Entanglement of generic quantum states

Ion Nechita
Technische Universität München
and
CNRS, LPT Toulouse
joint work with Teodor Banica (Cergy),
Maria Jivulescu and Nicoale Lupa (Timisoara)

Séminaire IRSAMC
Toulouse, May 12th, 2014

Talk outline

1. Entanglement in QIT
2. Random quantum states
3. Thresholds for entanglement criteria
4. Random matrices and free probability

Quantum states

- Closed quantum systems with d degrees of freedom are described by pure states

$$
|\psi\rangle \in \mathbb{C}^{d}, \quad\|\psi\|=1
$$

- Two quantum systems (Alice and Bob): $|\psi\rangle_{A B} \in \mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}$.
- A state $|\psi\rangle_{A B}$ is called separable or product if it can be written as a tensor product

$$
|\psi\rangle_{A B}=|x\rangle_{A} \otimes|y\rangle_{B},
$$

where $|x\rangle_{A} \in \mathbb{C}^{d_{A}}$ and $|y\rangle_{B} \in \mathbb{C}^{d_{B}}$.

- Non-separable states are called entangled.
- Examples with qubits $\left(d_{A}=d_{B}=2\right), \mathbb{C}^{2}=\operatorname{span}\{|0\rangle,|1\rangle\}$:
- Separable: $|0\rangle_{A} \otimes|0\rangle_{B},\left(|0\rangle_{A}+|1\rangle_{A}\right) \otimes|0\rangle_{B} / \sqrt{2}$;
- Entangled: the Bell state $\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right) / \sqrt{2}$

Pure entanglement

- We identify pure quantum states up to phases: for $\theta \in \mathbb{R}$,

$$
|\psi\rangle=\left|e^{i \theta} \psi\right\rangle
$$

- Actually, quantum states live in a projective space $\mathbb{C P}^{d-1}$. As projective varieties, all bi-partite quantum states have dimension $d_{A} d_{B}-1$, whereas product states have dimension $d_{A}+d_{B}-2$, which is strictly smaller \Longrightarrow a generic pure state is entangled!

Ball surface

 all states
White line separable states

Pure state entanglement is easy

- For pure quantum states, entanglement can be detected and measured.
- The standard measure of the entanglement of a pure state $x=|x\rangle_{A B}$ is the entropy of entanglement

$$
E(x)=-\sum_{i} s_{i}(x) \log s_{i}(x)
$$

where $s_{i}(x)$ are the Schmidt coefficients of x :

$$
|x\rangle=\sum_{i} \sqrt{s_{i}(x)}\left|e_{i}\right\rangle_{A} \otimes\left|f_{i}\right\rangle_{B}
$$

- For product states, $s(e \otimes f)=(1,0, \ldots, 0)$ and thus $E(e \otimes f)=0$. In general, $E(x)=0 \Longleftrightarrow x$ is product.
- For a Bell state $|\psi\rangle_{A B}=\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right) / \sqrt{2}$, one has $s(\psi)=(1 / 2,1 / 2)$ and thus $E(\psi)=\log 2$.
- In general, $E(x) \in\left[0, \log \min \left(d_{A}, d_{B}\right)\right]$.

Mixed states and entanglement

- Open quantum systems with d degrees of freedom are described by density matrices or mixed states

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0
$$

- Pure states are the particular case of rank one projectors:

$$
|\psi\rangle\langle\psi| \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)
$$

They are the extreme points of the convex body of density matrices.

- Two quantum systems: $\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right)$.
- A mixed state $\rho_{A B}$ is called separable if it can be written as a convex combination of product states

$$
\rho_{A B} \in \mathcal{S E P} \Longleftrightarrow \rho_{A B}=\sum_{i} t(i) \cdot \rho_{A}(i) \otimes \rho_{B}(i)
$$

with $t(i) \geqslant 0, \sum_{i} t(i)=1, \rho_{A, B}(i) \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A, B}}\right)$.

- Non-separable states are called entangled.

Mixed state entanglement is hard, but...

- Consider now a density matrix $\rho_{A B} \in \mathcal{M}_{d_{A} d_{B}}(\mathbb{C})$.
- Deciding if a given $\rho_{A B}$ is separable is NP-hard [Gurvitz].
- Detecting entanglement for general states is a difficult, central problem in QIT.
- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $\mathrm{id}_{k} \otimes f$ is positive for all $k \geqslant 1$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{B}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{B}}\right)$ is $C P$, then for every state $\rho_{A B}$ one has $\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \geqslant 0$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{B}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{B}}\right)$ is only positive, then for every separable state $\rho_{A B}$, one has $\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \geqslant 0$.
- Indeed,

$$
\left[\operatorname{id}_{d_{A}} \otimes f\right]\left(\sum_{i} t(i) \cdot \rho_{A}(i) \otimes \rho_{B}(i)\right)=\sum_{i} t(i) \cdot \rho_{A}(i) \otimes f\left(\rho_{B}(i)\right) \geqslant 0
$$

since each term is positive semidefinite.

Entanglement detection via positive, but not CP maps

- Positive, but not CP maps f yield entanglement criteria: given $\rho_{A B}$, if $\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \nsupseteq 0$, then $\rho_{A B}$ is entangled.
- The following converse holds: if, for all positive, but not CP maps $f,\left[\operatorname{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \geqslant 0$, then $\rho_{A B}$ is separable.
- The transposition map $\Theta(X)=X^{t}$ is positive, but not CP. Put

$$
\mathcal{P} \mathcal{P} \mathcal{T}=\left\{\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right) \mid\left[\operatorname{id}_{d_{A}} \otimes \Theta_{d_{B}}\right]\left(\rho_{A B}\right) \geqslant 0\right\} .
$$

- The reduction map $R(X)=\operatorname{Tr}(X) \cdot I-X$ is positive, but not CP. Put

$$
\mathcal{R E D}=\left\{\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right) \mid\left[\operatorname{id}_{d_{A}} \otimes R_{d_{B}}\right]\left(\rho_{A B}\right) \geqslant 0\right\}
$$

- Both criteria above detect pure entanglement: for $f=\Theta, R$,

$$
\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(|\psi\rangle_{A B}\langle\psi|\right) \geqslant 0 \Longleftrightarrow|\psi\rangle \text { is entangled. }
$$

The PPT criterion at work

- Recall the Bell state $\rho_{12}=|\psi\rangle\langle\psi|$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

- Written as a matrix in $\mathcal{M}_{2 \cdot 2}^{1,+}(\mathbb{C})$

$$
\rho_{A B}=\frac{1}{2}\left(\begin{array}{ll|ll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

- Partial transposition: transpose each block $B_{i j}$:

$$
\left[\mathrm{id}_{2} \otimes \Theta\right]\left(\rho_{A B}\right)=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- This matrix is no longer positive \Longrightarrow the state is entangled.

The problem we consider

$$
\begin{aligned}
& \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A} d_{B}}\right)=\{\rho \mid \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0\} ; \\
& \mathcal{S E P}=\left\{\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)\right\} ; \\
& \mathcal{P P} \mathcal{T}=\left\{\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right) \mid\left[\operatorname{id}_{d_{A}} \otimes \Theta_{d_{B}}\right]\left(\rho_{A B}\right) \geqslant 0\right\} ; \\
& \mathcal{R E D}=\left\{\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right) \mid\left[\operatorname{id}_{d_{A}} \otimes R_{d_{B}}\right]\left(\rho_{A B}\right) \geqslant 0\right\} .
\end{aligned}
$$

Problem

Compare the convex sets

$$
\mathcal{S E P} \subset \mathcal{P P \mathcal { T }} \subset \mathcal{R E D} \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A} d_{B}}\right) .
$$

- For $\left(d_{A}, d_{B}\right) \in\{(2,2),(2,3),(3,2)\}$ we have $\mathcal{S E P}=\mathcal{P P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P P T}$ is strict.
- For $d_{B}=2$ we have $\mathcal{P P} \mathcal{T}=\mathcal{R E D}$. In other dimensions, the inclusion $\mathcal{P P \mathcal { T }} \subset \mathcal{R E D}$ is strict.

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- We want to measure volumes of subsets of $\mathcal{M}_{d}^{1,+}(\mathbb{C})$, with $d=d_{A} d_{B}$.
- A first idea would be to use the Lebesgue measure (see $\mathcal{M}_{d}^{1,+}(\mathbb{C})$ as a compact subset of $\mathcal{M}_{d}(\mathbb{C})$).
- Another idea: open quantum systems: assume your system Hilbert space $\mathbb{C}^{d}=\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}$ is coupled to an environment $\mathbb{C}^{d_{C}}$.
- On the tri-partite system $\mathcal{H}_{A B C}=\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}} \otimes \mathbb{C}^{d_{C}}$, consider a random pure state $|\psi\rangle_{A B C}$, i.e. a uniform, random point on the unit sphere of the total Hilbert space $\mathcal{H}_{A B C}$.
- Trace out the environment $\mathbb{C}^{d} c$ to get a random density matrix

$$
\rho_{A B}=\operatorname{Tr}_{C}|\psi\rangle\langle\psi| .
$$

- These probability measures have been introduced by Zyczkowski and Sommers and they are called the induced measures of parameters $d=d_{A} d_{B}$ and $s=d_{C}$; we denote them by $\mu_{d, s}$.
- Remarkably, the Lebesgue measure is obtained for $d=s$.

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- Here's an equivalent way of defining the measures $\mu_{d, s}$, in the spirit of Random Matrix Theory.
- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}}
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is precisely $\mu_{d, s}$.
- The measure $\mu_{d, s}$ is unitarily invariant: if $\rho \sim \mu_{d, s}$ and U is a random unitary matrix, independent from ρ (e.g. U is constant), then $U \rho U^{*} \sim \mu_{d, s}$.

Eigenvalues for induced measures

Figure: Induced measure eigenvalue distribution for $(d=3, s=3)$, $(d=3, s=5),(d=3, s=7)$ and $(d=3, s=10)$.

Volume of convex sets under the induced measures

- Fix d, and let $C \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ a convex body, with $\mathrm{I}_{d} / d \in C^{\circ}$. Then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}(C)=1
$$

In other words, the eigenvalues of a random density matrix $\rho_{A B} \sim \mu_{d, s}$ with d fixed and $s \rightarrow \infty$ are close to $1 / d$.

Definition

A pair of functions $s_{0}(d), s_{1}(d)$ are called a threshold for a family of convex sets $\left(C_{d}\right)_{d}$ if both conditions below hold

- If $s(d) \lesssim s_{0}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(C_{d}\right)=0
$$

- If $s(d) \gtrsim s_{1}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(C_{d}\right)=1
$$

Thresholds for separability criteria

- In the table below, the threshold functions $s_{0,1}(d)$ are of the form $s_{0}(d)=s_{1}(d)=c d$; we put $r=\min \left(d_{A}, d_{B}\right)$.

Crit. \ Regime	$d_{A}=d_{B} \rightarrow \infty$	$d_{B} \rightarrow \infty$	$d_{A} \rightarrow \infty$
$\mathcal{S E P}$	$\infty,\left(\sim r \log ^{q} r\right)$	$?$	$?$
$\mathcal{P} \mathcal{P} \mathcal{T}$	4	$2+2 \sqrt{1-\frac{1}{r^{2}}}$	$2+2 \sqrt{1-\frac{1}{r^{2}}}$
$\mathcal{R E D}$	0	0	$\frac{(1+\sqrt{r+1})^{2}}{r(r-1)}$

- The results in the table above can be interpreted in the following way: for a convex set C having a threshold c, a random density matrix $\rho_{A B} \sim \mu_{d, s}$ will
- with high probability, belong to C if $s / d>c$
- with high probability, belong to $\mathcal{M}_{d}^{1,+}(\mathbb{C}) \backslash C$, if $s / d<c$.
- In other words, the threshold will tell you how large an environment one needs to trace out, in order to obtain random density matrices which are, with high probability, $\mathcal{S E P}, \mathcal{P P} \mathcal{T}$ or $\mathcal{R E D}$.

Proof elements

- The main task is to compute the probability that some random matrices are positive semidefinite or not.
- This is a very difficult computation to perform at fixed Hilbert space dimension; the asymptotic theory is much easier (one or both $\left.d_{A, B} \rightarrow \infty\right)$.
- To a selfadjoint matrix $X \in \mathcal{M}_{d}(\mathbb{C})$, with spectrum $x=\left(x_{1}, \ldots, x_{d}\right)$, associate its empirical spectral distribution

$$
\mu_{X}=\frac{1}{d} \sum_{i=1}^{d} \delta_{x_{i}}
$$

- The probability measure μ_{X} contains all the information about the spectrum of X.
- A sequence of matrices X_{d} converges in moments towards a probability measure μ if, for all integer $p \geqslant 1$,

$$
\lim _{d \rightarrow \infty} \frac{1}{d} \operatorname{Tr}\left(X_{d}^{p}\right)=\lim _{d \rightarrow \infty} \int x^{p} d \mu_{X_{d}}(x)=\int x^{p} d \mu(x)
$$

Wishart matrices

Theorem (Marcenko-Pastur)

Let W be a complex Wishart matrix of parameters $(d, c d)$. Then, almost surely with $d \rightarrow \infty$, the empirical spectral distribution of $W_{A B} /(c d)$ converges in moments to a free Poisson distribution π_{c} of parameter c.

Figure: Eigenvalue distribution for Wishart matrices. In blue, the density of theoretical limiting distribution, π_{c}. In the three pictures, $d=1000$, and $c=1,2,10$.

Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters $(d n, d m)$. Then, almost surely with $d \rightarrow \infty$, the empirical spectral distribution of $m[\mathrm{id} \otimes \Theta]\left(W_{A B} /(d m)\right)$ converges in moments to a free difference of free Poisson distributions of respective parameters $m(n \pm 1) / 2$.

Corollary

The limiting measure in the previous theorem has positive support iff

$$
n \leqslant \frac{m}{4}+\frac{1}{m} \text { and } m \geqslant 2
$$

Reduction of a Wishart matrix

Theorem (Jivulescu, Lupa, N.)
Let W be a complex Wishart matrix of parameters (dn, cdn).
Then, almost surely with $d \rightarrow \infty$, the empirical spectral distribution of $[\mathrm{id} \otimes R]\left(W_{A B} / n\right)$ converges in moments to a compound free Poisson distribution $\pi_{\nu_{n, c}}$ of parameter $\nu_{n, c}=c \delta_{1-n}+c\left(n^{2}-1\right) \delta_{1}$.

Corollary

The limiting measure in the previous theorem has positive support iff

$$
c<\frac{(1+\sqrt{n+1})^{2}}{n(n-1)}
$$

The free additive convolution of probability measures

- Given two self-adjoint matrices X, Y with spectra x, y, what is the spectrum of $X+Y$?
- In general, a very difficult problem, the answer depends on the relative position of the eigenspaces of X and Y (Horn problem).
- When the size of X, Y is large, and the eigenvectors are in general position, free probability theory [Voiculescu, '80s] gives the answer.
- Free additive convolution (or free sum) of two compactly supported probability distributions μ, ν : sample $x, y \in \mathbb{R}^{n}$ from μ, ν and consider

$$
Z=\operatorname{diag}(x)+U \operatorname{diag}(y) U^{*}
$$

where U is a $d \times d$ Haar unitary random matrix. Then, as $d \rightarrow \infty$, the empirical eigenvalue distribution of Z converges to a probability measure denoted by $\mu \boxplus \nu$.

- The operation \boxplus is called free additive convolution, and it can be computed via the so-called \mathcal{R}-transform (a kind of Fourier transform in the free world)

The free Poisson distribution

- The free Poisson distribution of parameter $c>0$:

$$
\pi_{c}=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}(x) d x
$$

- The measure π_{c} is the limit eigenvalue distribution of a rescaled density matrix from the induced ensemble $\rho_{d, c d}$ (d large).
- One can show a free Poisson Central Limit Theorem:

$$
\lim _{n \rightarrow \infty}\left[\left(1-\frac{c}{n}\right) \delta_{0}+\frac{c}{n} \delta_{1}\right]^{\boxplus n}=\pi_{c} .
$$

- The free compound Poisson measure of parameter ν is defined via a generalized free Poisson central limit theorem

$$
\lim _{n \rightarrow \infty}\left[\left(1-\frac{\nu(\mathbb{R})}{n}\right) \delta_{0}+\frac{1}{n} \nu\right]^{\boxplus n}=: \pi_{\nu}
$$

- Its support and probability density are much harder to compute.

Thank you !

1. Banica, N. - Asymptotic eigenvalue distributions of block-transposed Wishart matrices - J. Theoret. Probab. 26 (2013), 855-869
2. Jivulescu, Lupa, N. - On the reduction criterion for random quantum states - arXiv:1402.4292
