
Quantum channels with polytopic images

Ion Nechita

TU München and CNRS

joint work with M. Fukuda and M. Wolf, arXiv:1408.2340

Lyon, November 6th 2014



Outline

1 Characterization of quantum channels having polytopic image

2 Characterization of quantum channels satisfying a stronger form of additivity



Introduction

A convex set C ⊆ R
d is said to be a polytope if it is the convex hull of a finite

number of points C = conv(x1, . . . , xk). Equivalently, a polytope is the bounded
intersection of a finite number of half-spaces.

A quantum channel is a linear map T : Md(C) → Mn(C) that is completely
positive and trace preserving. In particular, T sends quantum states to quantum
states.

The image of a quantum channel Im(T ) is a convex, compact subset of
Sn := {ρ ∈ Mn : ρ ≥ 0 and Trρ = 1}.

Problem

Characterize channels T for which Im(T ) is a polytope.



Examples
Classical-classical channels: T : Md → Md ,

T (ρ) =

d∑

i=1

〈i |ρ|i〉 · |i〉〈i |.

Here, Im(T ) = diag(Md ) = conv(|i〉〈i |).

Classical-quantum channels: T : Md → Mn,

T (ρ) =

d∑

i=1

〈i |ρ|i〉 · σi ,

for some σi ∈ Sn. Here, Im(T ) = conv(σ1, . . . , σd).

Essentially classical-quantum channels: T : Md → Mn,

T (ρ) =

d∑

i=1

Tr(Miρ) · σi ,

for some σi ∈ Sn and a POVM {Mi}, with the property that ‖Mi‖ = 1, for
all i . As before, Im(T ) = conv(σ1, . . . , σd).



A non-example

Note that all examples above were entanglement breaking: they can be written as

T (ρ) =

d∑

i=1

Tr(Miρ) · σi ,

for arbitrary output states σi and a general POVM {Mi}.

But not all entanglement breaking
channels have polytopic images.
Consider T : M2 → M3,

T (ρ) =

3∑

i=1

Tr(Miρ)|i〉〈i |,

where the POVM operators Mi ∈ M2

are defined by Mi = 2/3Pωi , where Pωi is
the orthogonal projection on the complex
number ωi ∈ C (seen as a vector in
R

2 ⊂ C
2) and ω is a third root of unity.
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Vertices of convex sets

Definition
A point x on the boundary of a convex set C is called a vertex if the intersection
of all supporting hyperplanes of C at x is the set {x}. In particular, x is then an
extreme point of C .

A B

For convex polytopes, the sets of vertices and extreme points coincide. On the
other hand, the set of all quantum states Sn has no vertices.



Main result (quantum channels with polytopic images)

Theorem
Let T : Md → Mn be a quantum channel whose image is a convex polytope with
k vertices {σi}ki=1. Then, there exists a subspace V ⊆ C

d such that

T (ρ) = T1(ρV ) + T2(ρV⊥)

where T1 is an essentially classical-quantum channel (‖Mi‖ = 1)

T1(ρ) =

k∑

i=1

Tr(Miρ)σi

and T2 is another quantum channel whose image is hidden behind the image of
T1: Im(T2) ⊆ Im(T1) and, for all i , σi /∈ Im(T2).

Conversely, every map of this form has polytopic image with vertices {σi}.



Proof idea: qubit restrictions

The image of a qubit channel S : M2 → M2 is an (eventually degenerate)
ellipsoid. The image set Im(S) has vertices if and only if it is a segment [σ1, σ2]
with

S(ρ) = 〈x |ρ|x〉σ1 + 〈x⊥|ρ|x⊥〉σ2
or it is a single point σ.

Lemma
Consider a quantum channel T : Md → Mn and two different pure states
x , y ∈ C

d such that T (|x〉〈x |) is a vertex of Im(T ). If H is the two-dimensional
subspace of Cd spanned by x and y , then the restriction TH of T to End(H) is of
the form

TH(ρ) = 〈x |ρ|x〉T (|x〉〈x |) + 〈x⊥|ρ|x⊥〉T (|x⊥〉〈x⊥|),
where x⊥ is orthogonal to x in H. Moreover, if T (|y〉〈y |) is also a vertex of
Im(T ), different from T (|x〉〈x |), then x ⊥ y .



Part II

Characterization of universally image-additive channels



The (minimum output) von Neumann entropy
The Shannon entropy of a probability vector p = (pi ) ∈ ∆n

H(p) = −
n∑

i=1

pi log pi

The von Neumann entropy of a quantum state ρ ∈ Sn

H(ρ) = −Tr(ρ log ρ) = −
n∑

i=1

λi (ρ) log λi (ρ)

The entropy is additive: H(ρ1 ⊗ ρ2) = H(ρ1) + H(ρ2)

The minimum output entropy of a quantum channel T is

Hmin(T ) = min
ρ∈Sd

H(T (ρ))

Conjecture [Amosov, Holevo and Werner ’00]

The quantity Hmin is additive: for any quantum channels S ,T

Hmin(S ⊗ T ) = Hmin(S) + Hmin(T )



Additivity of the minimum output entropy

Definition

A pair of channels (S ,T ) is called additive if Hmin(S ⊗ T ) = Hmin(S) + Hmin(T ).
A channel T is called universally additive if the pair (S ,T ) is additive, for all
channels S .

Additivity of Hmin (for all S ,T ) implies a simple formula for the capacity of
channels to transmit classical information; in particular, it implies the
additivity of the classical capacity

The ≤ direction of the equality is trivial, take ρ12 = ρ1 ⊗ ρ2

Many channels are universally additive:
◮ unitary: T (ρ) = UρU∗; in particular, the identity channel id
◮ unital qubit: T : M2 → M2, T (I ) = I

◮ depolarizing: T (ρ) = (1− λ)ρ+ λI/d
◮ entanglement breaking

But... the Additivity Conjecture is false ! [Hayden, Winter ’08, Hastings ’09]

Counterexamples: if T is a random channel, then, with high probability,
(T , T̄ ) is non-additive



Image-additivity

Open question

Characterize universally additive quantum channels.

It is probably a hard question: the identity and entanglement breaking channels
are “very different” in nature...

Definition

A pair of channels (S ,T ) is called image-additive if one of the following
equivalent statements is satisfied:

1 The image of S ⊗ T is the convex hull of the tensor product of the images of
S ,T :

Im(S ⊗ T ) = conv [Im(S) ⊗ Im(T )]

2 For every unit vector ψ ∈ C
dS ⊗ C

dT , there is a separable state ρsep ∈ SdSdT

such that
[S ⊗ T ](|ψ〉〈ψ|) = [S ⊗ T ](ρsep)

A channel T : Md → Mn is called universally image additive if the pair (S ,T ) is
image-additive, for all channels S .

Remark: Image-additivity is stronger than additivity



Main result (universally image-additive channels)

Theorem
Let T : Md → Mn be a quantum channel. The following assertions are
equivalent:

1 T is universally image additive

2 T and id : Md → Md are image additive

3 There exists an entanglement breaking channel S : Md → Md such that
T = T ◦ S

4 There exists an essentially classical-quantum channel S : Md → Md such
that T = T ◦ S

5 T is essentially classical-quantum



Proof ideas: 2 =⇒ 3

Choose |Φ+〉 to be the maximally entangled state in C
d ⊗ C

d

|Φ+〉 =
1√
d

d∑

i=1

|i〉 ⊗ |i〉

Using the hypothesis, there exists a separable state ρsep such that

[T ⊗ id](|Φ+〉〈Φ+|) = [T ⊗ id](ρsep).

Thanks to the Choi-Jamio lkowski isomorphism, there exists an entanglement
breaking channel S such that

ρsep = [S ⊗ id](|Φ+〉〈Φ+|)

Hence
[T ⊗ id]|Φ+〉〈Φ+|) = [T ◦ S ⊗ id](|Φ+〉〈Φ+|)

Using again the Choi-Jamio lkowski isomorphism, T = T ◦ S , with S

entanglement breaking



Proof ideas: 3 =⇒ 4
Starting from T = T ◦ S , we get, by recurrence, T = T ◦ Sn for all n ≥ 1,
and thus T = T ◦ S∞, where

S∞ = lim
N→∞

1

N

N∑

n=1

Sn

The channel S∞ satisfies S∞ = S ◦ S∞ = S∞ ◦ S = S2
∞. Thus, S∞ is a

completely positive projection on its image, the set of fixed points of S

FS = {X ∈ Md : S(X ) = X}
Given a quantum channel S : Md → Md , there exist quantum states
σ1, . . . , σk ∈ Sd having orthogonal supports such that

FS = 0V⊥

T
⊕

k⊕

i=1

Mdi ⊗ σi

Moreover, if S is entanglement breaking, the di above are all equal to 1, and
thus the set of fixed points of T is spanned by density matrices σ1, . . . , σk
with orthogonal supports

FS = span{σ1, . . . , σk}
and the channel S∞ that projects on FS is essentially classical-quantum



Thank you !
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