Bipartite unitary operators inducing unitarily invariant classes of quantum channels

Ion Nechita

TU München and CNRS

joint work with Julien Deschamps and Clément Pellegrini

Genova, July 1st 2015

Theorem

Any quantum channel $L : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ (i.e. completely positive, trace preserving linear map) can be written as

 $L(\rho) = [\mathrm{id} \otimes \mathrm{Tr}] (U(\rho \otimes \beta)U^*)$

for some environment of size k ($k = n^2$ suffices), a quantum state $\beta \in \mathcal{M}_n^{1,+}(\mathbb{C})$ and a global unitary operator $U \in \mathcal{U}_{nk}$.

Theorem

Any quantum channel $L : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ (i.e. completely positive, trace preserving linear map) can be written as

 $L(\rho) = [\mathrm{id} \otimes \mathrm{Tr}] (U(\rho \otimes \beta)U^*)$

for some environment of size k ($k = n^2$ suffices), a quantum state $\beta \in \mathcal{M}_n^{1,+}(\mathbb{C})$ and a global unitary operator $U \in \mathcal{U}_{nk}$.

• What if we do not know / have access to β , the state of the environment ?

The main problem

$$L_{U,eta}(
ho):= [\mathrm{id}\otimes\mathrm{Tr}]\,(U(
ho\otimeseta)U^*)$$

Our mantra

Given a family $\mathcal L$ of quantum channels, characterize the set

 $\mathcal{U}_{\mathcal{L}} := \{ U \in \mathcal{U}_{nk} : \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U,\beta} \in \mathcal{L} \}.$

The main problem

$$L_{U,eta}(
ho):=[\mathrm{id}\otimes\mathrm{Tr}]\left(U(
ho\otimeseta)U^*
ight)$$

Our mantra

Given a family $\mathcal L$ of quantum channels, characterize the set

$$\mathcal{U}_{\mathcal{L}} := \{ U \in \mathcal{U}_{nk} : \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U,\beta} \in \mathcal{L} \}.$$

• If the set \mathcal{L} is unitarily invariant, i.e.

$$L \in \mathcal{L} \iff \forall V_{1,2} \in \mathcal{U}_n, \ V_1 L(V_2 \cdot V_2^*) V_1^* \in \mathcal{L},$$

then the set $\mathcal{U}_{\mathcal{L}}$ is invariant by local unitary multiplication:

 $U \in \mathcal{U}_{\mathcal{L}} \iff \forall V_{1,2} \in \mathcal{U}_n, \forall W_{1,2} \in \mathcal{U}_k, \ (V_1 \otimes W_2) U(V_2 \otimes W_2) \in \mathcal{U}_{\mathcal{L}}.$

The main problem

$$L_{U,eta}(
ho):= [\mathrm{id}\otimes\mathrm{Tr}]\left(U(
ho\otimeseta)U^*
ight)$$

Our mantra

Given a family $\mathcal L$ of quantum channels, characterize the set

$$\mathcal{U}_{\mathcal{L}} := \{ U \in \mathcal{U}_{nk} : \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U,\beta} \in \mathcal{L} \}.$$

• If the set \mathcal{L} is unitarily invariant, i.e.

$$L \in \mathcal{L} \iff \forall V_{1,2} \in \mathcal{U}_n, \ V_1 L(V_2 \cdot V_2^*) V_1^* \in \mathcal{L},$$

then the set $\mathcal{U}_{\mathcal{L}}$ is invariant by local unitary multiplication:

 $U \in \mathcal{U}_{\mathcal{L}} \iff \forall V_{1,2} \in \mathcal{U}_n, \forall W_{1,2} \in \mathcal{U}_k, \ (V_1 \otimes W_2) U(V_2 \otimes W_2) \in \mathcal{U}_{\mathcal{L}}.$

\$\mathcal{L}_{aut} = {V \cdot V^*}_{V \in \mathcal{U}_n}\$
\$\mathcal{L}_{const} = {constant channels}\$
\$\mathcal{L}_{PPT} = {L : L is PPT}\$
\$\mathcal{L}_{unital} = {L : L(I) = I}\$
\$\mathcal{L}_{EB} = {L : L is entanglement breaking}\$

$$\mathcal{U}_{aut} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta}(\rho) = V_{\beta} \rho V_{\beta}^* \}.$$

Theorem

We have $\mathcal{U}_{aut} = \{ \mathbf{V} \otimes \mathbf{W} : \mathbf{V} \in \mathcal{U}_n, \ \mathbf{W} \in \mathcal{U}_k \}.$ For $U = \mathbf{V} \otimes \mathbf{W}, \ L_{U,\beta}(\rho) = \mathbf{V}\rho\mathbf{V}^*.$

$$\mathcal{U}_{aut} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta}(\rho) = V_{\beta} \rho V_{\beta}^* \}.$$

Theorem

We have $\mathcal{U}_{aut} = \{ \mathbf{V} \otimes \mathbf{W} : \mathbf{V} \in \mathcal{U}_n, \ \mathbf{W} \in \mathcal{U}_k \}.$ For $U = \mathbf{V} \otimes \mathbf{W}, \ L_{U,\beta}(\rho) = \mathbf{V}\rho\mathbf{V}^*.$

$$\mathcal{U}_{\text{single}} := \{ U \in \mathcal{U}_{nk} \, | \, \text{the set} \, \{ L_{U,\beta} \, : \, \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}) \} \text{ has } 1 \text{ element} \}.$$

In other words, $U \in \mathcal{U}_{single}$ iff. the channel $L_{U,\beta}$ does not depend on β , the state of the environment.

Proposition

We have $\mathcal{U}_{single} = \mathcal{U}_{aut} = \{ V \otimes W \}.$

 $\mathcal{U}_{const} := \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta} \text{ is a constant channel} \}.$

Theorem

If $k\neq rn$ for $r=1,2,\ldots,$ then \mathcal{U}_{const} is empty. If $k=r\cdot n$ for some positive r, then

$$\mathcal{U}_{const} = \{ (I_n \otimes V)(F_n \otimes I_r)(I_n \otimes W) : V, W \in \mathcal{U}_k \},\$$

where $F_n \in U_{n^2}$ denotes the flip operator. For $U \in U_{const}$ as above, $L_{U,\beta}(\rho) = [\operatorname{id}_n \otimes \operatorname{Tr}_r](W\beta W^*)$. $\mathcal{U}_{const} := \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta} \text{ is a constant channel} \}.$

Theorem

If $k \neq rn$ for $r = 1, 2, ..., then U_{const}$ is empty. If $k = r \cdot n$ for some positive r, then

$$\mathcal{U}_{const} = \{ (I_n \otimes V)(F_n \otimes I_r)(I_n \otimes W) : V, W \in \mathcal{U}_k \},\$$

where $F_n \in U_{n^2}$ denotes the flip operator. For $U \in U_{const}$ as above, $L_{U,\beta}(\rho) = [\operatorname{id}_n \otimes \operatorname{Tr}_r](W\beta W^*)$.

Corollary

If n = k, then $\mathcal{U}_{const} = F_n \cdot \mathcal{U}_{aut} = F_n \cdot \{ V \otimes W \ : \ V, W \in \mathcal{U}_n \}.$

$$\mathcal{U}_{unital} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta}(I) = I \}.$$

Theorem

One has

$$\mathcal{U}_{unital} = \mathcal{U}_{nk} \cap \mathcal{U}_{nk}^{\Gamma},$$

where $A^{\Gamma} = [id \otimes transp](A)$ denotes the partial transposition of A. In other words, $U \in U_{unital}$ iff. both U and U^{Γ} are unitary operators.

$$\mathcal{U}_{unital} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta}(I) = I \}.$$

Theorem

One has

$$\mathcal{U}_{unital} = \mathcal{U}_{nk} \cap \mathcal{U}_{nk}^{\mathsf{\Gamma}},$$

where $A^{\Gamma} = [id \otimes transp](A)$ denotes the partial transposition of A. In other words, $U \in U_{unital}$ iff. both U and U^{Γ} are unitary operators.

- $\mathcal{U}_{aut} = \{ V \otimes W : V, W \in \mathcal{U}_n \} \subseteq \mathcal{U}_{unital}.$
- If n > 1, then $\mathcal{U}_{const} \cap \mathcal{U}_{unital} = \emptyset$.
- U_{unital} is a non-smooth algebraic variety, of dimension nk(n+k-1).

Block-diagonal unitary operators with respect to the system A (resp. B)

$$\mathcal{U}^{A}_{block-diag} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{k} U_i \otimes e_i f_i^*,$$

with $U_i \in \mathcal{U}_n$ and $\{e_i\}, \{f_i\}$ orthonormal bases in \mathbb{C}^k

Block-diagonal unitary operators with respect to the system A (resp. B)

$$\mathcal{U}_{block-diag}^{A} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{k} U_i \otimes e_i f_i^*,$$

with $U_i \in \mathcal{U}_n$ and $\{e_i\}, \{f_i\}$ orthonormal bases in $\mathbb{C}^k \}$

$$\mathcal{U}_{block-diag}^{B} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{n} e_{i} f_{i}^{*} \otimes U_{i},$$

with $U_{i} \in \mathcal{U}_{k}$ and $\{e_{i}\}, \{f_{i}\}$ orthonormal bases in $\mathbb{C}^{n}\}$

n

Block-diagonal unitary operators with respect to the system A (resp. B)

$$\mathcal{U}^{A}_{block-diag} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{k} U_i \otimes e_i f_i^*,$$

with $U_i \in \mathcal{U}_n$ and $\{e_i\}, \{f_i\}$ orthonormal bases in \mathbb{C}^k

$$\mathcal{U}^{\mathcal{B}}_{block-diag} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{n} e_i f_i^* \otimes U_i,$$

with $U_i \in \mathcal{U}_k$ and $\{e_i\}, \{f_i\}$ orthonormal bases in \mathbb{C}^n

More generally, $U \in \mathcal{U}^{A}_{block-diag}$ iff.

$$U=\sum_{i=1}^r U_i\otimes R_i,$$

where U_i are unitary operators acting on \mathbb{C}^n and R_i are partial isometries $R_i : \mathbb{C}^k \to \mathbb{C}^k$ such that $\sum_{i=1}^r R_i R_i^* = \sum_{i=1}^r R_i^* R_i = I_k$. Moreover, the decomposition is unique, up to the permutation of the terms in the sum and $\mathbb{C}U_i \neq \mathbb{C}U_j$ for $i \neq j$.

Proposition If n = 2, then

 $\mathcal{U}^{\mathcal{B}}_{block-diag} \subseteq \mathcal{U}^{\mathcal{A}}_{block-diag}.$

In particular, when n = k = 2, we have

$$\mathcal{U}^{\mathcal{A}}_{block-diag} = \mathcal{U}^{\mathcal{B}}_{block-diag}.$$

Proposition

If n = 2, then

$$\mathcal{U}^{\mathcal{B}}_{block-diag} \subseteq \mathcal{U}^{\mathcal{A}}_{block-diag}.$$

In particular, when n = k = 2, we have

$$\mathcal{U}^{\mathcal{A}}_{block-diag} = \mathcal{U}^{\mathcal{B}}_{block-diag}.$$

$$\begin{aligned} \mathcal{U}_{block-diag}^{B} \ni U &= e_{1}f_{1}^{*} \otimes U_{1} + e_{2}f_{2}^{*} \otimes U_{2} \\ &= (I \otimes U_{1})\left[e_{1}f_{1}^{*} \otimes I + e_{2}f_{2}^{*} \otimes (U_{1}^{*}U_{2})\right] \\ &= (I \otimes U_{1})\left[e_{1}f_{1}^{*} \otimes \left(\sum_{i=1}^{k}g_{i}g_{i}^{*}\right) + e_{2}f_{2}^{*} \otimes \left(\sum_{i=1}^{k}\lambda_{i}g_{i}g_{i}^{*}\right)\right] \\ &= (I \otimes U_{1})\sum_{i=1}^{k}(e_{1}f_{1}^{*} + \lambda_{i}e_{2}f_{2}^{*}) \otimes g_{i}g_{i}^{*} \\ &= (I \otimes U_{1})\sum_{i=1}^{k}W_{i} \otimes g_{i}g_{i}^{*} = \sum_{i=1}^{k}W_{i} \otimes h_{i}g_{i}^{*} \in \mathcal{U}_{block-diag}^{A}. \end{aligned}$$

Proposition

A unitary operator U is block diagonal with respect to both tensor factors A and B (i.e. $U \in U^A_{block-diag} \cap U^B_{block-diag}$) iff.

$$U = \sum_{i=1}^{s} \sum_{j=1}^{r} \lambda_{ij} \ \mathbf{Q}_{i} \otimes \mathbf{R}_{j},$$

where, for all i = 1, ..., s, j = 1, ..., r, $|\lambda_{ij}| = 1$, and where $(Q_i)_{i=1,...,s}$, $(R_j)_{j=1,...,r}$ are two family of partial isometries respectively on \mathbb{C}^n and \mathbb{C}^k satisfying

$$\sum_{i=1}^{s} Q_i Q_i^* = \sum_{i=1}^{s} Q_i^* Q_i = I_n \quad , \quad \sum_{j=1}^{r} R_j R_j^* = \sum_{j=1}^{r} R_j^* R_j = I_k.$$

Proposition

A unitary operator U is block diagonal with respect to both tensor factors A and B (i.e. $U \in U^A_{block-diag} \cap U^B_{block-diag}$) iff.

$$U = \sum_{i=1}^{s} \sum_{j=1}^{r} \lambda_{ij} \ \mathbf{Q}_{i} \otimes \mathbf{R}_{j},$$

where, for all i = 1, ..., s, j = 1, ..., r, $|\lambda_{ij}| = 1$, and where $(Q_i)_{i=1,...,s}$, $(R_j)_{j=1,...,r}$ are two family of partial isometries respectively on \mathbb{C}^n and \mathbb{C}^k satisfying

$$\sum_{i=1}^{s} Q_i Q_i^* = \sum_{i=1}^{s} Q_i^* Q_i = I_n \quad , \qquad \sum_{j=1}^{r} R_j R_j^* = \sum_{j=1}^{r} R_j^* R_j = I_k.$$

$$\begin{aligned} \mathcal{U}_{mixed} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), \, L_{U,\beta} \in \operatorname{conv} \{ V \cdot V^* \}_{V \in \mathcal{U}_n} \} \\ &= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), \, L_{U,\beta}(X) = \sum_{i=1}^{r(\beta)} p_i(\beta) U_i(\beta) X U_i(\beta)^* \} \end{aligned}$$

$$\begin{aligned} \mathcal{U}_{mixed} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, L_{U,\beta} \in \operatorname{conv} \{ V \cdot V^{*} \}_{V \in \mathcal{U}_{n}} \} \\ &= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, L_{U,\beta}(X) = \sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*} \} \\ \mathcal{U}_{prob} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*} \\ & \text{with } p_{i}(\beta) \geq 0 \text{ and } \sum_{i} p_{i}(\beta) = 1 \} \end{aligned}$$

$$\mathcal{U}_{mixed} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta} \in \operatorname{conv} \{ V \cdot V^{*} \}_{V \in \mathcal{U}_{n}} \}$$

$$= \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*} \}$$

$$\mathcal{U}_{prob} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}$$
with $p_{i}(\beta) \geq 0$ and $\sum_{i} p_{i}(\beta) = 1 \}$

$$\mathcal{U}_{prob-lin} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}$$
with linear $p_{i}(\beta) \geq 0$ and $\sum_{i} p_{i}(\beta) = 1 \}$

$$\mathcal{U}_{mixed} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta} \in \operatorname{conv}\{V \cdot V^{*}\}_{V \in \mathcal{U}_{n}} \}$$

$$= \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r(\beta)} p_{i}(\beta)U_{i}(\beta)XU_{i}(\beta)^{*} \}$$

$$\mathcal{U}_{prob} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta)U_{i}XU_{i}^{*}$$
with $p_{i}(\beta) \geq 0$ and $\sum_{i} p_{i}(\beta) = 1 \}$

$$\mathcal{U}_{prob-lin} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta)U_{i}XU_{i}^{*}$$
with linear $p_{i}(\beta) \geq 0$ and $\sum_{i} p_{i}(\beta) = 1 \}$

We have the following chain of inclusions

$$\mathcal{U}_{block-diag}^{A} \subseteq \mathcal{U}_{prob-lin} \subseteq \mathcal{U}_{prob} \subseteq \mathcal{U}_{mixed} \subseteq \mathcal{U}_{unital}.$$

Theorem

We have $\mathcal{U}_{prob-lin} = \mathcal{U}^{A}_{block-diag}$.

Theorem

We have $\mathcal{U}_{prob-lin} = \mathcal{U}^{A}_{block-diag}$.

- Since $\beta \mapsto p_i(\beta)$ are linear, there exists a POVM (M_i) such that $p_i(\beta) = \text{Tr}(M_i\beta)$.
- Prove the M_i 's have orthogonal supports.
- Construct a candidate unitary operator \tilde{U} .
- Use the fact that

$$\forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), \ L_{U,\beta} = L_{\tilde{U},\beta} \iff \exists W \in \mathcal{U}_k \text{ s.t. } U = (I_n \otimes W) \tilde{U}.$$

Theorem

We have $\mathcal{U}_{prob-lin} = \mathcal{U}^{A}_{block-diag}$.

- Since $\beta \mapsto p_i(\beta)$ are linear, there exists a POVM (M_i) such that $p_i(\beta) = \text{Tr}(M_i\beta)$.
- Prove the M_i 's have orthogonal supports.
- Construct a candidate unitary operator \tilde{U} .
- Use the fact that

$$\forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), \ L_{U,\beta} = L_{\tilde{U},\beta} \iff \exists W \in \mathcal{U}_k \text{ s.t. } U = (I_n \otimes W) \tilde{U}.$$

Proposition

When
$$n = 2$$
, $U^{A}_{block-diag} = U_{unital}$, so we have
 $U^{A}_{block-diag} = U_{prob-lin} = U_{prob} = U_{mixed} = U_{unital}$.

Question

Characterize the unitarily invariant sets

$$\begin{split} \mathcal{U}_{PPT} &= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \\ & L_{U,\beta} \text{ is a } PPT \text{ channel } \} \\ \mathcal{U}_{EB} &= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \\ & L_{U,\beta} \text{ is an entanglement breaking channel } \}. \end{split}$$

Obviously, $U_{const} \subseteq U_{PPT} \subseteq U_{EB}$. Is there equality ?

The End

thank you for your attention