Entanglement of random subspaces

Ion Nechita
CNRS, Université de Toulouse
joint work with
Serban Belinschi (Queen's) and Benoit Collins (uOttawa)

Autrans, July 16th 2013

Outline of the talk

(1) Additivity problems in QIT

- Quantum states and channels
- The additivity problem
- From channels to subspaces
(2) Entanglement of subspaces
- Singular values of matrices / bipartite vectors
- Minimal entanglement vs. MOE
- The set K_{V}
(3) Random subspaces
- Statement of the main result and applications
- Free probability - a review
- Sketch of the proof

States and channels in quantum information theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \mathbb{M}_{n}^{1,+}=\operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0 .
$$

States and channels in quantum information theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \mathbb{M}_{n}^{1,+}=\operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0 .
$$

- Pure states are rank-one projectors $\rho=x x^{*}=P_{x}$, with $x \in \mathbb{C}^{n}$, $\|x\|=1$.

States and channels in quantum information theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \mathbb{M}_{n}^{1,+}=\operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0 .
$$

- Pure states are rank-one projectors $\rho=x x^{*}=P_{x}$, with $x \in \mathbb{C}^{n}$, $\|x\|=1$.
- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m n}^{1,+}$.

States and channels in quantum information theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \mathbb{M}_{n}^{1,+}=\operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0
$$

- Pure states are rank-one projectors $\rho=x x^{*}=P_{x}$, with $x \in \mathbb{C}^{n}$, $\|x\|=1$.
- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{\text {mn }}^{1,+}$.
- Quantum channels $F: \mathbb{M}_{d}^{1,+} \rightarrow \mathbb{M}_{k}^{1,+}$ are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.

States and channels in quantum information theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \mathbb{M}_{n}^{1,+}=\operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0
$$

- Pure states are rank-one projectors $\rho=x x^{*}=P_{x}$, with $x \in \mathbb{C}^{n}$, $\|x\|=1$.
- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m n}^{1,+}$.
- Quantum channels $F: \mathbb{M}_{d}^{1,+} \rightarrow \mathbb{M}_{k}^{1,+}$ are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.
- Complete positivity CP: $F \otimes \mathrm{id}_{s}$ preserves positivity, for all s.

States and channels in quantum information theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \mathbb{M}_{n}^{1,+}=\operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0
$$

- Pure states are rank-one projectors $\rho=x x^{*}=P_{x}$, with $x \in \mathbb{C}^{n}$, $\|x\|=1$.
- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m n}^{1,+}$.
- Quantum channels $F: \mathbb{M}_{d}^{1,+} \rightarrow \mathbb{M}_{k}^{1,+}$ are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.
- Complete positivity CP: $F \otimes \mathrm{id}_{s}$ preserves positivity, for all s.
- Trace preservation TP: $\operatorname{Tr}[F(X)]=\operatorname{Tr}(X)$ for all X.

States and channels in quantum information theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \mathbb{M}_{n}^{1,+}=\operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0
$$

- Pure states are rank-one projectors $\rho=x x^{*}=P_{x}$, with $x \in \mathbb{C}^{n}$, $\|x\|=1$.
- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m n}^{1,+}$.
- Quantum channels $F: \mathbb{M}_{d}^{1,+} \rightarrow \mathbb{M}_{k}^{1,+}$ are completely positive, trace-preserving maps. In particular, they send quantum states to quantum states.
- Complete positivity CP: $F \otimes \mathrm{id}_{s}$ preserves positivity, for all s.
- Trace preservation TP: $\operatorname{Tr}[F(X)]=\operatorname{Tr}(X)$ for all X.
- Examples: $F_{U}(X)=U X U^{*}, F_{\text {dep }}(X)=\operatorname{Tr}(X) I_{k} / k$.

Some notions of entropy

- Let $\Delta_{k}=\left\{\lambda \in \mathbb{R}^{k}: \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1,\right\}$ be the probability simplex. We write Δ_{k}^{\downarrow} for the set of ordered probability vectors, $\lambda_{1} \geq \cdots \geq \lambda_{k}$.
- The Shannon entropy of a probability vector $\lambda \in \Delta_{k}$

$$
H(\lambda)=-\sum_{i=1}^{k} \lambda_{i} \log \lambda_{i} \in[0, \log k] .
$$

Some notions of entropy

- Let $\Delta_{k}=\left\{\lambda \in \mathbb{R}^{k}: \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1,\right\}$ be the probability simplex. We write Δ_{k}^{\downarrow} for the set of ordered probability vectors, $\lambda_{1} \geq \cdots \geq \lambda_{k}$.
- The Shannon entropy of a probability vector $\lambda \in \Delta_{k}$

$$
H(\lambda)=-\sum_{i=1}^{k} \lambda_{i} \log \lambda_{i} \in[0, \log k] .
$$

- The von Neumann entropy of $X \in \mathbb{M}_{k}^{1,+}$

$$
H(X)=-\operatorname{Tr}(X \log X)=-\sum_{i=1}^{k} \lambda_{i}(X) \log \lambda_{i}(X)
$$

Some notions of entropy

- Let $\Delta_{k}=\left\{\lambda \in \mathbb{R}^{k}: \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1,\right\}$ be the probability simplex. We write Δ_{k}^{\downarrow} for the set of ordered probability vectors, $\lambda_{1} \geq \cdots \geq \lambda_{k}$.
- The Shannon entropy of a probability vector $\lambda \in \Delta_{k}$

$$
H(\lambda)=-\sum_{i=1}^{k} \lambda_{i} \log \lambda_{i} \in[0, \log k] .
$$

- The von Neumann entropy of $X \in \mathbb{M}_{k}^{1,+}$

$$
H(X)=-\operatorname{Tr}(X \log X)=-\sum_{i=1}^{k} \lambda_{i}(X) \log \lambda_{i}(X)
$$

- For $p \geq 0$, define the p-Rényi entropy

$$
H_{p}(X)=\frac{\log \operatorname{Tr}\left(X^{p}\right)}{1-p}=\frac{\log \sum_{i} \lambda_{i}(X)^{p}}{1-p} ; \quad H(\cdot)=\lim _{p \rightarrow 1} H_{p}(\cdot) .
$$

Some notions of entropy

- Let $\Delta_{k}=\left\{\lambda \in \mathbb{R}^{k}: \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1,\right\}$ be the probability simplex. We write Δ_{k}^{\downarrow} for the set of ordered probability vectors, $\lambda_{1} \geq \cdots \geq \lambda_{k}$.
- The Shannon entropy of a probability vector $\lambda \in \Delta_{k}$

$$
H(\lambda)=-\sum_{i=1}^{k} \lambda_{i} \log \lambda_{i} \in[0, \log k] .
$$

- The von Neumann entropy of $X \in \mathbb{M}_{k}^{1,+}$

$$
H(X)=-\operatorname{Tr}(X \log X)=-\sum_{i=1}^{k} \lambda_{i}(X) \log \lambda_{i}(X)
$$

- For $p \geq 0$, define the p-Rényi entropy

$$
H_{p}(X)=\frac{\log \operatorname{Tr}\left(X^{p}\right)}{1-p}=\frac{\log \sum_{i} \lambda_{i}(X)^{p}}{1-p} ; \quad H(\cdot)=\lim _{p \rightarrow 1} H_{p}(\cdot) .
$$

- The entropy is additive: $H_{p}\left(X_{1} \otimes X_{2}\right)=H_{p}\left(X_{1}\right)+H_{p}\left(X_{2}\right)$.

Additivity of the minimum output entropy

The minimum output entropy of a quantum channel F is

$$
H_{p}^{\min }(F)=\min _{X \in \mathbb{M}_{d}^{1++}} H_{p}(F(X)) .
$$

Additivity of the minimum output entropy

The minimum output entropy of a quantum channel F is

$$
H_{p}^{\min }(F)=\min _{X \in \mathbb{M}_{d}^{1+}} H_{p}(F(X)) .
$$

Conjecture (Amosov, Holevo and Werner '00)
The quantity $H_{p}^{\min }$ is additive: for any quantum channels F_{1}, F_{2}

$$
H_{p}^{\min }\left(F_{1} \otimes F_{2}\right)=H_{p}^{\min }\left(F_{1}\right)+H_{p}^{\min }\left(F_{2}\right) .
$$

Additivity of the minimum output entropy

The minimum output entropy of a quantum channel F is

$$
H_{p}^{\min }(F)=\min _{X \in \mathbb{M}_{d}^{1+}} H_{p}(F(X))
$$

Conjecture (Amosov, Holevo and Werner '00)
The quantity $H_{p}^{\text {min }}$ is additive: for any quantum channels F_{1}, F_{2}

$$
H_{p}^{\min }\left(F_{1} \otimes F_{2}\right)=H_{p}^{\min }\left(F_{1}\right)+H_{p}^{\min }\left(F_{2}\right) .
$$

- Additivity of $H_{p=1}^{\min }$ implies a simple formula for the capacity of channels to transmit classical information; in particular, it implies the additivity of the classical capacity. Moreover, it is equivalent to the additivity of the Holevo capacity and the additivity of the entanglement of formation

Additivity of the minimum output entropy

Conjecture (Amosov, Holevo and Werner '00)
The quantity $H_{p}^{\min }(F)=\min _{X \in \mathbb{M}_{d}^{1,+}} H_{p}(F(X))$ is additive: for any quantum channels F_{1}, F_{2}

$$
H_{p}^{\min }\left(F_{1} \otimes F_{2}\right)=H_{p}^{\min }\left(F_{1}\right)+H_{p}^{\min }\left(F_{2}\right) .
$$

Additivity of the minimum output entropy

Conjecture (Amosov, Holevo and Werner '00)
The quantity $H_{p}^{\min }(F)=\min _{X \in \mathbb{M}_{d}^{1,+}} H_{p}(F(X))$ is additive: for any quantum channels F_{1}, F_{2}

$$
H_{p}^{\min }\left(F_{1} \otimes F_{2}\right)=H_{p}^{\min }\left(F_{1}\right)+H_{p}^{\min }\left(F_{2}\right) .
$$

- Given F_{1}, F_{2}, the \leq direction of the equality is trivial, take $X_{12}=X_{1} \otimes X_{2}$.

Additivity of the minimum output entropy

Conjecture (Amosov, Holevo and Werner '00)

The quantity $H_{p}^{\min }(F)=\min _{X \in \mathbb{M}_{d}^{1,+}} H_{p}(F(X))$ is additive: for any quantum channels F_{1}, F_{2}

$$
H_{p}^{\min }\left(F_{1} \otimes F_{2}\right)=H_{p}^{\min }\left(F_{1}\right)+H_{p}^{\min }\left(F_{2}\right) .
$$

- Given F_{1}, F_{2}, the \leq direction of the equality is trivial, take $X_{12}=X_{1} \otimes X_{2}$.
- Additivity has been shown to hold for a large class of channels: unitary, unital qubit, depolarizing, dephasing, entanglement breaking, ...

Additivity of the minimum output entropy

Conjecture (Amosov, Holevo and Werner '00)

The quantity $H_{p}^{\min }(F)=\min _{X \in \mathbb{M}_{d}^{1,+}} H_{p}(F(X))$ is additive: for any quantum channels F_{1}, F_{2}

$$
H_{p}^{\min }\left(F_{1} \otimes F_{2}\right)=H_{p}^{\min }\left(F_{1}\right)+H_{p}^{\min }\left(F_{2}\right)
$$

- Given F_{1}, F_{2}, the \leq direction of the equality is trivial, take $X_{12}=X_{1} \otimes X_{2}$.
- Additivity has been shown to hold for a large class of channels: unitary, unital qubit, depolarizing, dephasing, entanglement breaking, ...
- But... the Additivity Conjecture is false ! [Hayden, Winter '08 for $p>1$, Hastings '09 for $p=1$]

Additivity of the minimum output entropy

Conjecture (Amosov, Holevo and Werner '00)

The quantity $H_{p}^{\min }(F)=\min _{X \in \mathbb{M}_{d}^{1,+}} H_{p}(F(X))$ is additive: for any quantum channels F_{1}, F_{2}

$$
H_{p}^{\min }\left(F_{1} \otimes F_{2}\right)=H_{p}^{\min }\left(F_{1}\right)+H_{p}^{m i n}\left(F_{2}\right)
$$

- Given F_{1}, F_{2}, the \leq direction of the equality is trivial, take $X_{12}=X_{1} \otimes X_{2}$.
- Additivity has been shown to hold for a large class of channels: unitary, unital qubit, depolarizing, dephasing, entanglement breaking, ...
- But... the Additivity Conjecture is false ! [Hayden, Winter '08 for $p>1$, Hastings '09 for $p=1$]
- Counterexamples: mostly random channels. Deterministic counterexamples: '02 Werner \& Holevo ($p>4.79$), '07 Cubitt et al $(p<0.11)$ and '09 Grudka et al $(p>2)$.

Stinespring dilation

Theorem (Stinespring dilation)

For any channel $F: \mathbb{M}_{d} \rightarrow \mathbb{M}_{k}$ there exists an isometry $W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ such that

$$
F(X)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right]\left(W X W^{*}\right) .
$$

Stinespring dilation

Theorem (Stinespring dilation)

For any channel $F: \mathbb{M}_{d} \rightarrow \mathbb{M}_{k}$ there exists an isometry $W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ such that

$$
F(X)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right]\left(W X W^{*}\right) .
$$

- By convexity properties, the minimum output entropy of F is attained on pure states i.e. rank one projectors.

Stinespring dilation

Theorem (Stinespring dilation)

For any channel $F: \mathbb{M}_{d} \rightarrow \mathbb{M}_{k}$ there exists an isometry $W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ such that

$$
F(X)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right]\left(W X W^{*}\right)
$$

- By convexity properties, the minimum output entropy of F is attained on pure states i.e. rank one projectors.
- Since $F\left(P_{x}\right)=\left[\mathrm{id}_{\mathrm{k}} \otimes \operatorname{Tr}_{\mathrm{n}}\right]\left(W P_{x} W^{*}\right)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{W_{x}}$, the minimum output entropy of the channel F is

$$
H^{\min }(F)=\min _{x \in \mathbb{C}^{d},\|x\|=1} H\left(F\left(P_{x}\right)\right)=\min _{y \in \operatorname{Im} W,\|y\|=1} H\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{y}\right),
$$

where $V=\operatorname{Im} W \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ is a subspace of dimension d.

Stinespring dilation

Theorem (Stinespring dilation)

For any channel $F: \mathbb{M}_{d} \rightarrow \mathbb{M}_{k}$ there exists an isometry $W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ such that

$$
F(X)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right]\left(W X W^{*}\right)
$$

- By convexity properties, the minimum output entropy of F is attained on pure states i.e. rank one projectors.
- Since $F\left(P_{x}\right)=\left[\mathrm{id}_{\mathrm{k}} \otimes \operatorname{Tr}_{n}\right]\left(W P_{x} W^{*}\right)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{W_{x}}$, the minimum output entropy of the channel F is

$$
H^{\min }(F)=\min _{x \in \mathbb{C}^{d},\|x\|=1} H\left(F\left(P_{x}\right)\right)=\min _{y \in \operatorname{Im} W,\|y\|=1} H\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{y}\right),
$$

where $V=\operatorname{Im} W \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ is a subspace of dimension d.

- The MOE $H^{\min }(F)$ depends only on the subspace V.

Eigen- and singular values

Singular value decomposition of a matrix $X \in \mathbb{M}_{k \times n}(\mathbb{C})(k \leq n)$

$$
X=U \Sigma V^{*}=\sum_{i=1}^{k} \sqrt{\lambda_{i}\left(X X^{*}\right)} e_{i} f_{i}^{*}
$$

where e_{i}, f_{i} are orthonormal families in $\mathbb{C}^{k}, \mathbb{C}^{n}$, and $\lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0$ are the (squares of the) singular values of X, or the eigenvalues of $X X^{*}$.

Eigen- and singular values

Singular value decomposition of a matrix $X \in \mathbb{M}_{k \times n}(\mathbb{C})(k \leq n)$

$$
X=U \Sigma V^{*}=\sum_{i=1}^{k} \sqrt{\lambda_{i}\left(X X^{*}\right)} e_{i} f_{i}^{*}
$$

where e_{i}, f_{i} are orthonormal families in $\mathbb{C}^{k}, \mathbb{C}^{n}$, and $\lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0$ are the (squares of the) singular values of X, or the eigenvalues of $X X^{*}$. Using the isomorphism $\mathbb{M}_{k \times n} \simeq \mathbb{C}^{k} \otimes \mathbb{C}^{n}, X$ can be seen as a vector in a tensor product $x \in \mathbb{C}^{k} \otimes \mathbb{C}^{n}$.

Eigen- and singular values

Singular value decomposition of a matrix $X \in \mathbb{M}_{k \times n}(\mathbb{C})(k \leq n)$

$$
X=U \Sigma V^{*}=\sum_{i=1}^{k} \sqrt{\lambda_{i}\left(X X^{*}\right)} e_{i} f_{i}^{*}
$$

where e_{i}, f_{i} are orthonormal families in $\mathbb{C}^{k}, \mathbb{C}^{n}$, and $\lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0$ are the (squares of the) singular values of X, or the eigenvalues of $X X^{*}$. Using the isomorphism $\mathbb{M}_{k \times n} \simeq \mathbb{C}^{k} \otimes \mathbb{C}^{n}, X$ can be seen as a vector in a tensor product $x \in \mathbb{C}^{k} \otimes \mathbb{C}^{n}$. The singular value decomposition of X corresponds to the Schmidt decomposition of x

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

Eigen- and singular values

Singular value decomposition of a matrix $X \in \mathbb{M}_{k \times n}(\mathbb{C})(k \leq n)$

$$
X=U \Sigma V^{*}=\sum_{i=1}^{k} \sqrt{\lambda_{i}\left(X X^{*}\right)} e_{i} f_{i}^{*}
$$

where e_{i}, f_{i} are orthonormal families in $\mathbb{C}^{k}, \mathbb{C}^{n}$, and $\lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0$ are the (squares of the) singular values of X, or the eigenvalues of $X X^{*}$. Using the isomorphism $\mathbb{M}_{k \times n} \simeq \mathbb{C}^{k} \otimes \mathbb{C}^{n}, X$ can be seen as a vector in a tensor product $x \in \mathbb{C}^{k} \otimes \mathbb{C}^{n}$. The singular value decomposition of X corresponds to the Schmidt decomposition of x

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

The numbers $\lambda_{i}(x)$ are also eigenvalues of the reduced density matrix

$$
X X^{*}=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}=\sum_{i=1}^{k} \lambda_{i}(x) e_{i} e_{i}^{*}
$$

Entanglement of a vector

For a vector

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

define $H(x)=H(\lambda(x))=H(\rho)=-\sum_{i} \lambda_{i}(x) \log \lambda_{i}(x)$, the entropy of entanglement of the bipartite pure state x.

Entanglement of a vector

For a vector

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

define $H(x)=H(\lambda(x))=H(\rho)=-\sum_{i} \lambda_{i}(x) \log \lambda_{i}(x)$, the entropy of entanglement of the bipartite pure state x.

Note that
(1) The state x is separable, $x=e \otimes f$, iff. $H(x)=0$.
(2) The state x is maximally entangled, $x=k^{-1 / 2} \sum_{i} e_{i} \otimes f_{i}$, iff. $H(x)=\log k$.

Entanglement of a vector

For a vector

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

define $H(x)=H(\lambda(x))=H(\rho)=-\sum_{i} \lambda_{i}(x) \log \lambda_{i}(x)$, the entropy of entanglement of the bipartite pure state x.

Entanglement of a vector

For a vector

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

define $H(x)=H(\lambda(x))=H(\rho)=-\sum_{i} \lambda_{i}(x) \log \lambda_{i}(x)$, the entropy of entanglement of the bipartite pure state x.

Note that
(1) The state x is separable, $x=e \otimes f$, iff. $H(x)=0$.
(2) The state x is maximally entangled, $x=k^{-1 / 2} \sum_{i} e_{i} \otimes f_{i}$, iff. $H(x)=\log k$.

Entanglement of a vector

For a vector

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

define $H(x)=H(\lambda(x))=H(\rho)=-\sum_{i} \lambda_{i}(x) \log \lambda_{i}(x)$, the entropy of entanglement of the bipartite pure state x.

Note that
(1) The state x is separable, $x=e \otimes f$, iff. $H(x)=0$.
(2) The state x is maximally entangled, $x=k^{-1 / 2} \sum_{i} e_{i} \otimes f_{i}$, iff. $H(x)=\log k$.

Recall that we are interested in computing

$$
\begin{aligned}
H^{\min }(F) & =\min _{x \in \mathbb{C}^{d},\|x\|=1} H\left(F\left(P_{x}\right)\right)=\min _{y \in \operatorname{Im} W,\|y\|=1} H\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{y}\right) \\
& =\min _{y \in \operatorname{Im} W,\|y\|=1} H(y)
\end{aligned}
$$

Entanglement of a subspace

For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$, define

$$
H^{\min }(V)=\min _{y \in V,\|y\|=1} H(y),
$$

the minimal entanglement of vectors in V.

Entanglement of a subspace

For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$, define

$$
H^{\min }(V)=\min _{y \in V,\|y\|=1} H(y),
$$

the minimal entanglement of vectors in V.
A subspace V is called entangled if $H^{\min }(V)>0$, i.e. if it does not contain separable vectors $x \otimes y$.

Entanglement of a subspace

For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$, define

$$
H^{\min }(V)=\min _{y \in V,\|y\|=1} H(y),
$$

the minimal entanglement of vectors in V.
A subspace V is called entangled if $H^{\min }(V)>0$, i.e. if it does not contain separable vectors $x \otimes y$.

Proposition (Parthasarathy '03)

If V is entangled, then $\operatorname{dim} V \leq(k-1)(n-1)$.

Entanglement of a subspace

For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$, define

$$
H^{\min }(V)=\min _{y \in V,\|y\|=1} H(y),
$$

the minimal entanglement of vectors in V.
A subspace V is called entangled if $H^{\min }(V)>0$, i.e. if it does not contain separable vectors $x \otimes y$.

Proposition (Parthasarathy '03)

If V is entangled, then $\operatorname{dim} V \leq(k-1)(n-1)$.
Example: $V_{e n t}=\left\{x: \forall r, \sum_{i+j=r} x_{i j}=0\right\}$.

Singular values of vectors from a subspace

Our idea: Entropy is just a statistic, look at the set of all singular values directly!

Singular values of vectors from a subspace

Our idea: Entropy is just a statistic, look at the set of all singular values directly!
For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension $\operatorname{dim} V=d$, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}=\{\lambda(x): x \in V,\|x\|=1\} .
$$

Singular values of vectors from a subspace

Our idea: Entropy is just a statistic, look at the set of all singular values directly!
For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension $\operatorname{dim} V=d$, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}=\{\lambda(x): x \in V,\|x\|=1\} .
$$

\sim Our goal is to understand K_{V}.

Singular values of vectors from a subspace

Our idea: Entropy is just a statistic, look at the set of all singular values directly!
For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension $\operatorname{dim} V=d$, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}=\{\lambda(x): x \in V,\|x\|=1\} .
$$

\sim Our goal is to understand K_{V}.

- The set K_{V} is a compact subset of the ordered probability simplex Δ_{k}^{\downarrow}.

Singular values of vectors from a subspace

Our idea: Entropy is just a statistic, look at the set of all singular values directly!
For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension $\operatorname{dim} V=d$, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}=\{\lambda(x): x \in V,\|x\|=1\} .
$$

\sim Our goal is to understand K_{V}.

- The set K_{V} is a compact subset of the ordered probability simplex Δ_{k}^{\downarrow}.
- Local invariance: $K_{\left(U_{1} \otimes U_{2}\right) V}=K_{V}$, for unitary matrices $U_{1} \in \mathcal{U}(k)$ and $U_{2} \in \mathcal{U}(n)$.

Singular values of vectors from a subspace

Our idea: Entropy is just a statistic, look at the set of all singular values directly!
For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension $\operatorname{dim} V=d$, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}=\{\lambda(x): x \in V,\|x\|=1\} .
$$

\sim Our goal is to understand K_{V}.

- The set K_{V} is a compact subset of the ordered probability simplex Δ_{k}^{\downarrow}.
- Local invariance: $K_{\left(U_{1} \otimes U_{2}\right) V}=K_{V}$, for unitary matrices $U_{1} \in \mathcal{U}(k)$ and $U_{2} \in \mathcal{U}(n)$.
- Monotonicity: if $V_{1} \subset V_{2}$, then $K_{V_{1}} \subset K_{V_{2}}$.

Singular values of vectors from a subspace

Our idea: Entropy is just a statistic, look at the set of all singular values directly!
For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension $\operatorname{dim} V=d$, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}=\{\lambda(x): x \in V,\|x\|=1\} .
$$

\sim Our goal is to understand K_{V}.

- The set K_{V} is a compact subset of the ordered probability simplex Δ_{k}^{\downarrow}.
- Local invariance: $K_{\left(U_{1} \otimes U_{2}\right) V}=K_{V}$, for unitary matrices $U_{1} \in \mathcal{U}(k)$ and $U_{2} \in \mathcal{U}(n)$.
- Monotonicity: if $V_{1} \subset V_{2}$, then $K_{V_{1}} \subset K_{V_{2}}$.
- Recovering minimum entropies:

$$
H_{p}^{\min }(F)=H_{p}^{\min }(V)=\min _{\lambda \in K_{V}} H_{p}(\lambda)
$$

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the p-Rényi entropy.

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the p-Rényi entropy.

- Let $k=n$ and put $V=\Lambda^{2}\left(\mathbb{C}^{k}\right)$

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the p-Rényi entropy.

- Let $k=n$ and put $V=\Lambda^{2}\left(\mathbb{C}^{k}\right)$
- The subspace V is almost half of the total space: $\operatorname{dim} V=k(k-1) / 2$.

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the p-Rényi entropy.

- Let $k=n$ and put $V=\Lambda^{2}\left(\mathbb{C}^{k}\right)$
- The subspace V is almost half of the total space: $\operatorname{dim} V=k(k-1) / 2$.
- Example of a vector in V :

$$
V \ni x=\frac{1}{\sqrt{2}}(e \otimes f-f \otimes e)
$$

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the p-Rényi entropy.

- Let $k=n$ and put $V=\Lambda^{2}\left(\mathbb{C}^{k}\right)$
- The subspace V is almost half of the total space: $\operatorname{dim} V=k(k-1) / 2$.
- Example of a vector in V :

$$
V \ni x=\frac{1}{\sqrt{2}}(e \otimes f-f \otimes e)
$$

- Fact: singular values of vectors in V come in pairs.

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the p-Rényi entropy.

- Let $k=n$ and put $V=\Lambda^{2}\left(\mathbb{C}^{k}\right)$
- The subspace V is almost half of the total space: $\operatorname{dim} V=k(k-1) / 2$.
- Example of a vector in V :

$$
V \ni x=\frac{1}{\sqrt{2}}(e \otimes f-f \otimes e)
$$

- Fact: singular values of vectors in V come in pairs.
- Hence, the least entropy vector in V is as above, with $e \perp f$ and $H(x)=\log 2$.

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the p-Rényi entropy.

- Let $k=n$ and put $V=\Lambda^{2}\left(\mathbb{C}^{k}\right)$
- The subspace V is almost half of the total space: $\operatorname{dim} V=k(k-1) / 2$.
- Example of a vector in V :

$$
V \ni x=\frac{1}{\sqrt{2}}(e \otimes f-f \otimes e)
$$

- Fact: singular values of vectors in V come in pairs.
- Hence, the least entropy vector in V is as above, with $e \perp f$ and $H(x)=\log 2$.
- Thus, $H^{\text {min }}(V)=\log 2$ and one can show that

$$
K_{V}=\left\{\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots\right) \in \Delta_{k}: \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1 / 2\right\}
$$

Examples

$V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.

Examples

$V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.

Examples

$$
V=\operatorname{span}\left\{I_{3}, G\right\} \text {, where } G \text { is a } 3 \times 3 \text { Ginibre random matrix. }
$$

Examples

$$
V=\operatorname{span}\left\{I_{3}, G\right\} \text {, where } G \text { is a } 3 \times 3 \text { Ginibre random matrix. }
$$

A open problem

Find explicit examples of subspaces V with
(1) large $\operatorname{dim} V$;
(2) large $H^{\text {min }}(V)$.

Random subspaces

We are interested in random subspaces (or random channels).

Random subspaces

We are interested in random subspaces (or random channels).

- There is an uniform (or Haar) measure on the set of isometries $\left\{W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}: W W^{*}=I_{d}\right\}:$ take a $k n \times k n$ Haar distributed random unitary matrix $U \in \mathcal{U}(k n)$ and take W to be the restriction of U to the first d coordinates.

Random subspaces

We are interested in random subspaces (or random channels).

- There is an uniform (or Haar) measure on the set of isometries $\left\{W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}: W W^{*}=\mathrm{I}_{d}\right\}$: take a $k n \times k n$ Haar distributed random unitary matrix $U \in \mathcal{U}(k n)$ and take W to be the restriction of U to the first d coordinates.
- We call random quantum channels the probability distribution obtained as the push-forward of this measure through the Stinespring dilation.

Random subspaces

We are interested in random subspaces (or random channels).

- There is an uniform (or Haar) measure on the set of isometries $\left\{W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}: W W^{*}=I_{d}\right\}$: take a $k n \times k n$ Haar distributed random unitary matrix $U \in \mathcal{U}(k n)$ and take W to be the restriction of U to the first d coordinates.
- We call random quantum channels the probability distribution obtained as the push-forward of this measure through the Stinespring dilation.
- A random subspace is the image of a random isometry, $V=\operatorname{Im} W$.

Random subspaces

We are interested in random subspaces (or random channels).

- There is an uniform (or Haar) measure on the set of isometries $\left\{W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}: W W^{*}=\mathrm{I}_{d}\right\}$: take a $k n \times k n$ Haar distributed random unitary matrix $U \in \mathcal{U}(k n)$ and take W to be the restriction of U to the first d coordinates.
- We call random quantum channels the probability distribution obtained as the push-forward of this measure through the Stinespring dilation.
- A random subspace is the image of a random isometry, $V=\operatorname{Im} W$.
- Equivalently, $V=\operatorname{span}\left\{U_{1}, \ldots, U_{d}\right\}$, where U_{i} are the columns of a Haar random unitary matrix $U \in \mathcal{U}(k n)$.

Main result

For the rest of the talk, we consider the following asymptotic regime: k fixed, $n \rightarrow \infty$, and $d \sim t k n$, for a fixed parameter $t \in(0,1)$.

Main result

For the rest of the talk, we consider the following asymptotic regime: k fixed, $n \rightarrow \infty$, and $d \sim t k n$, for a fixed parameter $t \in(0,1)$.

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V_{n}, the set $K_{V_{n}}$ of singular values of unit vectors from V_{n} converges (almost surely, in the Hausdorff distance) to a deterministic, convex subset $K_{k, t}$ of the probability simplex Δ_{k}

$$
K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\} .
$$

Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed, $n \rightarrow \infty, d \sim t k n$, we have the following a.s. convergence result for random quantum channels F (defined via random isometries $\left.W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}\right)$:

$$
\lim _{n \rightarrow \infty} H^{\min }(F)=\min _{\lambda \in K_{k, t}} H(\lambda) .
$$

It is not just a bound, the exact limit value is obtained.

Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed, $n \rightarrow \infty, d \sim t k n$, we have the following a.s. convergence result for random quantum channels F (defined via random isometries
$\left.W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}\right)$:

$$
\lim _{n \rightarrow \infty} H^{\min }(F)=\min _{\lambda \in K_{k, t}} H(\lambda) .
$$

It is not just a bound, the exact limit value is obtained.

Theorem (Belinschi, Collins, N. '13)

The minimum entropy element of $K_{k, t}$ is of the form (a, b, b, \ldots, b). The lowest dimension for which a violation of the additivity for $H^{\text {min }}$ can be observed is $k=183$. For large k, violations of size $1-\varepsilon$ bits can be obtained.

Free Probability Theory

Invented by Voiculescu in the 80s to solve problems in operator algebras.

Free Probability Theory

Invented by Voiculescu in the 80 s to solve problems in operator algebras.

- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.

Free Probability Theory

Invented by Voiculescu in the 80s to solve problems in operator algebras.

- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples:
- classical probability spaces $\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right)$;
- group algebras ($\mathbb{C} G, \delta_{e}$);
- matrices $\left(\mathbb{M}_{n}, n^{-1} \operatorname{Tr}\right)$;
- random matrices $\left(\mathbb{M}_{n}\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})\right), \mathbb{E} \circ n^{-1} T r\right)$.

Free Probability Theory

Invented by Voiculescu in the 80s to solve problems in operator algebras.

- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples:
- classical probability spaces $\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right)$;
- group algebras $\left(\mathbb{C} G, \delta_{e}\right)$;
- matrices $\left(\mathbb{M}_{n}, n^{-1} \operatorname{Tr}\right)$;
- random matrices $\left(\mathbb{M}_{n}\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})\right), \mathbb{E} \circ n^{-1} \mathrm{Tr}\right)$.
- Several notions of independence:
- classical independence, implies commutativity of the radom variables;
- free independence.

Free Probability Theory

Invented by Voiculescu in the 80s to solve problems in operator algebras.

- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples:
- classical probability spaces $\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right)$;
- group algebras $\left(\mathbb{C} G, \delta_{e}\right)$;
- matrices $\left(\mathbb{M}_{n}, n^{-1} \operatorname{Tr}\right)$;
- random matrices $\left(\mathbb{M}_{n}\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})\right), \mathbb{E} \circ n^{-1} \mathrm{Tr}\right)$.
- Several notions of independence:
- classical independence, implies commutativity of the radom variables;
- free independence.
- If a, b are freely independent random variables, the law of (a, b) can be computed in terms of the laws of a and b. Freeness provides an algorithm for computing joint moments in terms of marginals.

Free Probability Theory

Invented by Voiculescu in the 80s to solve problems in operator algebras.

- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples:
- classical probability spaces $\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right)$;
- group algebras $\left(\mathbb{C} G, \delta_{e}\right)$;
- matrices $\left(\mathbb{M}_{n}, n^{-1} \operatorname{Tr}\right)$;
- random matrices $\left(\mathbb{M}_{n}\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})\right), \mathbb{E} \circ n^{-1} \mathrm{Tr}\right)$.
- Several notions of independence:
- classical independence, implies commutativity of the radom variables;
- free independence.
- If a, b are freely independent random variables, the law of (a, b) can be computed in terms of the laws of a and b. Freeness provides an algorithm for computing joint moments in terms of marginals.
- Example: if $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$ are free, then

$$
\begin{aligned}
& \tau\left(a_{1} b_{1} a_{2} b_{2}\right)=\tau\left(a_{1} a_{2}\right) \tau\left(b_{1}\right) \tau\left(b_{2}\right)+\tau\left(a_{1}\right) \tau\left(a_{2}\right) \tau\left(b_{1} b_{2}\right) \\
&-\tau\left(a_{1}\right) \tau\left(b_{1}\right) \tau\left(a_{2}\right) \tau\left(b_{2}\right)
\end{aligned}
$$

Asymptotic freeness of random matrices

Theorem (Voiculescu '91)

Let $\left(A_{n}\right)$ and $\left(B_{n}\right)$ be sequences of $n \times n$ matrices such that A_{n} and B_{n} converge in distribution (with respect to $n^{-1} \mathrm{Tr}$) for $n \rightarrow \infty$. Furthermore, let $\left(U_{n}\right)$ be a sequence of Haar unitary $n \times n$ random matrices. Then, A_{n} and $U_{n} B_{n} U_{n}^{*}$ are asymptotically free for $n \rightarrow \infty$.

Asymptotic freeness of random matrices

Theorem (Voiculescu '91)

Let $\left(A_{n}\right)$ and $\left(B_{n}\right)$ be sequences of $n \times n$ matrices such that A_{n} and B_{n} converge in distribution (with respect to $n^{-1} \mathrm{Tr}$) for $n \rightarrow \infty$.
Furthermore, let $\left(U_{n}\right)$ be a sequence of Haar unitary $n \times n$ random matrices. Then, A_{n} and $U_{n} B_{n} U_{n}^{*}$ are asymptotically free for $n \rightarrow \infty$.

If A_{n}, B_{n} are matrices of size n, whose spectra converge towards μ_{a}, μ_{b}, the spectrum of $A_{n}+U_{n} B_{n} U_{n}^{*}$ converges to $\mu_{a} \boxplus \mu_{b}$; here, $\mu_{a} \boxplus \mu_{b}$ is the distribution of $a+b$, where $a, b \in(\mathcal{A}, \tau)$ are free random variables having distributions resp. μ_{a}, μ_{b}.

Asymptotic freeness of random matrices

Theorem (Voiculescu '91)

Let $\left(A_{n}\right)$ and $\left(B_{n}\right)$ be sequences of $n \times n$ matrices such that A_{n} and B_{n} converge in distribution (with respect to $n^{-1} \operatorname{Tr}$) for $n \rightarrow \infty$.
Furthermore, let $\left(U_{n}\right)$ be a sequence of Haar unitary $n \times n$ random matrices. Then, A_{n} and $U_{n} B_{n} U_{n}^{*}$ are asymptotically free for $n \rightarrow \infty$.

If A_{n}, B_{n} are matrices of size n, whose spectra converge towards μ_{a}, μ_{b}, the spectrum of $A_{n}+U_{n} B_{n} U_{n}^{*}$ converges to $\mu_{a} \boxplus \mu_{b}$; here, $\mu_{a} \boxplus \mu_{b}$ is the distribution of $a+b$, where $a, b \in(\mathcal{A}, \tau)$ are free random variables having distributions resp. μ_{a}, μ_{b}.

If A_{n}, B_{n} are matrices of size n such that $A_{n} \geq 0$, whose spectra converge towards μ_{a}, μ_{b}, the spectrum of $A_{n}^{1 / 2} U_{n} B_{n} U_{n}^{*} A_{n}^{1 / 2}$ converges to $\mu_{a} \boxtimes \mu_{b}$.

Example: truncation of random matrices

Let $P_{n} \in \mathbb{M}_{n}$ a projection of rank $n / 2$; its eigenvalues are 0 and 1 , with multiplicity $n / 2$. Hence, the distribution of P_{n} converges, when $n \rightarrow \infty$, to the Bernoulli probability measure $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.

Example: truncation of random matrices

Let $P_{n} \in \mathbb{M}_{n}$ a projection of rank $n / 2$; its eigenvalues are 0 and 1 , with multiplicity $n / 2$. Hence, the distribution of P_{n} converges, when $n \rightarrow \infty$, to the Bernoulli probability measure $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.
Let $C_{n} \in \mathbb{M}_{n / 2}$ be the top $n / 2 \times n / 2$ corner of $U_{n} P_{n} U_{n}^{*}$, with U_{n} a Haar random unitary matrix. What is the distribution of C_{n} ?

Example: truncation of random matrices

Let $P_{n} \in \mathbb{M}_{n}$ a projection of rank $n / 2$; its eigenvalues are 0 and 1 , with multiplicity $n / 2$. Hence, the distribution of P_{n} converges, when $n \rightarrow \infty$, to the Bernoulli probability measure $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.
Let $C_{n} \in \mathbb{M}_{n / 2}$ be the top $n / 2 \times n / 2$ corner of $U_{n} P_{n} U_{n}^{*}$, with U_{n} a Haar random unitary matrix. What is the distribution of C_{n} ? Up to zero blocks, $C_{n}=Q_{n}\left(U_{n} P_{n} U_{n}^{*}\right) Q_{n}$, where Q_{n} is the diagonal orthogonal projection on the first $n / 2$ coordinates of \mathbb{C}^{n}. The distribution of Q_{n} converges to $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.

Example: truncation of random matrices

Let $P_{n} \in \mathbb{M}_{n}$ a projection of rank $n / 2$; its eigenvalues are 0 and 1 , with multiplicity $n / 2$. Hence, the distribution of P_{n} converges, when $n \rightarrow \infty$, to the Bernoulli probability measure $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.
Let $C_{n} \in \mathbb{M}_{n / 2}$ be the top $n / 2 \times n / 2$ corner of $U_{n} P_{n} U_{n}^{*}$, with U_{n} a Haar random unitary matrix. What is the distribution of C_{n} ? Up to zero blocks, $C_{n}=Q_{n}\left(U_{n} P_{n} U_{n}^{*}\right) Q_{n}$, where Q_{n} is the diagonal orthogonal projection on the first $n / 2$ coordinates of \mathbb{C}^{n}. The distribution of Q_{n} converges to $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.
Free probability theory tells us that the distribution of C_{n} will converge to

$$
\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right) \boxtimes\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right)=\frac{1}{\pi \sqrt{x(1-x)}} \mathbf{1}_{[0,1]}(x) d x,
$$

which is the arcsine distribution.

Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of relative rank $1 / 2$ and size $n=4000$; in red, the density of the arcsine distribution.

The t-norm

Definition

For a positive integer k, embed \mathbb{R}^{k} as a self-adjoint real subalgebra \mathcal{R} of a $C^{*}-\operatorname{ncps}(\mathcal{A}, \tau)$, so that $\tau(x)=\left(x_{1}+\cdots+x_{k}\right) / k$. Let p_{t} be a projection of rank $t \in(0,1]$ in \mathcal{A}, free from \mathcal{R}. On the real vector space \mathbb{R}^{k}, we introduce the following norm, called the (t)-norm:

$$
\|x\|_{(t)}:=\left\|p_{t} x p_{t}\right\|_{\infty}
$$

where the vector $x \in \mathbb{R}^{k}$ is identified with its image in \mathcal{R}.

The t-norm

Definition

For a positive integer k, embed \mathbb{R}^{k} as a self-adjoint real subalgebra \mathcal{R} of a $C^{*}-\operatorname{ncps}(\mathcal{A}, \tau)$, so that $\tau(x)=\left(x_{1}+\cdots+x_{k}\right) / k$. Let p_{t} be a projection of rank $t \in(0,1]$ in \mathcal{A}, free from \mathcal{R}. On the real vector space \mathbb{R}^{k}, we introduce the following norm, called the (t)-norm:

$$
\|x\|_{(t)}:=\left\|p_{t} x p_{t}\right\|_{\infty}
$$

where the vector $x \in \mathbb{R}^{k}$ is identified with its image in \mathcal{R}.

- One can show that $\|\cdot\|_{(t)}$ is indeed a norm, which is permutation invariant.

The t-norm

Definition

For a positive integer k, embed \mathbb{R}^{k} as a self-adjoint real subalgebra \mathcal{R} of a $C^{*}-\operatorname{ncps}(\mathcal{A}, \tau)$, so that $\tau(x)=\left(x_{1}+\cdots+x_{k}\right) / k$. Let p_{t} be a projection of rank $t \in(0,1]$ in \mathcal{A}, free from \mathcal{R}. On the real vector space \mathbb{R}^{k}, we introduce the following norm, called the (t)-norm:

$$
\|x\|_{(t)}:=\left\|p_{t} x p_{t}\right\|_{\infty}
$$

where the vector $x \in \mathbb{R}^{k}$ is identified with its image in \mathcal{R}.

- One can show that $\|\cdot\|_{(t)}$ is indeed a norm, which is permutation invariant.
- When $t>1-1 / k,\|\cdot\|_{(t)}=\|\cdot\|_{\infty}$ on \mathbb{R}^{k}.

The t-norm

Definition

For a positive integer k, embed \mathbb{R}^{k} as a self-adjoint real subalgebra \mathcal{R} of a $C^{*}-\operatorname{ncps}(\mathcal{A}, \tau)$, so that $\tau(x)=\left(x_{1}+\cdots+x_{k}\right) / k$. Let p_{t} be a projection of rank $t \in(0,1]$ in \mathcal{A}, free from \mathcal{R}. On the real vector space \mathbb{R}^{k}, we introduce the following norm, called the (t)-norm:

$$
\|x\|_{(t)}:=\left\|p_{t} x p_{t}\right\|_{\infty}
$$

where the vector $x \in \mathbb{R}^{k}$ is identified with its image in \mathcal{R}.

- One can show that $\|\cdot\|_{(t)}$ is indeed a norm, which is permutation invariant.
- When $t>1-1 / k,\|\cdot\|_{(t)}=\|\cdot\|_{\infty}$ on \mathbb{R}^{k}.
- $\lim _{t \rightarrow 0^{+}}\|x\|_{(t)}=k^{-1}\left|\sum_{i} x_{i}\right|$.

Corners of randomly rotated projections

Theorem (Collins '05)

In \mathbb{C}^{n}, choose at random according to the Haar measure two independent subspaces V_{n} and V_{n}^{\prime} of respective dimensions $q_{n} \sim$ sn and $q_{n}^{\prime} \sim t n$ where $s, t \in(0,1]$. Let $P_{n}\left(\right.$ resp. $\left.P_{n}^{\prime}\right)$ be the orthogonal projection onto $V_{n}\left(r e s p . V_{n}^{\prime}\right)$. Then,
$\lim _{n}\left\|P_{n} P_{n}^{\prime} P_{n}\right\|_{\infty}=\varphi(s, t)=\sup \operatorname{supp}\left((1-s) \delta_{0}+s \delta_{1}\right) \boxtimes\left((1-t) \delta_{0}+t \delta_{1}\right)$,
with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

Hence, we can compute

$$
\|\underbrace{1, \cdots, 1}_{j \text { times }}, \underbrace{0, \cdots, 0}_{k-j \text { times }}\|_{(t)}=\varphi\left(\frac{j}{k}, t\right) .
$$

Idea of the proof

A simpler question: what is the largest maximal singular value $\max _{x \in V,\|x\|=1} \lambda_{1}(x)$ of vectors from the subspace V ?

Idea of the proof

A simpler question: what is the largest maximal singular value $\max _{x \in V,\|x\|=1} \lambda_{1}(x)$ of vectors from the subspace V ?

$$
\begin{aligned}
\max _{x \in V,\|x\|=1} \lambda_{1}(x) & =\max _{x \in V,\|x\|=1} \lambda_{1}\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \\
& =\max _{x \in V,\|x\|=1}\left\|\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right\| \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \cdot P_{y}\right] \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1} \max _{x \in V,\|x\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
\end{aligned}
$$

Idea of the proof

A simpler question: what is the largest maximal singular value $\max _{x \in V,\|x\|=1} \lambda_{1}(x)$ of vectors from the subspace V ?

$$
\begin{aligned}
\max _{x \in V,\|x\|=1} \lambda_{1}(x) & =\max _{x \in V,\|x\|=1} \lambda_{1}\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \\
& =\max _{x \in V,\|x\|=1}\left\|\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right\| \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \cdot P_{y}\right] \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1} \max _{x \in V,\|x\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
\end{aligned}
$$

Limit of $\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty}$ for fixed y and random V ?

The set $K_{k, t}$ and t-norms

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.

The set $K_{k, t}$ and t-norms

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.
- Recall that

$$
\max _{x \in V,\|x\|=1} \lambda_{1}(x)=\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
$$

The set $K_{k, t}$ and t-norms

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.
- Recall that

$$
\max _{x \in V,\|x\|=1} \lambda_{1}(x)=\max _{y \in \mathbb{C}^{\kappa},\|y\|=1}\left\|P_{V} P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
$$

- For fixed y, P_{V} and $P_{y} \otimes \mathrm{I}_{n}$ are independent projectors of relative ranks t and $1 / k$ respectively.

The set $K_{k, t}$ and t-norms

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.
- Recall that

$$
\max _{x \in V,\|x\|=1} \lambda_{1}(x)=\max _{y \in \mathbb{C}^{\kappa},\|y\|=1}\left\|P_{V} P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
$$

- For fixed y, P_{V} and $P_{y} \otimes \mathrm{I}_{n}$ are independent projectors of relative ranks t and $1 / k$ respectively.
- Thus, $\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} \rightarrow \varphi(t, 1 / k)=\|(1,0, \ldots, 0)\|_{(t)}$.

The set $K_{k, t}$ and t-norms

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.
- Recall that

$$
\max _{x \in V,\|x\|=1} \lambda_{1}(x)=\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
$$

- For fixed y, P_{V} and $P_{y} \otimes \mathrm{I}_{n}$ are independent projectors of relative ranks t and $1 / k$ respectively.
- Thus, $\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} \rightarrow \varphi(t, 1 / k)=\|(1,0, \ldots, 0)\|_{(t)}$.
- We can take the max over y at no cost, by considering a finite net of y 's, since k is fixed.

The set $K_{k, t}$ and t-norms

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.
- Recall that

$$
\max _{x \in V,\|x\|=1} \lambda_{1}(x)=\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
$$

- For fixed y, P_{V} and $P_{y} \otimes \mathrm{I}_{n}$ are independent projectors of relative ranks t and $1 / k$ respectively.
- Thus, $\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} \rightarrow \varphi(t, 1 / k)=\|(1,0, \ldots, 0)\|_{(t)}$.
- We can take the max over y at no cost, by considering a finite net of y 's, since k is fixed.
- To get the full result $\lim _{\sup _{n \rightarrow \infty}} K_{V_{n}} \subset K_{k, t}$, use $\langle\lambda, x\rangle$ (for all directions x) instead of λ_{1}.

Thank you!

Collins, N. - Random quantum channels II: Entanglement of random subspaces, Rényi entropy estimates and additivity problems.

Belinschi, Collins, N. - Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product.

Belinschi, Collins, N. - Almost one bit violation for the additivity of the minimum output entropy.

