a,\sigma}$ be the semi-circle distribution of mean *a* and variance σ^2 .

- Let $s_{a,\sigma}$ be the semi-circle distribution of mean *a* and variance σ^2 .
- Its support is $[a 2\sigma, a + 2\sigma]$.

- Let $s_{a,\sigma}$ be the semi-circle distribution of mean *a* and variance σ^2 .
- Its support is $[a 2\sigma, a + 2\sigma]$.
- In free probability theory, *s*_{0,1} plays the role of the standard Gaussian in classical probability, cf Free Central Limit Theorem.

• Let $s_{a,\sigma}$ be the semi-circle distribution of mean *a* and variance σ^2 .

• Its support is
$$[a - 2\sigma, a + 2\sigma]$$
.

■ In free probability theory, *s*_{0,1} plays the role of the standard Gaussian in classical probability, cf Free Central Limit Theorem.

• We have
$$s_{a,\sigma}^{\boxplus n/k} = s_{an/k,\sigma\sqrt{n/k}}$$
, with support $\operatorname{supp}(s_{a,\sigma}^{\boxplus n/k}) = [an/k - 2\sigma\sqrt{n/k}, an/k + 2\sigma\sqrt{n/k}].$

Theorem

Let n be an integer and a, σ some positive parameters. The map $\mathcal{N}_{a,\sigma}: \mathbb{M}_n \to M$ associated to a semi-circular distribution $s_{a,\sigma}$ is k-positive iff $k \leq 4n\sigma/a^2$. In particular, for any n and any k < n, there exist parameters $a, \sigma > 0$ such that the above map is k-positive but not k + 1-positive.

Merci !