Bipartite unitary operators inducing unitarily invariant classes of quantum channels

Ion Nechita

TU München and CNRS
joint work with Julien Deschamps and Clément Pellegrini

Genova, July 1st 2015

Stinespring dilation picture for quantum channels

Theorem

Any quantum channel $L: \mathcal{M}_{n}(\mathbb{C}) \rightarrow \mathcal{M}_{n}(\mathbb{C})$ (i.e. completely positive, trace preserving linear map) can be written as

$$
L(\rho)=[\mathrm{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

for some environment of size k ($k=n^{2}$ suffices), a quantum state $\beta \in \mathcal{M}_{n}^{1,+}(\mathbb{C})$ and a global unitary operator $U \in \mathcal{U}_{n k}$.

Stinespring dilation picture for quantum channels

Theorem

Any quantum channel $L: \mathcal{M}_{n}(\mathbb{C}) \rightarrow \mathcal{M}_{n}(\mathbb{C})$ (i.e. completely positive, trace preserving linear map) can be written as

$$
L(\rho)=[\operatorname{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

for some environment of size k ($k=n^{2}$ suffices), a quantum state $\beta \in \mathcal{M}_{n}^{1,+}(\mathbb{C})$ and a global unitary operator $U \in \mathcal{U}_{n k}$.

- What if we do not know / have access to β, the state of the environment ?

The main problem

$$
L_{U, \beta}(\rho):=[\mathrm{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

Our mantra

Given a family \mathcal{L} of quantum channels, characterize the set

$$
\mathcal{U}_{\mathcal{L}}:=\left\{U \in \mathcal{U}_{n k}: \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \mathcal{L}\right\} .
$$

The main problem

$$
L_{U, \beta}(\rho):=[\operatorname{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

Our mantra

Given a family \mathcal{L} of quantum channels, characterize the set

$$
\mathcal{U}_{\mathcal{L}}:=\left\{U \in \mathcal{U}_{n k}: \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \mathcal{L}\right\} .
$$

- If the set \mathcal{L} is unitarily invariant, i.e.

$$
L \in \mathcal{L} \Longleftrightarrow \forall V_{1,2} \in \mathcal{U}_{n}, V_{1} L\left(V_{2} \cdot V_{2}^{*}\right) V_{1}^{*} \in \mathcal{L},
$$

then the set $\mathcal{U}_{\mathcal{L}}$ is invariant by local unitary multiplication:

$$
U \in \mathcal{U}_{\mathcal{L}} \Longleftrightarrow \forall V_{1,2} \in \mathcal{U}_{n}, \forall W_{1,2} \in \mathcal{U}_{k},\left(V_{1} \otimes W_{2}\right) U\left(V_{2} \otimes W_{2}\right) \in \mathcal{U}_{\mathcal{L}} .
$$

$$
L_{U, \beta}(\rho):=[\operatorname{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

Our mantra

Given a family \mathcal{L} of quantum channels, characterize the set

$$
\mathcal{U}_{\mathcal{L}}:=\left\{U \in \mathcal{U}_{n k}: \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \mathcal{L}\right\} .
$$

- If the set \mathcal{L} is unitarily invariant, i.e.

$$
L \in \mathcal{L} \Longleftrightarrow \forall V_{1,2} \in \mathcal{U}_{n}, V_{1} L\left(V_{2} \cdot V_{2}^{*}\right) V_{1}^{*} \in \mathcal{L}
$$

then the set $\mathcal{U}_{\mathcal{L}}$ is invariant by local unitary multiplication:

$$
U \in \mathcal{U}_{\mathcal{L}} \Longleftrightarrow \forall V_{1,2} \in \mathcal{U}_{n}, \forall W_{1,2} \in \mathcal{U}_{k},\left(V_{1} \otimes W_{2}\right) U\left(V_{2} \otimes W_{2}\right) \in \mathcal{U}_{\mathcal{L}} .
$$

(1) $\mathcal{L}_{\text {aut }}=\left\{V \cdot V^{*}\right\}_{V \in \mathcal{U}_{n}}$
(9) $\mathcal{L}_{\text {mixed }}=\operatorname{conv}\left\{V \cdot V^{*}\right\} V \in \mathcal{U}_{n}$
(2) $\mathcal{L}_{\text {const }}=\{$ constant channels $\}$
(3) $\mathcal{L}_{\text {unital }}=\{L: L(I)=I\}$
(0) $\mathcal{L}_{P P T}=\{L: L$ is PPT $\}$
(- $\mathcal{L}_{E B}=\{L: L$ is entanglement breaking $\}$

Unitary conjugations

$$
\mathcal{U}_{\text {aut }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(\rho)=V_{\beta} \rho V_{\beta}^{*}\right\} .
$$

Theorem

We have $\mathcal{U}_{\text {aut }}=\left\{V \otimes W: V \in \mathcal{U}_{n}, W \in \mathcal{U}_{k}\right\}$.
For $U=V \otimes W, L_{U, \beta}(\rho)=V \rho V^{*}$.

Unitary conjugations

$$
\mathcal{U}_{\text {aut }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(\rho)=V_{\beta} \rho V_{\beta}^{*}\right\} .
$$

Theorem

We have $\mathcal{U}_{\text {aut }}=\left\{V \otimes W: V \in \mathcal{U}_{n}, W \in \mathcal{U}_{k}\right\}$.
For $U=V \otimes W, L_{U, \beta}(\rho)=V \rho V^{*}$.

$$
\mathcal{U}_{\text {single }}:=\left\{U \in \mathcal{U}_{n k} \mid \text { the set }\left\{L_{U, \beta}: \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C})\right\} \text { has } 1 \text { element }\right\} .
$$

In other words, $U \in \mathcal{U}_{\text {single }}$ iff. the channel $L_{U, \beta}$ does not depend on β, the state of the environment.

Proposition

We have $\mathcal{U}_{\text {single }}=\mathcal{U}_{\text {aut }}=\{V \otimes W\}$.

Unitary conjugations

Unitary conjugations

Unitary conjugations

Unitary conjugations

Unitary conjugations

$$
\cdot \sqrt{L_{V \otimes W, \beta}(\rho)}=\cdot \sqrt{V} \cdot \cdot \sqrt{\rho} \cdot \sqrt{V}
$$

Constant channels

$$
\mathcal{U}_{\text {const }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \text { is a constant channel }\right\} .
$$

Theorem

If $k \neq r n$ for $r=1,2, \ldots$, then $\mathcal{U}_{\text {const }}$ is empty. If $k=r \cdot n$ for some positive r, then

$$
\mathcal{U}_{\text {const }}=\left\{\left(I_{n} \otimes V\right)\left(F_{n} \otimes I_{r}\right)\left(I_{n} \otimes W\right): V, W \in \mathcal{U}_{k}\right\}
$$

where $F_{n} \in \mathcal{U}_{n^{2}}$ denotes the flip operator.
For $U \in \mathcal{U}_{\text {const }}$ as above, $L_{U, \beta}(\rho)=\left[\mathrm{id}_{n} \otimes \operatorname{Tr}_{r}\right]\left(W \beta W^{*}\right)$.

Constant channels

$$
\mathcal{U}_{\text {const }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \text { is a constant channel }\right\} .
$$

Theorem

If $k \neq r n$ for $r=1,2, \ldots$, then $\mathcal{U}_{\text {const }}$ is empty. If $k=r \cdot n$ for some positive r, then

$$
\mathcal{U}_{\text {const }}=\left\{\left(I_{n} \otimes V\right)\left(F_{n} \otimes I_{r}\right)\left(I_{n} \otimes W\right): V, W \in \mathcal{U}_{k}\right\}
$$

where $F_{n} \in \mathcal{U}_{n^{2}}$ denotes the flip operator.
For $U \in \mathcal{U}_{\text {const }}$ as above, $L_{U, \beta}(\rho)=\left[\mathrm{id}_{n} \otimes \operatorname{Tr}_{r}\right]\left(W \beta W^{*}\right)$.

Corollary
If $n=k$, then $\mathcal{U}_{\text {const }}=F_{n} \cdot \mathcal{U}_{\text {aut }}=F_{n} \cdot\left\{V \otimes W: V, W \in \mathcal{U}_{n}\right\}$.

Constant channels

Unital channels

$$
\mathcal{U}_{\text {unital }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(I)=I\right\}
$$

Theorem

One has

$$
\mathcal{U}_{\text {unital }}=\mathcal{U}_{n k} \cap \mathcal{U}_{n k}^{\Gamma}
$$

where $A^{\Gamma}=[\mathrm{id} \otimes \operatorname{transp}](A)$ denotes the partial transposition of A. In other words, $U \in \mathcal{U}_{\text {unital }}$ iff. both U and $U^{\ulcorner }$are unitary operators.

Unital channels

$$
\mathcal{U}_{\text {unital }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(I)=I\right\} .
$$

Theorem

One has

$$
\mathcal{U}_{\text {unital }}=\mathcal{U}_{n k} \cap \mathcal{U}_{n k}^{\ulcorner },
$$

where $A^{\Gamma}=[\mathrm{id} \otimes \operatorname{transp}](A)$ denotes the partial transposition of A. In other words, $U \in \mathcal{U}_{\text {unital }}$ iff. both U and $U^{\ulcorner }$are unitary operators.

- $\mathcal{U}_{\text {aut }}=\left\{V \otimes W: V, W \in \mathcal{U}_{n}\right\} \subseteq \mathcal{U}_{\text {unital }}$.
- If $n>1$, then $\mathcal{U}_{\text {const }} \cap \mathcal{U}_{\text {unital }}=\emptyset$.
- $\mathcal{U}_{\text {unital }}$ is a non-smooth algebraic variety, of dimension $n k(n+k-1)$.

Block diagonal unitary matrices

Block-diagonal unitary operators with respect to the system A (resp. B)

$$
\mathcal{U}_{\text {block-diag }}^{A}=\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{k} U_{i} \otimes e_{i} f_{i}^{*},\right.
$$

with $U_{i} \in \mathcal{U}_{n}$ and $\left\{e_{i}\right\},\left\{f_{i}\right\}$ orthonormal bases in $\left.\mathbb{C}^{k}\right\}$

Block diagonal unitary matrices

Block-diagonal unitary operators with respect to the system A (resp. B)

$$
\begin{aligned}
& \mathcal{U}_{\text {block-diag }=}^{A}\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{k} U_{i} \otimes e_{i} f_{i}^{*},\right. \\
& \left.\quad \text { with } U_{i} \in \mathcal{U}_{n} \text { and }\left\{e_{i}\right\},\left\{f_{i}\right\} \text { orthonormal bases in } \mathbb{C}^{k}\right\} \\
& \mathcal{U}_{\text {block-diag }}^{B}=\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{n} e_{i} f_{i}^{*} \otimes U_{i},\right. \\
& \\
& \left.\quad \text { with } U_{i} \in \mathcal{U}_{k} \text { and }\left\{e_{i}\right\},\left\{f_{i}\right\} \text { orthonormal bases in } \mathbb{C}^{n}\right\}
\end{aligned}
$$

Block diagonal unitary matrices

Block-diagonal unitary operators with respect to the system A (resp. B)

$$
\begin{aligned}
& \mathcal{U}_{\text {block-diag }=}^{A}=\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{k} U_{i} \otimes e_{i} f_{i}^{*},\right. \\
& \\
& \left.\quad \text { with } U_{i} \in \mathcal{U}_{n} \text { and }\left\{e_{i}\right\},\left\{f_{i}\right\} \text { orthonormal bases in } \mathbb{C}^{k}\right\} \\
& \mathcal{U}_{\text {block-diag }}^{B}=\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{n} e_{i} f_{i}^{*} \otimes U_{i},\right. \\
& \\
& \text { with } \left.U_{i} \in \mathcal{U}_{k} \text { and }\left\{e_{i}\right\},\left\{f_{i}\right\} \text { orthonormal bases in } \mathbb{C}^{n}\right\}
\end{aligned}
$$

More generally, $U \in \mathcal{U}_{\text {block-diag }}^{A}$ iff.

$$
U=\sum_{i=1}^{r} U_{i} \otimes R_{i}
$$

where U_{i} are unitary operators acting on \mathbb{C}^{n} and R_{i} are partial isometries $R_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ such that $\sum_{i=1}^{r} R_{i} R_{i}^{*}=\sum_{i=1}^{r} R_{i}^{*} R_{i}=I_{k}$. Moreover, the decomposition is unique, up to the permutation of the terms in the sum and $\mathbb{C} U_{i} \neq \mathbb{C} U_{j}$ for $i \neq j$.

Block diagonal unitary matrices

Proposition
If $n=2$, then

$$
\mathcal{U}_{\text {block-diag }}^{B} \subseteq \mathcal{U}_{\text {block-diag }}^{A} .
$$

In particular, when $n=k=2$, we have

$$
\mathcal{U}_{\text {block-diag }}^{A}=\mathcal{U}_{\text {block-diag }}^{B} .
$$

Block diagonal unitary matrices

Proposition

If $n=2$, then

$$
\mathcal{U}_{\text {block-diag }}^{B} \subseteq \mathcal{U}_{\text {block-diag }}^{A} .
$$

In particular, when $n=k=2$, we have

$$
\mathcal{U}_{\text {block-diag }}^{A}=\mathcal{U}_{\text {block-diag }}^{B} .
$$

$$
\begin{aligned}
\mathcal{U}_{\text {block-diag }}^{B} \ni U & =e_{1} f_{1}^{*} \otimes U_{1}+e_{2} f_{2}^{*} \otimes U_{2} \\
& =\left(I \otimes U_{1}\right)\left[e_{1} f_{1}^{*} \otimes I+e_{2} f_{2}^{*} \otimes\left(U_{1}^{*} U_{2}\right)\right] \\
& =\left(I \otimes U_{1}\right)\left[e_{1} f_{1}^{*} \otimes\left(\sum_{i=1}^{k} g_{i} g_{i}^{*}\right)+e_{2} f_{2}^{*} \otimes\left(\sum_{i=1}^{k} \lambda_{i} g_{i} g_{i}^{*}\right)\right] \\
& =\left(I \otimes U_{1}\right) \sum_{i=1}^{k}\left(e_{1} f_{1}^{*}+\lambda_{i} e_{2} f_{2}^{*}\right) \otimes g_{i} g_{i}^{*} \\
& =\left(I \otimes U_{1}\right) \sum_{i=1}^{k} W_{i} \otimes g_{i} g_{i}^{*}=\sum_{i=1}^{k} W_{i} \otimes h_{i} g_{i}^{*} \in \mathcal{U}_{\text {block-diag }}^{A}
\end{aligned}
$$

Block diagonal unitary matrices

Proposition

A unitary operator U is block diagonal with respect to both tensor factors A and B (i.e. $U \in \mathcal{U}_{\text {block-diag }}^{A} \cap \mathcal{U}_{\text {block-diag }}^{B}$) iff.

$$
U=\sum_{i=1}^{s} \sum_{j=1}^{r} \lambda_{i j} Q_{i} \otimes R_{j}
$$

where, for all $i=1, \ldots, s, j=1, \ldots, r,\left|\lambda_{i j}\right|=1$, and where $\left(Q_{i}\right)_{i=1, \ldots, s}$, $\left(R_{j}\right)_{j=1, \ldots, r}$ are two family of partial isometries respectively on \mathbb{C}^{n} and \mathbb{C}^{k} satisfying

$$
\sum_{i=1}^{s} Q_{i} Q_{i}^{*}=\sum_{i=1}^{s} Q_{i}^{*} Q_{i}=I_{n}, \quad \sum_{j=1}^{r} R_{j} R_{j}^{*}=\sum_{j=1}^{r} R_{j}^{*} R_{j}=I_{k}
$$

Block diagonal unitary matrices

Proposition

A unitary operator U is block diagonal with respect to both tensor factors A and B (i.e. $U \in \mathcal{U}_{\text {block-diag }}^{A} \cap \mathcal{U}_{\text {block-diag }}^{B}$) iff.

$$
U=\sum_{i=1}^{s} \sum_{j=1}^{r} \lambda_{i j} Q_{i} \otimes R_{j},
$$

where, for all $i=1, \ldots, s, j=1, \ldots, r,\left|\lambda_{i j}\right|=1$, and where $\left(Q_{i}\right)_{i=1, \ldots, s}$, $\left(R_{j}\right)_{j=1, \ldots, r}$ are two family of partial isometries respectively on \mathbb{C}^{n} and \mathbb{C}^{k} satisfying

$$
\sum_{i=1}^{s} Q_{i} Q_{i}^{*}=\sum_{i=1}^{s} Q_{i}^{*} Q_{i}=I_{n} \quad, \quad \sum_{j=1}^{r} R_{j} R_{j}^{*}=\sum_{j=1}^{r} R_{j}^{*} R_{j}=I_{k} .
$$

- $\mathcal{U}_{\text {block-diag }}^{A}$ is a real algebraic variety of dimension $(n>1)$ $\operatorname{dim} \mathcal{U}_{\text {block-diag }}^{A}=k\left(n^{2}+2 k-2\right)$.
- $\operatorname{dim} \mathcal{U}_{\text {block-diag }}^{A} \cap \mathcal{U}_{\text {block-diag }}^{B}=2 n^{2}+2 k^{2}+n k-2 n-2 k$.

Mixed quantum channels

$$
\begin{aligned}
\mathcal{U}_{\text {mixed }} & :=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \operatorname{conv}\left\{V \cdot V^{*}\right\}_{V \in \mathcal{U}_{n}}\right\} \\
& =\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*}\right\}
\end{aligned}
$$

Mixed quantum channels

$$
\begin{aligned}
& \mathcal{U}_{\text {mixed }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \operatorname{conv}\left\{V \cdot V^{*}\right\}_{V \in \mathcal{U}_{n}}\right\} \\
& =\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*}\right\} \\
& \mathcal{U}_{\text {prob }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
& \text { with } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\}
\end{aligned}
$$

Mixed quantum channels

$$
\begin{aligned}
\begin{aligned}
\mathcal{U}_{\text {mixed }}:= & \left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \operatorname{conv}\left\{V \cdot V^{*}\right\} \mathcal{V} \in \mathcal{U}_{n}\right\} \\
= & \left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*}\right\} \\
\mathcal{U}_{\text {prob }}:= & \left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
& \text { with } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\} \\
\mathcal{U}_{\text {prob-lin }}:= & \left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
& \text { with linear } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\}
\end{aligned}
\end{aligned}
$$

Mixed quantum channels

$$
\begin{aligned}
& \mathcal{U}_{\text {mixed }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \operatorname{conv}\left\{V \cdot V^{*}\right\} V \in \mathcal{U}_{n}\right\} \\
&=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*}\right\} \\
& \mathcal{U}_{\text {prob }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
&\text { with } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\} \\
& \mathcal{U}_{\text {prob-lin }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
&\text { with linear } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\}
\end{aligned}
$$

We have the following chain of inclusions

$$
\mathcal{U}_{\text {block-diag }}^{A} \subseteq \mathcal{U}_{\text {prob-lin }} \subseteq \mathcal{U}_{\text {prob }} \subseteq \mathcal{U}_{\text {mixed }} \subseteq \mathcal{U}_{\text {unital }} .
$$

Mixed quantum channels

Theorem

We have $\mathcal{U}_{\text {prob-lin }}=\mathcal{U}_{\text {block-diag }}^{A}$.

Mixed quantum channels

Theorem

We have $\mathcal{U}_{\text {prob-lin }}=\mathcal{U}_{\text {block-diag }}^{A}$.

- Since $\beta \mapsto p_{i}(\beta)$ are linear, there exists a POVM $\left(M_{i}\right)$ such that $p_{i}(\beta)=\operatorname{Tr}\left(M_{i} \beta\right)$.
- Prove the M_{i} 's have orthogonal supports.
- Construct a candidate unitary operator \tilde{U}.
- Use the fact that

$$
\forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}=L_{\tilde{U}, \beta} \Longleftrightarrow \exists W \in \mathcal{U}_{k} \text { s.t. } U=\left(I_{n} \otimes W\right) \tilde{U}
$$

Mixed quantum channels

Theorem

We have $\mathcal{U}_{\text {prob-lin }}=\mathcal{U}_{\text {block-diag }}^{A}$.

- Since $\beta \mapsto p_{i}(\beta)$ are linear, there exists a POVM $\left(M_{i}\right)$ such that $p_{i}(\beta)=\operatorname{Tr}\left(M_{i} \beta\right)$.
- Prove the M_{i} 's have orthogonal supports.
- Construct a candidate unitary operator \tilde{U}.
- Use the fact that

$$
\forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}=L_{\tilde{U}, \beta} \Longleftrightarrow \exists W \in \mathcal{U}_{k} \text { s.t. } U=\left(I_{n} \otimes W\right) \tilde{U}
$$

Proposition

When $n=2, \mathcal{U}_{\text {block-diag }}^{A}=\mathcal{U}_{\text {unital }}$, so we have

$$
\mathcal{U}_{\text {block-diag }}^{A}=\mathcal{U}_{\text {prob-lin }}=\mathcal{U}_{\text {prob }}=\mathcal{U}_{\text {mixed }}=\mathcal{U}_{\text {unital }} .
$$

Some work in progress...

Question

Characterize the unitarily invariant sets

$$
\begin{aligned}
& \mathcal{U}_{P P T}=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}),\right. \\
& \left.L_{U, \beta} \text { is a PPT channel }\right\} \\
& \mathcal{U}_{E B}=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}),\right. \\
& \left.L_{U, \beta} \text { is an entanglement breaking channel }\right\} .
\end{aligned}
$$

Obviously, $\mathcal{U}_{\text {const }} \subseteq \mathcal{U}_{P P T} \subseteq \mathcal{U}_{E B}$. Is there equality ?

The End

thank you for your attention

