Quantum channels with polytopic images

Ion Nechita

TU München and CNRS

joint work with M. Fukuda and M. Wolf, arXiv:1408.2340

Lyon, November 6th 2014

Characterization of quantum channels having polytopic image

Q Characterization of quantum channels satisfying a stronger form of additivity

Introduction

A convex set $C \subseteq \mathbb{R}^d$ is said to be a polytope if it is the convex hull of a finite number of points $C = \operatorname{conv}(x_1, \ldots, x_k)$. Equivalently, a polytope is the bounded intersection of a finite number of half-spaces.

A quantum channel is a linear map $T : \mathcal{M}_d(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ that is completely positive and trace preserving. In particular, T sends quantum states to quantum states.

The image of a quantum channel $\operatorname{Im}(\mathcal{T})$ is a convex, compact subset of $\mathcal{S}_n := \{\rho \in \mathcal{M}_n : \rho \ge 0 \text{ and } \operatorname{Tr} \rho = 1\}.$

Problem

Characterize channels T for which Im(T) is a polytope.

Examples

• Classical-classical channels: $T : \mathcal{M}_d \to \mathcal{M}_d$,

$$T(\rho) = \sum_{i=1}^{d} \langle i | \rho | i \rangle \cdot | i \rangle \langle i |.$$

Here, $\operatorname{Im}(\mathcal{T}) = \operatorname{diag}(\mathcal{M}_d) = \operatorname{conv}(|i\rangle\langle i|).$

• Classical-quantum channels: $T : \mathcal{M}_d \to \mathcal{M}_n$,

$$T(\rho) = \sum_{i=1}^{d} \langle i | \rho | i \rangle \cdot \sigma_i,$$

for some $\sigma_i \in S_n$. Here, $\operatorname{Im}(T) = \operatorname{conv}(\sigma_1, \ldots, \sigma_d)$.

• Essentially classical-quantum channels: $T : \mathcal{M}_d \to \mathcal{M}_n$,

$$T(\rho) = \sum_{i=1}^{d} \operatorname{Tr}(M_i \rho) \cdot \sigma_i,$$

for some $\sigma_i \in S_n$ and a POVM $\{M_i\}$, with the property that $||M_i|| = 1$, for all *i*. As before, $\text{Im}(T) = \text{conv}(\sigma_1, \ldots, \sigma_d)$.

A non-example

Note that all examples above were entanglement breaking: they can be written as

$$T(\rho) = \sum_{i=1}^{d} \operatorname{Tr}(M_i \rho) \cdot \sigma_i,$$

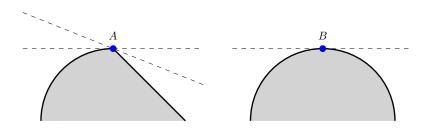
for arbitrary output states σ_i and a general POVM $\{M_i\}$.

But not all entanglement breaking channels have polytopic images. Consider $T: \mathcal{M}_2 \to \mathcal{M}_3$, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $T(
ho) = \sum_{i=1}^{3} \operatorname{Tr}(M_i
ho) |i\rangle \langle i|,$ $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ where the POVM operators $M_i \in \mathcal{M}_2$ are defined by $M_i = 2/3P_{\omega^i}$, where P_{ω^i} is $\begin{bmatrix} 0 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix}$ the orthogonal projection on the complex number $\omega^i \in \mathbb{C}$ (seen as a vector in $\mathbb{R}^2 \subset \mathbb{C}^2$) and ω is a third root of unity.

Vertices of convex sets

Definition

A point x on the boundary of a convex set C is called a vertex if the intersection of all supporting hyperplanes of C at x is the set $\{x\}$. In particular, x is then an extreme point of C.



For convex polytopes, the sets of vertices and extreme points coincide. On the other hand, the set of all quantum states S_n has no vertices.

Main result (quantum channels with polytopic images)

Theorem

Let $T : \mathcal{M}_d \to \mathcal{M}_n$ be a quantum channel whose image is a convex polytope with k vertices $\{\sigma_i\}_{i=1}^k$. Then, there exists a subspace $V \subseteq \mathbb{C}^d$ such that

$$T(\rho) = T_1(\rho_V) + T_2(\rho_{V^{\perp}})$$

where T_1 is an essentially classical-quantum channel ($||M_i|| = 1$)

$$T_1(\rho) = \sum_{i=1}^k \operatorname{Tr}(M_i \rho) \sigma_i$$

and T_2 is another quantum channel whose image is hidden behind the image of T_1 : Im $(T_2) \subseteq \text{Im}(T_1)$ and, for all *i*, $\sigma_i \notin \text{Im}(T_2)$.

Conversely, every map of this form has polytopic image with vertices $\{\sigma_i\}$.

Proof idea: qubit restrictions

The image of a qubit channel $S : \mathcal{M}_2 \to \mathcal{M}_2$ is an (eventually degenerate) ellipsoid. The image set $\mathrm{Im}(S)$ has vertices if and only if it is a segment $[\sigma_1, \sigma_2]$ with

$$S(\rho) = \langle x | \rho | x \rangle \sigma_1 + \langle x^{\perp} | \rho | x^{\perp} \rangle \sigma_2$$

or it is a single point σ .

Lemma

Consider a quantum channel $T : \mathcal{M}_d \to \mathcal{M}_n$ and two different pure states $x, y \in \mathbb{C}^d$ such that $T(|x\rangle\langle x|)$ is a vertex of $\operatorname{Im}(T)$. If H is the two-dimensional subspace of \mathbb{C}^d spanned by x and y, then the restriction T_H of T to $\operatorname{End}(H)$ is of the form

$$T_{H}(\rho) = \langle x | \rho | x \rangle T(|x \rangle \langle x |) + \langle x^{\perp} | \rho | x^{\perp} \rangle T(|x^{\perp} \rangle \langle x^{\perp} |),$$

where x^{\perp} is orthogonal to x in H. Moreover, if $T(|y\rangle\langle y|)$ is also a vertex of Im(T), different from $T(|x\rangle\langle x|)$, then $x \perp y$.

Part II

Characterization of universally image-additive channels

The (minimum output) von Neumann entropy

• The Shannon entropy of a probability vector $p = (p_i) \in \Delta_n$

$$H(p) = -\sum_{i=1}^n p_i \log p_i$$

• The von Neumann entropy of a quantum state $ho \in \mathcal{S}_n$

$$H(\rho) = -\mathrm{Tr}(\rho \log \rho) = -\sum_{i=1}^{n} \lambda_i(\rho) \log \lambda_i(\rho)$$

- The entropy is additive: $H(\rho_1 \otimes \rho_2) = H(\rho_1) + H(\rho_2)$
- The minimum output entropy of a quantum channel T is

$$H_{\min}(T) = \min_{\rho \in \mathcal{S}_d} H(T(\rho))$$

Conjecture [Amosov, Holevo and Werner '00] The quantity H_{min} is additive: for any quantum channels S, T

 $H_{\min}(S \otimes T) = H_{\min}(S) + H_{\min}(T)$

Additivity of the minimum output entropy

Definition

A pair of channels (S, T) is called additive if $H_{\min}(S \otimes T) = H_{\min}(S) + H_{\min}(T)$. A channel T is called universally additive if the pair (S, T) is additive, for all channels S.

- Additivity of H_{\min} (for all S, T) implies a simple formula for the capacity of channels to transmit classical information; in particular, it implies the additivity of the classical capacity
- The \leq direction of the equality is trivial, take $\rho_{12}=\rho_1\otimes\rho_2$
- Many channels are universally additive:
 - unitary: $T(\rho) = U\rho U^*$; in particular, the identity channel id
 - unital qubit: $T : \mathcal{M}_2 \to \mathcal{M}_2, T(I) = I$
 - depolarizing: $T(\rho) = (1 \lambda)\rho + \lambda I/d$
 - entanglement breaking
- But... the Additivity Conjecture is false ! [Hayden, Winter '08, Hastings '09]
- Counterexamples: if T is a random channel, then, with high probability, (T, \overline{T}) is non-additive

Image-additivity

Open question

Characterize universally additive quantum channels.

It is probably a hard question: the identity and entanglement breaking channels are "very different" in nature...

Definition

A pair of channels (S, T) is called image-additive if one of the following equivalent statements is satisfied:

The image of S o T is the convex hull of the tensor product of the images of S, T:

 $\operatorname{Im}(S \otimes T) = \operatorname{conv}[\operatorname{Im}(S) \otimes \operatorname{Im}(T)]$

• For every unit vector $\psi \in \mathbb{C}^{d_S} \otimes \mathbb{C}^{d_T}$, there is a separable state $\rho_{sep} \in S_{d_S d_T}$ such that

$$[S \otimes T](|\psi\rangle\!\langle\psi|) = [S \otimes T](
ho_{sep})$$

A channel $T : \mathcal{M}_d \to \mathcal{M}_n$ is called universally image additive if the pair (S, T) is image-additive, for all channels S.

Remark: Image-additivity is stronger than additivity

Main result (universally image-additive channels)

Theorem

Let $T : \mathcal{M}_d \to \mathcal{M}_n$ be a quantum channel. The following assertions are equivalent:

- T is universally image additive
- **2** T and $\operatorname{id} : \mathcal{M}_d \to \mathcal{M}_d$ are image additive
- There exists an entanglement breaking channel $S : \mathcal{M}_d \to \mathcal{M}_d$ such that $T = T \circ S$
- There exists an essentially classical-quantum channel $S : M_d \to M_d$ such that $T = T \circ S$
- T is essentially classical-quantum

Proof ideas: 2 \implies 3

• Choose $|\Phi_+\rangle$ to be the maximally entangled state in $\mathbb{C}^d\otimes\mathbb{C}^d$

$$|\Phi_+
angle = rac{1}{\sqrt{d}}\sum_{i=1}^d |i
angle \otimes |i
angle$$

 $\bullet\,$ Using the hypothesis, there exists a separable state ρ_{sep} such that

$$[T \otimes \mathrm{id}](|\Phi_+\rangle\langle\Phi_+|) = [T \otimes \mathrm{id}](\rho_{sep}).$$

• Thanks to the Choi-Jamiołkowski isomorphism, there exists an entanglement breaking channel *S* such that

$$\rho_{sep} = [S \otimes \mathrm{id}](|\Phi_+\rangle\langle\Phi_+|)$$

Hence

$$[\mathcal{T}\otimes\mathrm{id}]|\Phi_+\rangle\!\langle\Phi_+|)=[\mathcal{T}\circ\mathcal{S}\otimes\mathrm{id}](|\Phi_+\rangle\!\langle\Phi_+|)$$

• Using again the Choi-Jamiołkowski isomorphism, $T = T \circ S$, with S entanglement breaking

Proof ideas: $3 \implies 4$

• Starting from $T = T \circ S$, we get, by recurrence, $T = T \circ S^n$ for all $n \ge 1$, and thus $T = T \circ S_{\infty}$, where

$$S_{\infty} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} S^n$$

• The channel S_{∞} satisfies $S_{\infty} = S \circ S_{\infty} = S_{\infty} \circ S = S_{\infty}^2$. Thus, S_{∞} is a completely positive projection on its image, the set of fixed points of S

$$\mathcal{F}_S = \{X \in \mathcal{M}_d : S(X) = X\}$$

• Given a quantum channel $S : \mathcal{M}_d \to \mathcal{M}_d$, there exist quantum states $\sigma_1, \ldots, \sigma_k \in S_d$ having orthogonal supports such that

$$\mathcal{F}_{\mathcal{S}} = \mathbf{0}_{V_{\mathcal{T}}^{\perp}} \oplus \bigoplus_{i=1}^{k} \mathcal{M}_{d_{i}} \otimes \sigma_{i}$$

 Moreover, if S is entanglement breaking, the d_i above are all equal to 1, and thus the set of fixed points of T is spanned by density matrices σ₁,..., σ_k with orthogonal supports

$$\mathcal{F}_{S} = \operatorname{span}\{\sigma_{1},\ldots,\sigma_{k}\}$$

and the channel S_{∞} that projects on \mathcal{F}_S is essentially classical-quantum

Thank you !

arXiv:1408.2340