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Outline of the talk

@ Random quantum channels and their minimum output entropy
@ Lower bounding H™" (¢ @ ®)
© Computing H™" (&)

© Additivity violations
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Random quantum channels
and their minimum output entropy



Additivity for MOE of quantum channels

@ Quantum channels: CPTP maps ¢ : M;,(C) = Mou:(C).
@ Rényi entropies

7[), H(p) = H(p) = —Tr(plog p).

p-Minimal Output Entropy of a quantum channel

Hoin(®) = min  H"(®(p))

PEMT(C)
= min HP(CD(PX))
xeCin
@ Is the p-MOE additive ?

e NO I
e p > 1: Hayden + Winter '08;
e p = 1: Hastings '08
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Importance of additivity

@ Simple formula for the (classical) capacity of quantum channels: if
additivity holds, then there is no need to use inputs entangled over
multiple uses of ®.

@ Shor '04 equivalence of additivity questions

© additivity of MOE
@ additivity of the Holevo capacity x (= Cg in Andreas’ talk)
© (strong super-) additivity of the entanglement of formation Er.

@ Additivity proved for some particular channels: unital qubit,
depolarizing, entanglement breaking, etc.

@ Holevo-Werner channel violates additivity of the p-Rényi entropy for
p > 4.79. No known deterministic examples for p = 1 of p close to
1.

o Difficult, mathematically challenging problem.
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Random quantum channels

@ Counterexamples to additivity conjectures are random.
@ Random quantum channels from random isometries

¢(P) = Tranc(VpV*)y
where V is a Haar partial isometry

V . (Cin N (COL‘t ® (Canc.
Equivalently, via the Stinespring dilation theorem

®(p) = Tranc(U(p @ Py)U*)a

out Xanc

where y € C™ i and U € Moutxanc(C) is a Haar unitary matrix.
@ Random quantum channels from i.i.d. random unitary matrices
(random mixed unitary channels)

K
®(p) = ZPiUiPUi*a
i=1

for (random) probabilities p; and i.i.d. Haar distributed unitary
operators U;.
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Model of interest

Here, we focus on random quantum channels coming from random
isometries, with the following parameters.

@ in = tnk,
e out = k,
@ anc = n,

where n,k € Nand t € (0,1). In general, we shall assume that

e n— oo
@ k is fixed
@ tis fixed.

In other words, we are interested in ® : M (C) — M (C),
(p) = [ide ® TraJ(VpV*),
where V is a random isometry obtained by keeping the first tnk columns

of a nk x nk Haar random unitary.
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How to get counterexamples 7

o Choose ® to be random and W = &; this way, H?, (V) = HP, ().

@ Bound
HP

min

(¢ @) < By < 2B; < 2HP, (9).
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Lower bounding H™"(¢ ® ®)



Strategy for B

@ Remember: we want

HP

min(q) @ CTD) < B < 281§2Hr€11n(¢)'

P (@@ D) < HP ([ ® ]](X12)), for a particular
choice of Xi2 € Mnk(C) ® Mk (C).

o Xip = Xi ® X5 do not yield counterexamples = choose a maximally
entangled state

@ Use trivial bound H”

tnk

1 1 tnk
X2 = Btk = | — e ® e — e ® e
o= (Jir3eee) (Ap 2 aes
@ Bound entropies of the (random) density matrix

Z, = [® @ O](Ernk) € My(C) @ M(C).
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Main result - finite rank output

Theorem (Collins + N. '09)

For all k, t, almost surely as n — oo, the eigenvalues of
Z, = [® ® ®](Enk) converge to

1—t 1—t 1-—t

2 e
—_ —————

k2—1 times

@ Previously known bound (deterministic, comes from linear algebra):
for all t, n, k, the largest eigenvalue of Z, is at least t.

@ Two improvements:

@ ‘better” largest eigenvalue,
@ knowledge of the whole spectrum.

@ Precise knowledge of eigenvalues ~~ optimal estimates for entropies.

@ However, smaller eigenvalues are the “worst possible”.
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Proof strategy for a.s. spectrum Z,

@ Use the method of moments

@ Convergence in moments:
1—t\? 1—t\”
ETr(ZF) — (t+ = ) +(k2—1)( = ) ;

© Borel-Cantelli for a.s. convergence:

oo

S E [(Tr(Z,‘,’) - IETr(Z,‘,’))Q] < 0.

n=1

e We need to compute moments E [Tr(ZP)% ... Tr(ZP<)%].
@ Use the Weingarten formula to compute the unitary averages.
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Unitary integration - Weingarten formula

@ Using matrix coordinates, we can reduce our problem to computing
integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and (i1, ..., ip), (i{;---ip), (1s---sJp),
(J1s---+Jp) be p-tuples of positive integers from {1,2,...,d}. Then

/ Uji -+ Uy Uiy - - Uy dU =
U(d)

2 : =1
(5,1,(;(1) cen (5,;,,;(”)51“;3(1) cen (5Jpjé(p)Wg(d, 015 )

If p# p’ then

Uy - Uy, dU =0.

/Jp/

Uiljl e Uipjp b
u(d)

@ There is a graphical way of reading this formula on the diagrams !
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Boxes & wires

@ Graphical formalism inspired by works of Penrose, Coecke, Jones,

etc.

@ Tensors ~~ decorated boxes.
%y Vo

\+ <

M -3 r ® g )

[ -

VQ* Vl
MeVieVheVs Ve Vy zeW; peVy

@ Tensor contractions (or traces) V ® V* — C ~~ wires.

TV ToF
dAB ® A ™9 B P w

Tr(C) Try, (D)

o Maximally entangled vector Bell = Z?':";V e®eeVeV

vl-C

Il
a
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Graphical representation of quantum channels

@ Decorations/labels
® __n B~k ® __ (ink
0=C n=C o=C

@ Single channel (finite rank output)

D@(}()} E]UA 4

T
U v
] o
] Z:[(I)@(P](Etnk> t = Wk d :::)C::
U ur
L—
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“Graphical” Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and
U*. Apply the following removal procedure:

@ Start by replacing U* boxed by U boxes (by reversing decoration
shading).

@ By the (algebraic) Weingarten formula, if the number p of U boxes
is different from the number of U boxes, then ED = 0.

@ Otherwise, choose a pair of permutations («, ) € Sg. These
permutations will be used to pair decorations of U/U boxes.

Q Foralli=1,...,p, add a wire between each white decoration of the
i-th U box and the corresponding white decoration of the a(i)-th U
box. In a similar manner, use 3 to pair black decorations.

@ Erase all U and U boxes. The resulting diagram is denoted by
Dia,py-

ED = Y DiasWe(d,af™).
a,BES,
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Example: ETr(Z?)

@ We have to compute a sum over all pairings of 4 “U" boxes with 4

“U" boxes.

@ Diagrams associated to pairings are indexed by 2 permutations
(o, B) € S7. Consider the permutation § = (1 4) (23) € Ss.

The original diagram
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Example: ETr(Z?)

@ We have to compute a sum over all pairings of 4 “U" boxes with 4

“U" boxes.

@ Diagrams associated to pairings are indexed by 2 permutations
(o, B) € S7. Consider the permutation § = (1 4) (23) € Ss.

The diagram with the boxes removed
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Example: ETr(Z?)

@ We have to compute a sum over all pairings of 4 “U" boxes with 4

“U" boxes.

@ Diagrams associated to pairings are indexed by 2 permutations
(o, B) € S7. Consider the permutation § = (1 4) (23) € Ss.

The wiring for o = g = id.

Contribution: n*- k2 - (tnk)? - Wg(id).
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Example: ETr(Z?)

@ We have to compute a sum over all pairings of 4 “U" boxes with 4

“U" boxes.

@ Diagrams associated to pairings are indexed by 2 permutations
(o, B) € S7. Consider the permutation § = (1 4) (23) € Ss.

The wiring for « = = 0.

Contribution: n? - k? - (tnk)* - Wg(id).
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Sketch of the proof

e We want to compute, for all p > 1, ETr(ZP).

@ One needs to compute the contribution of each diagram D, g,
where o, B € Syp.

@ D(,p) is a collection of loops associated to vector spaces of
dimensions n, k, and tnk.

e Asymptotic for Weingarten weights (o € Sp, d — o0, p fixed):

Wg(d, o) = d~P*1eD(Mob(c) + O(d72)).

@ One has to identify asymptotically dominating terms. Computations
for fixed n are intractable due to the complexity of the Weingarten
function. In the limit n — oo, the structure of the dominating terms
is very simple.

Theorem (Collins + N. '09)

For all k, t, almost surely as n — oo,

1—t 1t 1t

2 2 TR
—_— —

k2—1 times

spec(Z,) — | t+

€ Apa.
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Computing H™"(d)



Strategy for B;

@ Remember: we want

HP

min

(¢ @ P)<B, < 2B; < 2HP, ().

@ We shall do more: we compute the exact limit (as n — oo) of

Hnﬁin(q))'

Theorem (Belinschi, Collins, N. '13)
For all p > 1,

im HI'™(®) = Hp(a, b, b, ..., b),

where a, b do not depend on p, b= (1—a)/(k — 1) and a = ¢(1/k, t)
with

s+t—2st+24/st(l—s)(1—1t) ifs+t<1;
Qo(svt): .
1 ifs+t>1.
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Entanglement of a vector

For a vector .
X = Z VAi(x)e @ fi,
i=1

define H(x) = H(A(x)) = H(p) = — >_; Ai(x) log Ai(x), the entropy of
entanglement of the bipartite pure state x.
Note that
@ The state x is separable, x = e ® f, iff. H(x) =0.
@ The state x is maximally entangled, x = k—1/2 Zi e ® f;, iff.
H(x) = log k.

Recall that we are interested in computing

H™M(d) = min H(®(P))= min  H([idk ® Tr,]P
(®) Xe@,’hx“:l( (Px)) PRI (lidx ® Tra]Py)
= min H(

y€lmV, ||y[|=1
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Entanglement of a subspace

For a subspace V C Ck @ C", define

HEn (V)= min  Hy(y),

yeV,lyll=1

the minimal entanglement of vectors in V.

Here, we abuse notation: recall that we are interested in random
isometries V : Ct"% — Ck ® C". Since the quantities HZ'™ only depend
on the range of V, also write V =ranV.

A subspace V is called entangled if H™"(V) > 0, i.e. if it does not
contain separable vectors x ® y.
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Singular values of vectors from a subspace

~ Entropy is just a statistic, look at the set of all singular values directly!

For a subspace V C Ck ® C" of dimension dim V = d, define the set
eigen- /singular values or Schmidt coefficients

[Kv={\(x) : x €V, ||x| =1}

~> Our goal is to understand Ky .

@ The set Ky is a compact subset of the ordered probability simplex
NG
k

o Local invariance: Ky,gu,)v = Kv, for unitary matrices U; € U(k)
and U, € U(n).

@ Monotonicity: if Vi C Vs, then Ky, C Ky,.

@ Recovering minimum entropies:

HE™(®) = HI"(V) = min Hy(\).
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The anti-symmetric subspace provides the (explicit) counter-example for
the additivity of the p-Rényi entropy [Grudka, Horodecki, Pankowski '09].

o

Let k = n and put V = A?(C")

The subspace V is almost half of the total space:
dimV =n(n—1)/2.

Example of a vector in V:

1
Vox=—(e®f—-f®e).
5 )

Fact: singular values of vectors in V come in pairs.

Hence, the least entropy vector in V is as above, with e L f and
H(x) = log 2.

Thus, H™"(V/) = log 2 and one can show that

KV = {()\1,)\1,/\2,)\2,...) S A,, : )\,’ > 07 Z/\, = 1/2}
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Examples - Ky

V = span{ G, G,}, where Gy, are 3 x 3 independent Ginibre random
matrices.

(1,000

(0,0,1) (0,1,00
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Examples - Ky

V = span{ G, G,}, where Gy, are 3 x 3 independent Ginibre random
matrices.

(1,000

(0,0,1) (0,1,00
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Examples - Ky

V = span{l3, G}, where G is a 3 x 3 Ginibre random matrix.

(10,09

(0,0,1) (0,1,0)
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Examples - Ky

V = span{l3, G}, where G is a 3 x 3 Ginibre random matrix.

(10,09

(0,0,1) (0,1,0)
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An open problem

Find explicit (i.e. non-random) examples of subspaces V C Ck @ C" with
Q large dim V;
Q large H™"(V).

29 / 42



Main result

Recall that we are interested in random isometries/subspaces in the
following asymptotic regime: k fixed, n — oo, and d ~ tkn, for a fixed
parameter t € (0,1).

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V,,, the set
Ky, of singular values of unit vectors from V,, converges (almost surely,
in the Hausdorff distance) to a deterministic, convex subset Kkt of the
probability simplex A

] Kit :={\ € Ag | Yx € Dy, (A, x) < ||xu(t)}.\
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Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed,
n — oo, d ~ tkn, we have the following a.s. convergence result for
random quantum channels ® (defined via random isometries

V:C¢— CkeCn):

lim H'M(®) = min H,(A).

n—00 Yo
It is not just a bound, the exact limit value is obtained.
Theorem (Belinschi, Collins, N. '13)
For all p > 1,

lim H"™(®) = min Hp(\) = Hy(a, b, b, ..., b),

n—o00 AEK,

where a, b do not depend on p, b= (1—a)/(k — 1) and a = o(1/k,t)
with

s+t —2st+24/st(l —s)(1—t) ifs+t<l;
90(57 t) =

1 ifs+t>1.
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Asymptotic freeness of random matrices

Theorem (Voiculescu '98)

Let (A,) and (B,) be sequences of n x n matrices such that A, and B,
converge in distribution (with respect to n=Tr) for n — oc.
Furthermore, let (U,) be a sequence of Haar unitary n X n random
matrices. Then, A, and U,B,U} are asymptotically free for n — oc.

If A,, B, are matrices of size n, whose spectra converge towards fia, fip,
the spectrum of A, + U,B,U; converges to u, B up; here, u,Hup is the
distribution of a + b, where a, b € (A, T) are free random variables
having distributions resp. ., ttp-

If A, B, are matrices of size n such that A, > 0, whose spectra converge
towards pi, itp, the spectrum of A},/2 U,,B,,U,’jA},/2 converges to iy X pp.
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Example: truncation of random matrices

Let P, € M, a projection of rank n/2; its eigenvalues are 0 and 1, with
multiplicity n/2. Hence, the distribution of P, converges, when n — o,
to the Bernoulli probability measure %50 + %51.

Let G, € M, » be the top n/2 x n/2 corner of U,P,U;;, with U, a Haar
random unitary matrix. What is the distribution of C, ?

Up to zero blocks, C, = Qn(U,P,U})Q,, where Q, is the diagonal
orthogonal projection on the first n/2 coordinates of C". The distribution
of @, converges to %50 + %61.

Free probability theory tells us that the distribution of C, will converge to
1 1 1 1 1
—0o+ =01) X (Zbg+ =61) = ————=1 x)dx,
(2 o+ 3 1) (2 ot 5 1) e fpl 0,1(x)

which is the arcsine distribution.
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Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of
relative rank 1/2 and size n = 4000; in red, the density of the arcsine
distribution.

Density

st

000

0.2
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The t-norm

Definition

For a positive integer k, embed R¥ as a self-adjoint real subalgebra R of
a C*-ncps (A, 7), so that 7(x) = (x1 + - - - + xk)/k. Let p; be a
projection of rank t € (0,1] in A, free from R. On the real vector space
R* we introduce the following norm, called the (t)-norm:

IX[ley = [lpexpel oo,

where the vector x € R¥ is identified with its image in R.

@ One can show that || - || is indeed a norm, which is permutation
invariant.
@ Whent >1—1/k, || [l = || - lloc on R,

) |imtﬁo+ ||X||(t) = k_1| Zl-X,'|.
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Corners of randomly rotated projections

Theorem (Collins '05)

In C", choose at random according to the Haar measure two independent
subspaces V), and V) of respective dimensions q, ~ sn and q/, ~ tn
where s, t € (0,1]. Let P, (resp. P!) be the orthogonal projection onto
V,, (resp. V). Then,

lim || P, P Pylloe = (s, t) = supsupp((1 — s)do + s61) X ((1 — £)do + td1),
with

s+t—2st+24/st(l—5s)(1—t ifs+t<1;
w(s,t)_{ T—s)(T—1)

1 ifs+t>1.

Hence, we can compute

J
”]-a 1,0, 7O||(t):‘p(ﬁvt)'
—— ——

Jj times  k—j times
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Ky, — Kk idea of the proof

A simpler question: what is the largest maximal singular value
Maxyev,|x||=1 A1(x) of vectors from the subspace V' ?

A = A ([id Tr,| Py
el M) = max | Ma(lidie® Trol P

idg ® Tr,l Py
el TPy

= ax max  Tr[([idx ® Tr,|Px) - P,
w2t ey T ldi @ TralPr) - £y

= max max Tr[Py- P, ®1,]
XEV,HXH::l ye(Ck*,H}/H:l

=  max max Tr[Py- P, ®1,]
yeCk |lyll=1xeV |Ix[=1

:yeﬁck X 1||PV P, @1, Py co-
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The set K and t-norms

° Kit:i={Ae€ Ax|Vx € Ay, (A x) < |Ix|n}-
@ Recall that

max Ai(x) = max PyP, ®1,P .
xeV,||x||=1 1( ) yECk,HyHiln vy n V”oo

@ For fixed y, Py and P, ® I, are independent projectors of relative
ranks t and 1/k respectively.

@ Thus,

Py - P, @1, Pylles — || (1 = t)d0 + t01) X ((1 — 1/k)do + 1/kér) ||
= (p(t, 1/k) = ”(1707 e 70)”(1“)'

@ We can take the max over y at no cost, by considering a finite net
of y's, since k is fixed.

e To get the full result limsup,_, o Ky, C Kk, use (A, x) (for all
directions x) instead of Ap.

@ The inclusion liminf,_, Ky, D Kk, is much easier, and follows
from the convergence in distribution.
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Additivity violations



Recall

HP

min

(®®®) < By < 2B; < 2HP. ().

Theorem (Collins + N. '09)

For all k, t, almost surely as n — oo, if Z, = (® @ ®)(Ewnk)

1—t 1-—t 1—t

20 k2 g2
—_ —————

k2—1 times

spec(Z,) — € Ape.

Theorem (Belinschi, Collins, N. '13)
For all p > 1,

lim HJ"™(®) = Hy(a, b, b, ..., b),

n—oo

where b= (1 —a)/(k — 1) and a = (1/k, t) with

1 ifs+t>1.

s+t—2st+2+/st(l—5s)(1—t ifs+t<1;
=] T
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Putting things together

Theorem (Belinschi, Collins, N. '13)

Using the limit for H™"(®) and the upper bound for H™"(®), the lowest
dimension for which a violation of the additivity can be observed is
k = 183. For large k, violations of size 1 — ¢ bits can be obtained.

How to improve this ?
© Other asymptotic regimes
Q Use V£0

© For ® ® ®, compute the actual limit of H™"(¢ ® ®), and not just
an upper bound.
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The End

thank you for your attention



