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States and channels in quantum information theory

Quantum states with n degrees of freedom are described by density
matrices

⇢ 2 M1,+
n = End1,+(Cn); Tr⇢ = 1 and ⇢ � 0.

Pure states are rank-one projectors ⇢ = xx⇤ = Px , with x 2 Cn,
kxk = 1.

Two quantum systems: ⇢12 2 End1,+(Cm ⌦ Cn) = M1,+
mn .

Quantum channels F : M1,+
d ! M1,+

k are completely positive,
trace-preserving maps. In particular, they send quantum states to
quantum states.

Complete positivity CP: F ⌦ ids preserves positivity, for all s.
Trace preservation TP: Tr[F (X )] = Tr(X ) for all X .

Examples: FU(X ) = UXU⇤, Fdep(X ) = Tr(X )Ik/k .
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Some notions of entropy

Let �k = {� 2 Rk : �i � 0,
P

i �i = 1, } be the probability

simplex. We write �#
k for the set of ordered probability vectors,

�1 � · · · � �k .
The Shannon entropy of a probability vector � 2 �k

H(�) = �
kX

i=1

�i log �i 2 [0, log k].

The von Neumann entropy of X 2 M1,+
k

H(X ) = �Tr(X logX ) = �
kX

i=1

�i (X ) log �i (X ).

For p � 0, define the p-Rényi entropy

Hp(X ) =
logTr(X p)

1� p
=

log
P

i �i (X )p

1� p
; H(·) = lim

p!1
Hp(·).

The entropy is additive: Hp(X1 ⌦ X2) = Hp(X1) + Hp(X2).
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Additivity of the minimum output entropy

The minimum output entropy of a quantum channel F is

Hmin
p (F ) = min

X2M1,+
d

Hp(F (X )).

Conjecture (Amosov, Holevo and Werner ’00)

The quantity Hmin
p is additive: for any quantum channels F1,F2

Hmin
p (F1 ⌦ F2) = Hmin

p (F1) + Hmin
p (F2).

Additivity of Hmin
p=1 implies a simple formula for the capacity of

channels to transmit classical information; in particular, it implies
the additivity of the classical capacity. Moreover, it is equivalent to
the additivity of the Holevo capacity and the additivity of the
entanglement of formation

Ion Nechita Entanglement of random subspaces 5 / 30



Additivity problems in QIT
Entanglement of subspaces

Random subspaces

Quantum states and channels
The additivity problem
From channels to subspaces

Additivity of the minimum output entropy

The minimum output entropy of a quantum channel F is

Hmin
p (F ) = min

X2M1,+
d

Hp(F (X )).

Conjecture (Amosov, Holevo and Werner ’00)

The quantity Hmin
p is additive: for any quantum channels F1,F2

Hmin
p (F1 ⌦ F2) = Hmin

p (F1) + Hmin
p (F2).

Additivity of Hmin
p=1 implies a simple formula for the capacity of

channels to transmit classical information; in particular, it implies
the additivity of the classical capacity. Moreover, it is equivalent to
the additivity of the Holevo capacity and the additivity of the
entanglement of formation

Ion Nechita Entanglement of random subspaces 5 / 30



Additivity problems in QIT
Entanglement of subspaces

Random subspaces

Quantum states and channels
The additivity problem
From channels to subspaces

Additivity of the minimum output entropy

The minimum output entropy of a quantum channel F is

Hmin
p (F ) = min

X2M1,+
d

Hp(F (X )).

Conjecture (Amosov, Holevo and Werner ’00)

The quantity Hmin
p is additive: for any quantum channels F1,F2

Hmin
p (F1 ⌦ F2) = Hmin

p (F1) + Hmin
p (F2).

Additivity of Hmin
p=1 implies a simple formula for the capacity of

channels to transmit classical information; in particular, it implies
the additivity of the classical capacity. Moreover, it is equivalent to
the additivity of the Holevo capacity and the additivity of the
entanglement of formation

Ion Nechita Entanglement of random subspaces 5 / 30



Additivity problems in QIT
Entanglement of subspaces

Random subspaces

Quantum states and channels
The additivity problem
From channels to subspaces

Additivity of the minimum output entropy

Conjecture (Amosov, Holevo and Werner ’00)

The quantity Hmin
p (F ) = minX2M1,+

d
Hp(F (X )) is additive: for any

quantum channels F1,F2

Hmin
p (F1 ⌦ F2) = Hmin

p (F1) + Hmin
p (F2).

Given F1,F2, the  direction of the equality is trivial, take
X12 = X1 ⌦ X2.
Additivity has been shown to hold for a large class of channels:
unitary, unital qubit, depolarizing, dephasing, entanglement
breaking, ...
But... the Additivity Conjecture is false ! [Hayden, Winter ’08 for
p > 1, Hastings ’09 for p = 1]
Counterexamples: mostly random channels. Deterministic
counterexamples: ’02 Werner & Holevo (p > 4.79), ’07 Cubitt et al
(p < 0.11) and ’09 Grudka et al (p > 2).
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Stinespring dilation

Theorem (Stinespring dilation)

For any channel F : Md ! Mk there exists an isometry
W : Cd ! Ck ⌦ Cn such that

F (X ) = [idk ⌦ Trn](WXW ⇤).

By convexity properties, the minimum output entropy of F is
attained on pure states i.e. rank one projectors.

Since F (Px) = [idk ⌦ Trn](WPxW
⇤) = [idk ⌦ Trn]PWx , the

minimum output entropy of the channel F is

Hmin(F ) = min
x2Cd , kxk=1

H(F (Px)) = min
y2ImW , kyk=1

H([idk ⌦ Trn]Py ),

where V = ImW ⇢ Ck ⌦ Cn is a subspace of dimension d .

The MOE Hmin(F ) depends only on the subspace V .
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Random subspaces

Singular values of matrices / bipartite vectors
Minimal entanglement vs. MOE
The set KV

Eigen- and singular values

Singular value decomposition of a matrix X 2 Mk⇥n(C) (k  n)

X = U⌃V ⇤ =
kX

i=1

p
�i (XX ⇤)ei f

⇤
i ,

where ei , fi are orthonormal families in Ck , Cn, and �1 � · · · � �k � 0
are the (squares of the) singular values of X , or the eigenvalues of XX ⇤.

Using the isomorphism Mk⇥n ' Ck ⌦ Cn, X can be seen as a vector in a
tensor product x 2 Ck ⌦ Cn. The singular value decomposition of X
corresponds to the Schmidt decomposition of x

x =
kX

i=1

p
�i (x)ei ⌦ fi .

The numbers �i (x) are also eigenvalues of the reduced density matrix

XX ⇤ = [idk ⌦ Trn]Px =
kX

i=1

�i (x)eie
⇤
i .
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Entanglement of a vector

For a vector

x =
kX

i=1

p
�i (x)ei ⌦ fi ,

define H(x) = H(�(x)) = H(⇢) = �
P

i �i (x) log �i (x), the entropy of
entanglement of the bipartite pure state x .

Note that
1 The state x is separable, x = e ⌦ f , i↵. H(x) = 0.
2 The state x is maximally entangled, x = k�1/2

P
i ei ⌦ fi , i↵.

H(x) = log k .
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Recall that we are interested in computing

Hmin(F ) = min
x2Cd , kxk=1

H(F (Px)) = min
y2ImW , kyk=1

H([idk ⌦ Trn]Py )

= min
y2ImW , kyk=1

H(y).
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Entanglement of a subspace

For a subspace V ⇢ Ck ⌦ Cn, define

Hmin(V ) = min
y2V , kyk=1

H(y),

the minimal entanglement of vectors in V .

A subspace V is called entangled if Hmin(V ) > 0, i.e. if it does not
contain separable vectors x ⌦ y .

Proposition (Parthasarathy ’03)

If V is entangled, then dimV  (k � 1)(n � 1).

Example: Vent = {x : 8r ,
P

i+j=r xij = 0}.
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Random subspaces

Singular values of matrices / bipartite vectors
Minimal entanglement vs. MOE
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Singular values of vectors from a subspace

Our idea: Entropy is just a statistic, look at the set of all singular values
directly !

For a subspace V ⇢ Ck ⌦ Cn of dimension dimV = d , define the set
eigen-/singular values or Schmidt coe�cients

KV = {�(x) : x 2 V , kxk = 1}.

; Our goal is to understand KV .

The set KV is a compact subset of the ordered probability simplex
�#

k .

Local invariance: K(U1⌦U2)V = KV , for unitary matrices U1 2 U(k)
and U2 2 U(n).
Monotonicity: if V1 ⇢ V2, then KV1 ⇢ KV2 .

Recovering minimum entropies:

Hmin
p (F ) = Hmin

p (V ) = min
�2KV

Hp(�).
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Random subspaces

Singular values of matrices / bipartite vectors
Minimal entanglement vs. MOE
The set KV

Examples

The anti-symmetric subspace provides the (explicit) counter-example for
the additivity of the p-Rényi entropy.

Let k = n and put V = ⇤2(Ck)
The subspace V is almost half of the total space:
dimV = k(k � 1)/2.
Example of a vector in V :

V 3 x =
1p
2
(e ⌦ f � f ⌦ e).

Fact: singular values of vectors in V come in pairs.
Hence, the least entropy vector in V is as above, with e ? f and
H(x) = log 2.
Thus, Hmin(V ) = log 2 and one can show that

KV = {(�1,�1,�2,�2, . . .) 2 �k : �i � 0,
X

i

�i = 1/2}.
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Examples

V = span{G1,G2}, where G1,2 are 3⇥ 3 independent Ginibre random
matrices.
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Examples

V = span{I3,G}, where G is a 3⇥ 3 Ginibre random matrix.
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A big open problem

Find explicit examples of subspaces V with
1 large dimV ;
2 large Hmin(V ).
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Additivity problems in QIT
Entanglement of subspaces

Random subspaces

Statement of the main result and applications
Free probability - a review
Sketch of the proof

Random subspaces

We are interested in random subspaces (or random channels).

There is an uniform (or Haar) measure on the set of isometries
{W : Cd ! Ck ⌦ Cn : WW ⇤ = Id}: take a kn ⇥ kn Haar
distributed random unitary matrix U 2 U(kn) and take W to be the
restriction of U to the first d coordinates.

We call random quantum channels the probability distribution
obtained as the push-forward of this measure through the
Stinespring dilation.

A random subspace is the image of a random isometry, V = ImW .

Equivalently, V = span{U1, . . . ,Ud}, where Ui are the columns of a
Haar random unitary matrix U 2 U(kn).
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Stinespring dilation.

A random subspace is the image of a random isometry, V = ImW .

Equivalently, V = span{U1, . . . ,Ud}, where Ui are the columns of a
Haar random unitary matrix U 2 U(kn).
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Main result

For the rest of the talk, we consider the following asymptotic regime: k
fixed, n ! 1, and d ⇠ tkn, for a fixed parameter t 2 (0, 1).

Theorem (Belinschi, Collins, N. ’10)

For a sequence of uniformly distributed random subspaces Vn, the set
KVn of singular values of unit vectors from Vn converges (almost surely,
in the Hausdor↵ distance) to a deterministic, convex subset Kk,t of the
probability simplex �k

Kk,t := {� 2 �k | 8x 2 �k , h�, xi  kxk(t)}.
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Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed,
n ! 1, d ⇠ tkn, we have the following a.s. convergence result for
random quantum channels F (defined via random isometries
W : Cd ! Ck ⌦ Cn):

lim
n!1

Hmin(F ) = min
�2Kk,t

H(�).

It is not just a bound, the exact limit value is obtained.

Theorem (Belinschi, Collins, N. ’13)

The minimum entropy element of Kk,t is of the form (a, b, b, . . . , b). The
lowest dimension for which a violation of the additivity for Hmin can be
observed is k = 183. For large k, violations of size 1� " bits can be
obtained.
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Free Probability Theory

Invented by Voiculescu in the 80s to solve problems in operator algebras.

A non-commutative probability space (A, ⌧) is an algebra A with a
unital state ⌧ : A ! C. Elements a 2 A are called random variables.
Examples:

classical probability spaces (L1
(⌦,F ,P),E);

group algebras (CG , �e);
matrices (Mn, n�1Tr);
random matrices (Mn(L1

(⌦,F ,P)),E � n�1Tr).
Several notions of independence:

classical independence, implies commutativity of the radom variables;

free independence.

If a, b are freely independent random variables, the law of (a, b) can
be computed in terms of the laws of a and b. Freeness provides an
algorithm for computing joint moments in terms of marginals.
Example: if {a1, a2} and {b1, b2} are free, then

⌧(a1b1a2b2) = ⌧(a1a2)⌧(b1)⌧(b2) + ⌧(a1)⌧(a2)⌧(b1b2)

� ⌧(a1)⌧(b1)⌧(a2)⌧(b2).
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Asymptotic freeness of random matrices

Theorem (Voiculescu ’91)

Let (An) and (Bn) be sequences of n ⇥ n matrices such that An and Bn

converge in distribution (with respect to n�1Tr) for n ! 1.
Furthermore, let (Un) be a sequence of Haar unitary n ⇥ n random
matrices. Then, An and UnBnU

⇤
n are asymptotically free for n ! 1.

If An,Bn are matrices of size n, whose spectra converge towards µa, µb,
the spectrum of An + UnBnU

⇤
n converges to µa � µb; here, µa�µb is the

distribution of a+ b, where a, b 2 (A, ⌧) are free random variables
having distributions resp. µa, µb.

If An,Bn are matrices of size n such that An � 0, whose spectra converge

towards µa, µb, the spectrum of A1/2
n UnBnU

⇤
nA

1/2
n converges to µa ⇥ µb.
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Example: truncation of random matrices

Let Pn 2 Mn a projection of rank n/2; its eigenvalues are 0 and 1, with
multiplicity n/2. Hence, the distribution of Pn converges, when n ! 1,
to the Bernoulli probability measure 1

2�0 +
1
2�1.

Let Cn 2 Mn/2 be the top n/2⇥ n/2 corner of UnPnU
⇤
n , with Un a Haar

random unitary matrix. What is the distribution of Cn ? Up to zero
blocks, Cn = Qn(UnPnU

⇤
n )Qn, where Qn is the diagonal orthogonal

projection on the first n/2 coordinates of Cn. The distribution of Qn

converges to 1
2�0 +

1
2�1.

Free probability theory tells us that the distribution of Cn will converge to

(
1

2
�0 +

1

2
�1)⇥ (

1

2
�0 +

1

2
�1) =

1

⇡
p
x(1� x)

1[0,1](x)dx ,

which is the arcsine distribution.
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Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of
relative rank 1/2 and size n = 4000; in red, the density of the arcsine
distribution.
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The t-norm

Definition

For a positive integer k , embed Rk as a self-adjoint real subalgebra R of
a C⇤-ncps (A, ⌧), so that ⌧(x) = (x1 + · · ·+ xk)/k . Let pt be a
projection of rank t 2 (0, 1] in A, free from R. On the real vector space
Rk , we introduce the following norm, called the (t)-norm:

kxk(t) := kptxptk1,

where the vector x 2 Rk is identified with its image in R.

One can show that k · k(t) is indeed a norm, which is permutation
invariant.

When t > 1� 1/k , k · k(t) = k · k1 on Rk .

limt!0+ kxk(t) = k�1|
P

i xi |.
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Corners of randomly rotated projections

Theorem (Collins ’05)

In Cn, choose at random according to the Haar measure two independent
subspaces Vn and V 0

n of respective dimensions qn ⇠ sn and q0n ⇠ tn
where s, t 2 (0, 1]. Let Pn (resp. P 0

n) be the orthogonal projection onto
Vn (resp. V 0

n). Then,

lim
n

kPnP
0
nPnk1 = '(s, t) = sup supp((1� s)�0+ s�1)⇥ ((1� t)�0+ t�1),

with

'(s, t) =

(
s + t � 2st + 2

p
st(1� s)(1� t) if s + t < 1;

1 if s + t � 1.

Hence, we can compute

k 1, · · · , 1| {z }
j times

, 0, · · · , 0| {z }
k�j times

k(t) = '(
j

k
, t).
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Idea of the proof

A simpler question: what is the largest maximal singular value
maxx2V ,kxk=1 �1(x) of vectors from the subspace V ?

max
x2V ,kxk=1

�1(x) = max
x2V ,kxk=1

�1([idk ⌦ Trn]Px)

= max
x2V ,kxk=1

k[idk ⌦ Trn]Pxk

= max
x2V ,kxk=1

max
y2Ck ,kyk=1

Tr [([idk ⌦ Trn]Px) · Py ]

= max
x2V ,kxk=1

max
y2Ck ,kyk=1

Tr [Px · Py ⌦ In]

= max
y2Ck ,kyk=1

max
x2V ,kxk=1

Tr [Px · Py ⌦ In]

= max
y2Ck ,kyk=1

kPV · Py ⌦ Ink1.

Limit of kPV · Py ⌦ Ink1 for fixed y and random V ?
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Statement of the main result and applications
Free probability - a review
Sketch of the proof

The set Kk ,t and t-norms

Kk,t := {� 2 �k | 8x 2 �k , h�, xi  kxk(t)}.

Recall that

max
x2V ,kxk=1

�1(x) = max
y2Ck ,kyk=1

kPVPy ⌦ Ink1.

For fixed y , PV and Py ⌦ In are independent projectors of relative
ranks t and 1/k respectively.

Thus, kPV · Py ⌦ Ink1 ! '(t, 1/k) = k(1, 0, . . . , 0)k(t).
We can take the max over y at no cost, by considering a finite net
of y ’s, since k is fixed.

To get the full result lim supn!1 KVn ⇢ Kk,t , use h�, xi (for all
directions x) instead of �1.
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Thank you!

Collins, N. - Random quantum channels II: Entanglement of random
subspaces, Rényi entropy estimates and additivity problems.

Belinschi, Collins, N. - Laws of large numbers for eigenvectors and
eigenvalues associated to random subspaces in a tensor product.

Belinschi, Collins, N. - Almost one bit violation for the additivity of the
minimum output entropy.
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