Positive and completely positive maps via free additive powers of probability measures

Ion Nechita

TU München and CNRS
joint work in progress with Benoit Collins (Kyoto) and Patrick Hayden (Stanford)

Krakow, July 5th 2014

Quantum Information Theory, Quantum Computing

- New branches of \{Physics, Computer Science, Mathematics\} dealing with quantum information
- Quantum information = information held in a quantum physical system
- Basic idea: replace $\{0,1\}$ with $\mathbb{C}^{2}=\operatorname{span}\{|0\rangle,|1\rangle\}$, the state space of a two-level quantum system (qubit)
- Two qubits: $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \leadsto$ entanglement
- Shows great promise:

1. Secure transmission of data, protocol security guaranteed by the laws of nature
2. Fast integer factorization \leadsto current algorithms (RSA, etc) obsolete
3. Fast database search
4. Fast simulation of quantum systems

Entanglement in Quantum Information Theory

- Quantum states with n degrees of freedom are described by density matrices

$$
\rho \in \mathbb{M}_{n}^{1,+}=\operatorname{End}^{1,+}\left(\mathbb{C}^{n}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0
$$

- Two quantum systems: $\rho_{12} \in \operatorname{End}^{1,+}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{n}\right)=\mathbb{M}_{m n}^{1,+}$
- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)
$$

where $t_{i} \geq 0, \sum_{i} t_{i}=1, \rho_{1}(i) \in \mathbb{M}_{m}^{1,+}, \rho_{2}(i) \in \mathbb{M}_{n}^{1,+}$

- Equivalently, $\mathcal{S E P}=\operatorname{conv}\left[\mathbb{M}_{m}^{1,+} \otimes \mathbb{M}_{n}^{1,+}\right]$
- Non-separable states are called entangled

More on entanglement - pure states

- Separable rank one (pure) states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.
- Bell state or maximally entangled state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right) \neq x \otimes y
$$

- For rank one quantum states, entanglement can be detected and quantified by the entropy of entanglement

$$
E_{\mathrm{ent}}\left(P_{x}\right)=H(s(x))=-\sum_{i=1}^{\min (m, n)} s_{i}(x) \log s_{i}(x),
$$

where $x \in \mathbb{C}^{m} \otimes \mathbb{C}^{n} \cong \mathbb{M}_{m \times n}(\mathbb{C})$ is seen as a $m \times n$ matrix and $s_{i}(x)$ are its singular values.

- A pure state $x \in \mathbb{C}^{m} \otimes \mathbb{C}^{n}$ is separable $\Longleftrightarrow E_{\text {ent }}\left(P_{x}\right)=0$.

Separability criteria

- Let \mathcal{A} be a C^{*} algebra. A map $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called
- positive if $A \geq 0 \Longrightarrow f(A) \geq 0$;
- completely positive (CP) if $\operatorname{id}_{k} \otimes f$ is positive for all $k \geq 1$ ($k=n$ is enough).
- Let $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a completely positive map. Then, for every state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \geq 0$.
- Let $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ be a positive map. Then, for every separable state $\rho_{12} \in \mathbb{M}_{m n}^{1,+}$, one has $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \geq 0$.
- ρ_{12} separable $\Longrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)$.
- $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right)=\sum_{i} t_{i} \rho_{1}(i) \otimes f\left(\rho_{2}(i)\right)$.
- For all i, $\left(\left[\rho_{2}(i)\right) \geq 0\right.$, so $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \geq 0$.
- Hence, positive, but not CP maps f provide sufficient entanglement criteria: if $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \nsupseteq 0$, then ρ_{12} is entangled.
- Moreover, if $\left[\mathrm{id}_{m} \otimes f\right]\left(\rho_{12}\right) \geq 0$ for all positive, but not CP maps $f: \mathbb{M}_{n} \rightarrow \mathbb{M}_{m}$, then ρ_{12} is separable.

Positive Partial Transpose matrices

- The transposition map $\mathrm{t}: A \mapsto A^{t}$ is positive, but not CP. Define the convex set

$$
\mathcal{P} \mathcal{P} \mathcal{T}=\left\{\rho_{12} \in \mathbb{M}_{m n}^{1,+} \mid\left[\operatorname{id}_{m} \otimes \mathrm{t}_{n}\right]\left(\rho_{12}\right) \geq 0\right\} .
$$

- For $(m, n) \in\{(2,2),(2,3)\}$ we have $\mathcal{S E P}=\mathcal{P P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P P T}$ is strict.
- Low dimensions are special because every positive map $f: \mathbb{M}_{2} \rightarrow \mathbb{M}_{2 / 3}$ is decomposable:

$$
f=g_{1}+g_{2} \circ t
$$

with $g_{1,2}$ completely positive. Among all decomposable maps, the transposition criterion is the strongest.

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

- Written as a matrix in $\mathbb{M}_{2 \cdot 2}^{1,+}$

$$
\rho_{12}=\frac{1}{2}\left(\begin{array}{ll|ll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

- Partial transposition: transpose each block $B_{i j}$:

$$
\rho_{12}^{\ulcorner }=\left[\mathrm{id}_{2} \otimes \mathrm{t}_{2}\right]\left(\rho_{12}\right)=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

- This matrix is no longer positive \Longrightarrow the state is entangled.

The Choi matrix of a map

- For any n, recall that the maximally entangled state is the orthogonal projection onto

$$
\mathbb{C}^{n} \otimes \mathbb{C}^{n} \ni \text { Bell }=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e_{i} \otimes e_{i}
$$

- To any map $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$, associate its Choi matrix

$$
C_{f}=\left[\mathrm{id}_{n} \otimes f\right]\left(P_{\text {Bell }) \in \mathbb{M}_{n} \otimes \mathcal{A}}\right.
$$

- Equivalently, if $E_{i j}$ are the matrix units in \mathbb{M}_{n}, then

$$
C_{f}=\sum_{i, j=1}^{n} E_{i j} \otimes f\left(E_{i j}\right)
$$

Theorem (Choi '72)
A map $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is $C P$ iff its Choi matrix C_{f} is positive.

The Choi-Jamiołkowski isomorphism

- Recall (from now on $\mathcal{A}=\mathbb{M}_{d}$)

$$
C_{f}=\left[\mathrm{id}_{n} \otimes f\right]\left(P_{\text {Bell }}\right)=\sum_{i, j=1}^{n} E_{i j} \otimes f\left(E_{i j}\right) \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}
$$

- The map $f \mapsto C_{f}$ is called the Choi-Jamiołkowski isomorphism.
- It sends:

1. All linear maps to all operators;
2. Hermicity preserving maps to hermitian operators;
3. Entanglement breaking maps to separable quantum states;
4. Unital maps to operators with unit left partial trace $\left([\operatorname{Tr} \otimes \mathrm{id}] C_{f}=\mathrm{I}_{d}\right) ;$
5. Trace preserving maps to operators with unit left partial trace $\left([\operatorname{id} \otimes \operatorname{Tr}] C_{f}=\mathrm{I}_{n}\right)$.

Intermediate positivity notions

- A map $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is called k-positive if $\mathrm{id}_{k} \otimes f$ is positive.
- A matrix $C \in \mathbb{M}_{n d}$ is called k-positive if $\langle x, C x\rangle \geq 0$ for all vectors $x \in \mathbb{C}^{n} \otimes \mathbb{C}^{d}$ of rank at most k.
- In particular, C is 1-positive (or block-positive) if

$$
\forall x \in \mathbb{C}^{n}, \forall y \in \mathbb{C}^{d} \quad\langle x \otimes y, C \cdot x \otimes y\rangle \geq 0
$$

Theorem

A map $f: \mathbb{M}_{n} \rightarrow \mathcal{A}$ is k-positive iff its Choi matrix C_{f} is k-positive. In particular, f is positive iff C_{f} is block-positive.

Random Choi matrices

- Let μ be a compactly supported probability measure on \mathbb{R}. For each d we introduce a real valued diagonal matrix X_{d} of $\mathbb{M}_{n} \otimes \mathbb{M}_{d}$ whose eigenvalue counting distribution converges to μ and whose extremal eigenvalues converge to the respective extrema of the support of μ.
- Let U_{d} be a random Haar unitary matrix in the unitary group $\mathcal{U}_{n d}$, and $f_{\mu}^{(d)}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{d}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.

Theorem
Under the above assumptions, if $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \subset(0, \infty)$ then, almost surely as $d \rightarrow \infty$, the map $f_{\mu}^{(d)}$ is k-positive. On the other hand, if $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \cap(-\infty, 0) \neq \emptyset$ then, almost surely as $d \rightarrow \infty, f_{\mu}^{(d)}$ is not k-positive.

Proof ingredients

Let $f_{\mu}^{(d)}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{d}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.

Theorem

If $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \subset(0, \infty)$ then, almost surely as $d \rightarrow \infty$, the map $f_{\mu}^{(d)}$ is k-positive. If $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \cap(-\infty, 0) \neq \emptyset$ then, almost surely as $d \rightarrow \infty$, $f_{\mu}^{(d)}$ is not k-positive.

Proposition

A map f is k-positive iff for any self-adjoint projection $P \in \mathbb{M}_{n}$ of rank k, the operator $\left(P \otimes I_{d}\right) C_{f}\left(P \otimes I_{d}\right)$ is positive.

Proposition (Nica and Speicher)

Let x, p be free elements in a ncps (\mathcal{M}, τ) and assume that p is a selfadjoint projection of rank $\tau(p)=1 / t(t \geq 1)$ and that x has distribution μ. Then, the distribution of $t^{-1} p \times p$ inside the contracted $n c p s(p \mathcal{M} p, \tau(p \cdot p))$ is $\mu^{\boxplus t}$

Maps associated to probability measures

- Let μ be a compactly supported probability measure on \mathbb{R}.
- The vN algebra $L^{\infty}(\mathbb{R}, \mu)$, endowed with the expectation trace \mathbb{E} is a non-commutative probability space. Let $X \in L^{\infty}(\mathbb{R}, \mu)$ be the identity $\operatorname{map} x \mapsto x$.
- Consider the vN ncps free product

$$
(\tilde{\mathcal{M}}, \operatorname{tr} * \mathbb{E})=\left(\mathbb{M}_{n}, \operatorname{tr}\right) *\left(L^{\infty}(\mathbb{R}, \mu), \mathbb{E}\right)
$$

- Finally, let (\mathcal{M}, τ) be the contracted vN ncps $\mathcal{M}=E_{11} \tilde{\mathcal{M}} E_{11}$.
- Define

$$
\begin{aligned}
f_{\mu}: \mathbb{M}_{n} & \rightarrow \mathcal{M} \\
E_{i j} & \mapsto E_{1 i} X E_{j 1}
\end{aligned}
$$

Theorem
The map f_{μ} is k-positive iff $\operatorname{supp}\left(\mu^{\boxplus n / k}\right) \subseteq[0, \infty)$.

Example: semicircular measures

- Let $s_{a, \sigma}$ be the semi-circle distribution of mean a and variance σ^{2}, having support [a-2 $a, a+2 \sigma$].
- We have $s_{a, \sigma}^{\boxplus n / k}=s_{a n / k, \sigma \sqrt{n / k}}$, with support
$\operatorname{supp}\left(s_{\mathrm{a}, \sigma}^{\boxplus n / k}\right)=[a n / k-2 \sigma \sqrt{n / k}, a n / k+2 \sigma \sqrt{n / k}]$.
Theorem
Let n be an integer and a, σ positive parameters. The map
$f_{a, \sigma}: \mathbb{M}_{n} \rightarrow \mathcal{M}$ associated to a semi-circular distribution $s_{a, \sigma}$ is k-positive iff $k \leq 4 n \sigma^{2} / a^{2}$. In particular, for any n and any $k<n$, there exist parameters $a, \sigma>0$ such that the above map is k-positive but not $(k+1)$-positive.

Semicircular measures vs. PPT

- We show next that the maps $f_{a, \sigma}$ detect some PPT and entangled states. Importantly, the states detected are correlated to the Choi matrix defining $f_{a, \sigma}$
- Consider (normalized) i.i.d. GUE matrices $S_{i j}, S_{i j}^{\prime} \in \mathbb{M}_{d}^{\text {sa }}$ and define, for $\alpha \in(-1,1)$, the selfadjoint test matrix $X_{d} \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}$, with the following blocks:
- diagonal blocks $X_{d}(i, i)=2 \sqrt{2} \sqrt{n} I_{d}-\alpha \sqrt{2} S_{i i}$ for $1 \leq i \leq n$;
- off-diagonal blocks $X_{d}(i, j)=\alpha\left(-\bar{S}_{i j}+\sqrt{-1} \bar{S}_{i j}^{\prime}\right)$, for $1 \leq i<j \leq n$.
- We have $X_{d}=\sqrt{2 n}\left(2 I_{d n}+\alpha Y_{d}\right)$, where $Y_{d} \in \mathbb{M}_{d n}^{s a}$ is a GUE.
- Almost surely, as $d \rightarrow \infty, X_{d}$ is positive semidefinite and PPT (since the GUE ensemble is invariant under partial transposition)
- Fix a small $\varepsilon>0$ and let $f_{d}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{d}$ be the linear map whose Choi matrix C_{d} has blocks
- diagonal blocks $C_{d}(i, i)=(2 \sqrt{2}+\varepsilon) \mathrm{I}_{d}+\sqrt{2} S_{i i}$ for $1 \leq i \leq n$;
- off-diagonal blocks $C_{d}(i, j)=S_{i j}+\sqrt{-1} S_{i j}^{\prime}$, for $1 \leq i<j \leq n$.
- Using our main result, we check easily that, almost surely as $d \rightarrow \infty$, the maps f_{d} are positive (1-positive).

Semicircular measures vs. PPT

- Recall the maximally entangled state $\mathrm{Bell}_{d} \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$

$$
\mathrm{Bell}_{d}=\frac{1}{\sqrt{d}} \sum_{i=1}^{d} e_{i} \otimes e_{i},
$$

for some orthonormal basis $\left\{e_{i}\right\}$ of \mathbb{C}^{d}.

- A direct computation shows that, almost surely as $d \rightarrow \infty$,

$$
\left\langle\operatorname{Bell}_{d},\left[f_{d} \otimes \operatorname{id}_{d}\right]\left(X_{d}\right) \cdot \operatorname{Bell}_{d}\right\rangle \sim n(2 \sqrt{2 n}(2 \sqrt{2}+\varepsilon)-2 \alpha)-2 n(n-1) \alpha
$$

Theorem
Given $\alpha \in(-1,1)$, there exists $\varepsilon>0$ small enough, such that, as soon as $n \alpha^{2}>16$, the matrix $\left[f_{d} \otimes \operatorname{id}_{d}\right]\left(X_{d}\right)$ is almost surely not positive semidefinite, as $d \rightarrow \infty$, and thus X_{d} is entangled and PPT. In particular, the maps f_{d} are indecomposable.

