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Entanglement in Quantum Information Theory

I Quantum states with n degrees of freedom are described by density
matrices

ρ ∈M1,+
n = End1,+(Cn); Trρ = 1 and ρ ≥ 0

I Two quantum systems: ρ12 ∈ End1,+(Cm ⊗ Cn) = M1,+
mn

I A state ρ12 is called separable if it can be written as a convex
combination of product states

ρ12 ∈ SEP ⇐⇒ ρ12 =
∑
i

tiρ1(i)⊗ ρ2(i),

where ti ≥ 0,
∑

i ti = 1, ρ1(i) ∈M1,+
m , ρ2(i) ∈M1,+

n

I Equivalently, SEP = conv
[
M1,+

m ⊗M1,+
n

]
I Non-separable states are called entangled
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More on entanglement - pure states

I Separable rank one (pure) states ρ12 = Pe⊗f = Pe ⊗ Pf .

I Bell state or maximally entangled state ρ12 = PBell, where

C2 ⊗ C2 3 Bell =
1√
2

(e1 ⊗ f1 + e2 ⊗ f2) 6= x ⊗ y .

I For rank one quantum states, entanglement can be detected and
quantified by the entropy of entanglement

Eent(Px) = H(s(x)) = −
min(m,n)∑

i=1

si (x) log si (x),

where x ∈ Cm ⊗Cn ∼= Mm×n(C) is seen as a m× n matrix and si (x)
are its singular values.

I A pure state x ∈ Cm ⊗ Cn is separable ⇐⇒ Eent(Px) = 0.
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Separability criteria

I Let A be a C∗ algebra. A map f : Mn → A is called
I positive if A ≥ 0 =⇒ f (A) ≥ 0;
I completely positive (CP) if idk ⊗ f is positive for all k ≥ 1 (k = n is

enough).

I Let f : Mn → A be a completely positive map. Then, for every state
ρ12 ∈M1,+

mn , one has [idm ⊗ f ](ρ12) ≥ 0.

I Let f : Mn → A be a positive map. Then, for every separable state
ρ12 ∈M1,+

mn , one has [idm ⊗ f ](ρ12) ≥ 0.
I ρ12 separable =⇒ ρ12 =

∑
i tiρ1(i)⊗ ρ2(i).

I [idm ⊗ f ](ρ12) =
∑

i tiρ1(i)⊗ f (ρ2(i)).
I For all i , ([ρ2(i)) ≥ 0, so [idm ⊗ f ](ρ12) ≥ 0.

I Hence, positive, but not CP maps f provide sufficient entanglement
criteria: if [idm ⊗ f ](ρ12) � 0, then ρ12 is entangled.

I Moreover, if [idm ⊗ f ](ρ12) ≥ 0 for all positive, but not CP maps
f : Mn →Mm, then ρ12 is separable.
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Positive Partial Transpose matrices

I The transposition map t : A 7→ At is positive, but not CP. Define the
convex set

PPT = {ρ12 ∈M1,+
mn | [idm ⊗ tn](ρ12) ≥ 0}.

I For (m, n) ∈ {(2, 2), (2, 3)} we have SEP = PPT . In other
dimensions, the inclusion SEP ⊂ PPT is strict.

I Low dimensions are special because every positive map
f : M2 →M2/3 is decomposable:

f = g1 + g2 ◦ t,

with g1,2 completely positive. Among all decomposable maps, the
transposition criterion is the strongest.
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The Choi matrix of a map

I For any n, recall that the maximally entangled state is the
orthogonal projection onto

Cn ⊗ Cn 3 Bell =
1√
n

n∑
i=1

ei ⊗ ei .

I To any map f : Mn → A, associate its Choi matrix

Cf = [idn ⊗ f ](PBell) ∈Mn ⊗A.

I Equivalently, if Eij are the matrix units in Mn, then

Cf =
n∑

i,j=1

Eij ⊗ f (Eij).

Theorem (Choi ’72)
A map f : Mn → A is CP iff its Choi matrix Cf is positive.
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The Choi-Jamio lkowski isomorphism

I Recall (from now on A = Md)

Cf = [idn ⊗ f ](PBell) =
n∑

i,j=1

Eij ⊗ f (Eij) ∈Mn ⊗Md .

I The map f 7→ Cf is called the Choi-Jamio lkowski isomorphism.

I It sends:

1. All linear maps to all operators;
2. Hermicity preserving maps to hermitian operators;
3. Entanglement breaking maps to separable quantum states;
4. Unital maps to operators with unit left partial trace

([Tr⊗ id]Cf = Id);
5. Trace preserving maps to operators with unit left partial trace

([id⊗ Tr]Cf = In).
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Intermediate positivity notions

I A map f : Mn → A is called k-positive if idk ⊗ f is positive.

I A matrix C ∈Mnd is called k-positive if 〈x ,Cx〉 ≥ 0 for all vectors
x ∈ Cn ⊗ Cd of rank at most k.

I In particular, C is 1-positive (or block-positive) if

∀x ∈ Cn,∀y ∈ Cd 〈x ⊗ y ,C · x ⊗ y〉 ≥ 0.

Theorem
A map f : Mn → A is k-positive iff its Choi matrix Cf is k-positive. In
particular, f is positive iff Cf is block-positive.
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Random Choi matrices

I Let µ be a compactly supported probability measure on R. For each
d we introduce a real valued diagonal matrix Xd of Mn ⊗Md whose
eigenvalue counting distribution converges to µ and whose extremal
eigenvalues converge to the respective extrema of the support of µ.

I Let Ud be a random Haar unitary matrix in the unitary group Und ,

and f
(d)
µ : Mn →Md be the map whose Choi matrix is UdXdU∗d .

Theorem
Under the above assumptions, if supp(µ�n/k) ⊂ (0,∞) then, almost

surely as d →∞, the map f
(d)
µ is k-positive. On the other hand, if

supp(µ�n/k) ∩ (−∞, 0) 6= ∅ then, almost surely as d →∞, f
(d)
µ is not

k-positive.
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Proof ingredients

Let f
(d)
µ : Mn →Md be the map whose Choi matrix is UdXdU∗d .

Theorem
If supp(µ�n/k) ⊂ (0,∞) then, almost surely as d →∞, the map f

(d)
µ is

k-positive. If supp(µ�n/k) ∩ (−∞, 0) 6= ∅ then, almost surely as d →∞,

f
(d)
µ is not k-positive.

Proposition
A map f is k-positive iff for any self-adjoint projection P ∈Mn of rank k,
the operator (P ⊗ Id)Cf (P ⊗ Id) is positive.

Proposition (Nica and Speicher)
Let x , p be free elements in a ncps (M, τ) and assume that p is a
selfadjoint projection of rank τ(p) = 1/t (t ≥ 1) and that x has
distribution µ. Then, the distribution of t−1pxp inside the contracted
ncps (pMp, τ(p · p)) is µ�t
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Maps associated to probability measures

I Let µ be a compactly supported probability measure on R.

I The vN algebra L∞(R, µ), endowed with the expectation trace E is
a non-commutative probability space. Let X ∈ L∞(R, µ) be the
identity map x 7→ x .

I Consider the vN ncps free product
(M̃, tr ∗ E) = (Mn, tr) ∗ (L∞(R, µ),E).

I Finally, let (M, τ) be the contracted vN ncps M = E11M̃E11.

I Define

fµ : Mn →M
Eij 7→ E1iXEj1

Theorem
The map fµ is k-positive iff supp(µ�n/k) ⊆ [0,∞).
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Example: semicircular measures

I Let sa,σ be the semi-circle distribution of mean a and variance σ2,
having support [a− 2σ, a + 2σ].

I We have s
�n/k
a,σ = s

an/k,σ
√

n/k
, with support

supp(s
�n/k
a,σ ) = [an/k − 2σ

√
n/k, an/k + 2σ

√
n/k].

Theorem
Let n be an integer and a, σ positive parameters. The map
fa,σ : Mn →M associated to a semi-circular distribution sa,σ is k-positive
iff k ≤ 4nσ2/a2. In particular, for any n and any k < n, there exist
parameters a, σ > 0 such that the above map is k-positive but not
(k + 1)-positive.
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Example: semicircular measures, t = n/k
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Semicircular measures vs. PPT

I We show next that the maps fa,σ detect some PPT and entangled
states. Importantly, the states detected are correlated to the Choi
matrix defining fa,σ

I Consider (normalized) i.i.d. GUE matrices Sij ,S
′
ij ∈Msa

d and define,

for α ∈ (−1, 1), the selfadjoint test matrix Xd ∈Mn ⊗Md , with the
following blocks:

I diagonal blocks Xd(i , i) = 2
√

2
√
nId − α

√
2Sii for 1 ≤ i ≤ n;

I off-diagonal blocks Xd(i , j) = α(−S̄ij +
√
−1S̄ ′

ij), for 1 ≤ i < j ≤ n.

I We have Xd =
√

2n(2Idn + αYd), where Yd ∈Msa
dn is a GUE.

I Almost surely, as d →∞, Xd is positive semidefinite and PPT (since
the GUE ensemble is invariant under partial transposition)

I Fix a small ε > 0 and let fd : Mn →Md be the linear map whose
Choi matrix Cd has blocks

I diagonal blocks Cd(i , i) = (2
√

2 + ε)Id +
√

2Sii for 1 ≤ i ≤ n;
I off-diagonal blocks Cd(i , j) = Sij +

√
−1S ′

ij , for 1 ≤ i < j ≤ n.

I Using our main result, we check easily that, almost surely as
d →∞, the maps fd are positive (1-positive).
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Semicircular measures vs. PPT

I Recall the maximally entangled state Belld ∈ Cd ⊗ Cd

Belld =
1√
d

d∑
i=1

ei ⊗ ei ,

for some orthonormal basis {ei} of Cd .

I A direct computation shows that, almost surely as d →∞,

〈Belld , [fd⊗ idd ](Xd) ·Belld〉 ∼ n(2
√

2n(2
√

2+ε)−2α)−2n(n−1)α.

Theorem
Given α ∈ (−1, 1), there exists ε > 0 small enough, such that, as soon as
nα2 > 16, the matrix [fd ⊗ idd ](Xd) is almost surely not positive
semidefinite, as d →∞, and thus Xd is entangled and PPT. In
particular, the maps fd are indecomposable.
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