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Stinespring dilation picture for quantum channels

Theorem

Any quantum channel L :Mn(C)→Mn(C) (i.e. completely positive,
trace preserving linear map) can be written as

L(ρ) = [id⊗ Tr] (U(ρ⊗ β)U∗)

for some environment of size k (k = n2 suffices), a quantum state
β ∈M1,+

n (C) and a global unitary operator U ∈ Unk .

What if we do not know / have access to β, the state of the
environment ?

ρ

β
U U∗L(ρ) =
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The main problem

LU,β(ρ) := [id⊗ Tr] (U(ρ⊗ β)U∗)

Our mantra

Given a family L of quantum channels, characterize the set

UL := {U ∈ Unk : ∀β ∈M1,+
k (C), LU,β ∈ L}.

If the set L is unitarily invariant, i.e.

L ∈ L ⇐⇒ ∀V1,2 ∈ Un, V1L(V2 · V ∗2 )V ∗1 ∈ L,

then the set UL is invariant by local unitary multiplication:

U ∈ UL ⇐⇒ ∀V1,2 ∈ Un, ∀W1,2 ∈ Uk , (V1⊗W2)U(V2⊗W2) ∈ UL.

1 Laut = {V · V ∗}V∈Un

2 Lconst = {constant channels}
3 Lunital = {L : L(I ) = I}

4 Lmixed = conv{V · V ∗}V∈Un

5 LPPT = {L : L is PPT}
6 LEB = {L : L is entanglement breaking}
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Unitary conjugations

Uaut := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(ρ) = VβρV ∗β }.

Theorem

We have Uaut = {V ⊗W : V ∈ Un, W ∈ Uk}.
For U = V ⊗W , LU,β(ρ) = V ρV ∗.

Usingle := {U ∈ Unk | the set {LU,β : β ∈M1,+
k (C)} has 1 element}.

In other words, U ∈ Usingle iff. the channel LU,β does not depend on β,
the state of the environment.

Proposition

We have Usingle = Uaut = {V ⊗W }.
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Constant channels

Uconst := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β is a constant channel}.

Theorem

If k 6= rn for r = 1, 2, . . ., then Uconst is empty. If k = r · n for some
positive r , then

Uconst = {(In ⊗ V )(Fn ⊗ Ir )(In ⊗W ) : V ,W ∈ Uk},

where Fn ∈ Un2 denotes the flip operator.
For U ∈ Uconst as above, LU,β(ρ) = [idn ⊗ Trr ](WβW ∗).

Corollary

If n = k, then Uconst = Fn · Uaut = Fn · {V ⊗W : V ,W ∈ Un}.

6 / 15



Constant channels

Uconst := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β is a constant channel}.

Theorem

If k 6= rn for r = 1, 2, . . ., then Uconst is empty. If k = r · n for some
positive r , then

Uconst = {(In ⊗ V )(Fn ⊗ Ir )(In ⊗W ) : V ,W ∈ Uk},

where Fn ∈ Un2 denotes the flip operator.
For U ∈ Uconst as above, LU,β(ρ) = [idn ⊗ Trr ](WβW ∗).

Corollary

If n = k, then Uconst = Fn · Uaut = Fn · {V ⊗W : V ,W ∈ Un}.

6 / 15



Constant channels

WV V ∗W ∗

ρ

β
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Unital channels

Uunital := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(I ) = I}.

Theorem

One has
Uunital = Unk ∩ UΓ

nk ,

where AΓ = [id⊗ transp](A) denotes the partial transposition of A. In
other words, U ∈ Uunital iff. both U and UΓ are unitary operators.

Uaut = {V ⊗W : V ,W ∈ Un} ⊆ Uunital .

If n > 1, then Uconst ∩ Uunital = ∅.
Uunital is a non-smooth algebraic variety, of dimension nk(n + k − 1).

8 / 15



Unital channels

Uunital := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(I ) = I}.

Theorem

One has
Uunital = Unk ∩ UΓ

nk ,

where AΓ = [id⊗ transp](A) denotes the partial transposition of A. In
other words, U ∈ Uunital iff. both U and UΓ are unitary operators.

Uaut = {V ⊗W : V ,W ∈ Un} ⊆ Uunital .

If n > 1, then Uconst ∩ Uunital = ∅.
Uunital is a non-smooth algebraic variety, of dimension nk(n + k − 1).

8 / 15



Block diagonal unitary matrices

Block-diagonal unitary operators with respect to the system A (resp. B)

UA
block−diag = {U ∈ Unk |U =

k∑
i=1

Ui ⊗ ei f
∗

i ,

with Ui ∈ Un and {ei}, {fi} orthonormal bases in Ck}

UB
block−diag = {U ∈ Unk |U =

n∑
i=1

ei f
∗

i ⊗ Ui ,

with Ui ∈ Uk and {ei}, {fi} orthonormal bases in Cn}

More generally, U ∈ UA
block−diag iff.

U =
r∑

i=1

Ui ⊗ Ri ,

where Ui are unitary operators acting on Cn and Ri are partial isometries
Ri : Ck → Ck such that

∑r
i=1 Ri R

∗
i =

∑r
i=1 R∗i Ri = Ik . Moreover, the

decomposition is unique, up to the permutation of the terms in the sum
and CUi 6= CUj for i 6= j .
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Block diagonal unitary matrices

Proposition

If n = 2, then
UB

block−diag ⊆ UA
block−diag .

In particular, when n = k = 2, we have

UA
block−diag = UB

block−diag .

UB
block−diag 3 U = e1f ∗1 ⊗ U1 + e2f ∗2 ⊗ U2

= (I ⊗ U1) [e1f ∗1 ⊗ I + e2f ∗2 ⊗ (U∗1 U2)]

= (I ⊗ U1)

[
e1f ∗1 ⊗

(
k∑

i=1

gi g
∗
i

)
+ e2f ∗2 ⊗

(
k∑

i=1

λi gi g
∗
i

)]

= (I ⊗ U1)
k∑

i=1

(e1f ∗1 + λi e2f ∗2 )⊗ gi g
∗
i

= (I ⊗ U1)
k∑

i=1

Wi ⊗ gi g
∗
i =

k∑
i=1

Wi ⊗ hi g
∗
i ∈ UA

block−diag .
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Block diagonal unitary matrices

Proposition

A unitary operator U is block diagonal with respect to both tensor
factors A and B (i.e. U ∈ UA

block−diag ∩ UB
block−diag ) iff.

U =
s∑

i=1

r∑
j=1

λij Qi ⊗ Rj ,

where, for all i = 1, . . . , s, j = 1, . . . , r , |λij | = 1, and where (Qi )i=1,...,s ,
(Rj )j=1,...,r are two family of partial isometries respectively on Cn and Ck

satisfying

s∑
i=1

Qi Q
∗
i =

s∑
i=1

Q∗i Qi = In ,
r∑

j=1

Rj R
∗
j =

r∑
j=1

R∗j Rj = Ik .

UA
block−diag is a real algebraic variety of dimension (n > 1)

dimUA
block−diag = k(n2 + 2k − 2).

dimUA
block−diag ∩ UB

block−diag = 2n2 + 2k2 + nk − 2n − 2k.
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Mixed quantum channels

Umixed := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β ∈ conv{V · V ∗}V∈Un}

= {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(X ) =

r(β)∑
i=1

pi (β)Ui (β)XUi (β)∗}

Uprob := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(X ) =

r∑
i=1

pi (β)Ui XU∗i

with pi (β) ≥ 0 and
∑

i

pi (β) = 1}

Uprob−lin := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(X ) =

r∑
i=1

pi (β)Ui XU∗i

with linear pi (β) ≥ 0 and
∑

i

pi (β) = 1}

We have the following chain of inclusions

UA
block−diag ⊆ Uprob−lin ⊆ Uprob ⊆ Umixed ⊆ Uunital .
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Mixed quantum channels

Theorem

We have Uprob−lin = UA
block−diag .

Since β 7→ pi (β) are linear, there exists a POVM (Mi ) such that
pi (β) = Tr(Miβ).

Prove the Mi ’s have orthogonal supports.

Construct a candidate unitary operator Ũ.

Use the fact that

∀β ∈M1,+
k (C), LU,β = LŨ,β ⇐⇒ ∃W ∈ Uk s.t. U = (In ⊗W )Ũ.

Proposition

When n = 2, UA
block−diag = Uunital , so we have

UA
block−diag = Uprob−lin = Uprob = Umixed = Uunital .
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Some work in progress...

Question

Characterize the unitarily invariant sets

UPPT = {U ∈ Unk | ∀β ∈M1,+
k (C),

LU,β is a PPT channel }
UEB = {U ∈ Unk | ∀β ∈M1,+

k (C),

LU,β is an entanglement breaking channel }.

Obviously, Uconst ⊆ UPPT ⊆ UEB . Is there equality ?
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The End

thank you for your attention


