Random quantum channels and additivity violations

Ion Nechita
TU München and CNRS

Herstmonceux, July 15th 2015

Outline of the talk

(1) Random quantum channels and their minimum output entropy
(2) Lower bounding $H^{\text {min }}(\Phi \otimes \bar{\Phi})$
(c) Computing $H^{\text {min }}(\Phi)$

- Additivity violations

Random quantum channels and their minimum output entropy

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$.
- Rényi entropies

$$
p>0 \quad H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad H^{1}(\rho)=H(\rho)=-\operatorname{Tr}(\rho \log \rho) .
$$

- p-Minimal Output Entropy of a quantum channel

$$
\begin{aligned}
H_{\min }^{p}(\Phi) & =\min _{\rho \in \mathcal{M}_{i n}^{1,+}(\mathbb{C})} H^{\rho}(\Phi(\rho)) \\
& =\min _{x \in \mathbb{C}^{\text {in }}} H^{\rho}\left(\Phi\left(P_{x}\right)\right) .
\end{aligned}
$$

- Is the p-MOE additive ?

$$
H_{\min }^{p}(\Phi \otimes \Psi)=H_{\min }^{p}(\Phi)+H_{\min }^{p}(\Psi) \quad \forall \Phi, \Psi .
$$

- NO !!!
- $p>1$: Hayden + Winter '08;
- $p=1$: Hastings '08

Importance of additivity

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- Shor '04 equivalence of additivity questions
(1) additivity of MOE
(2) additivity of the Holevo capacity χ ($=C_{\otimes}$ in Andreas' talk)
(3) (strong super-) additivity of the entanglement of formation E_{F}.
- Additivity proved for some particular channels: unital qubit, depolarizing, entanglement breaking, etc.
- Holevo-Werner channel violates additivity of the p-Rényi entropy for $p>4.79$. No known deterministic examples for $p=1$ of p close to 1.
- Difficult, mathematically challenging problem.

Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random isometries

$$
\Phi(\rho)=\operatorname{Tr}_{\mathrm{anc}}\left(V \rho V^{*}\right),
$$

where V is a Haar partial isometry

$$
V: \mathbb{C}^{\text {in }} \rightarrow \mathbb{C}^{\text {out }} \otimes \mathbb{C}^{\text {anc }}
$$

Equivalently, via the Stinespring dilation theorem

$$
\Phi(\rho)=\operatorname{Tr}_{\mathrm{anc}}\left(U\left(\rho \otimes P_{y}\right) U^{*}\right),
$$

where $y \in \mathbb{C} \frac{\text { out } \times \text { anc }}{\text { in }}$ and $U \in \mathcal{M}_{\text {out } \times \text { anc }}(\mathbb{C})$ is a Haar unitary matrix.

- Random quantum channels from i.i.d. random unitary matrices (random mixed unitary channels)

$$
\Phi(\rho)=\sum_{i=1}^{k} p_{i} U_{i} \rho U_{i}^{*}
$$

for (random) probabilities p_{i} and i.i.d. Haar distributed unitary operators U_{i}.

Model of interest

Here, we focus on random quantum channels coming from random isometries, with the following parameters.

- in = tnk,
- out $=k$,
- anc $=n$,
where $n, k \in \mathbb{N}$ and $t \in(0,1)$. In general, we shall assume that
- $n \rightarrow \infty$
- k is fixed
- t is fixed.

In other words, we are interested in $\Phi: \mathcal{M}_{t n k}(\mathbb{C}) \rightarrow \mathcal{M}_{k}(\mathbb{C})$,

$$
\Phi(\rho)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right]\left(V \rho V^{*}\right),
$$

where V is a random isometry obtained by keeping the first tnk columns of a $n k \times n k$ Haar random unitary.

How to get counterexamples ?

- Choose Φ to be random and $\Psi=\bar{\Phi}$; this way, $H_{\text {min }}^{p}(\Psi)=H_{\text {min }}^{p}(\Phi)$.
- Bound

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\min }^{p}(\Phi) .
$$

Lower bounding $H^{\text {min }}(\Phi \otimes \bar{\Phi})$

Strategy for B_{2}

- Remember: we want

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\min }^{p}(\Phi)
$$

- Use trivial bound $H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leq H^{p}\left([\Phi \otimes \bar{\Phi}]\left(X_{12}\right)\right)$, for a particular choice of $X_{12} \in \mathcal{M}_{\text {tnk }}(\mathbb{C}) \otimes \mathcal{M}_{\text {tnk }}(\mathbb{C})$.
- $X_{12}=X_{1} \otimes X_{2}$ do not yield counterexamples \Rightarrow choose a maximally entangled state

$$
X_{12}=E_{t n k}=\left(\frac{1}{\sqrt{t n k}} \sum_{i=1}^{t n k} e_{i} \otimes e_{i}\right)\left(\frac{1}{\sqrt{t n k}} \sum_{j=1}^{t n k} e_{j} \otimes e_{j}\right)^{*}
$$

- Bound entropies of the (random) density matrix

$$
Z_{n}=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right) \in \mathcal{M}_{k}(\mathbb{C}) \otimes \mathcal{M}_{k}(\mathbb{C})
$$

Main result - finite rank output

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z_{n}=[\Phi \otimes \bar{\Phi}]\left(E_{\text {tnk }}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) \in \Delta_{k^{2}} .
$$

- Previously known bound (deterministic, comes from linear algebra): for all t, n, k, the largest eigenvalue of Z_{n} is at least t.
- Two improvements:
(1) "better" largest eigenvalue,
(2) knowledge of the whole spectrum.
- Precise knowledge of eigenvalues \rightsquigarrow optimal estimates for entropies.
- However, smaller eigenvalues are the "worst possible".

Proof strategy for a.s. spectrum Z_{n}

- Use the method of moments
(1) Convergence in moments:

$$
\mathbb{E} \operatorname{Tr}\left(Z_{n}^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p}
$$

(2) Borel-Cantelli for a.s. convergence:

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\operatorname{Tr}\left(Z_{n}^{p}\right)-\mathbb{E} \operatorname{Tr}\left(Z_{n}^{p}\right)\right)^{2}\right]<\infty
$$

- We need to compute moments $\mathbb{E}\left[\operatorname{Tr}\left(Z_{n}^{p_{1}}\right)^{q_{1}} \ldots \operatorname{Tr}\left(Z_{n}^{p_{s}}\right)^{q_{s}}\right]$.
- Use the Weingarten formula to compute the unitary averages.

Unitary integration - Weingarten formula

- Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and $\left(i_{1}, \ldots, i_{p}\right),\left(i_{1}^{\prime}, \ldots, i_{p}^{\prime}\right),\left(j_{1}, \ldots, j_{p}\right)$, $\left(j_{1}^{\prime}, \ldots, j_{p}^{\prime}\right)$ be p-tuples of positive integers from $\{1,2, \ldots, d\}$. Then

$$
\begin{aligned}
& \int_{\mathcal{U}(d)} U_{i_{1} j_{1}} \cdots U_{i_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \ldots \overline{U_{i_{p}^{\prime} j_{p}^{\prime}}} d U= \\
& \sum_{\alpha, \beta \in \mathcal{S}_{p}} \delta_{i_{1} i_{\alpha(1)}^{\prime}} \ldots \delta_{i_{p} i_{\alpha(p)}^{\prime}} \delta_{j_{1} j_{\beta(1)}^{\prime}} \ldots \delta_{j_{p} j_{\beta(p)}^{\prime}} \operatorname{Wg}\left(d, \alpha \beta^{-1}\right)
\end{aligned}
$$

If $p \neq p^{\prime}$ then

$$
\int_{\mathcal{U}(d)} U_{i, j} \cdots U_{i_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \cdots \overline{U_{i_{p^{\prime}, j_{p}^{\prime}}^{\prime}}} d U=0
$$

- There is a graphical way of reading this formula on the diagrams !

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \rightsquigarrow decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*} \quad x \in V_{1} \quad \varphi \in V_{1}^{*}
$$

- Tensor contractions (or traces) $V \otimes V^{*} \rightarrow \mathbb{C} \rightsquigarrow$ wires.

$\operatorname{Tr}(\mathrm{C}) \quad \operatorname{Tr}_{\mathrm{V}_{1}}(\mathrm{D})$
- Maximally entangled vector Bell $=\sum_{i=1}^{\operatorname{dim} V} e_{i} \otimes e_{i} \in V \otimes V$

$$
\Phi^{+} \bullet \bullet
$$

Graphical representation of quantum channels

- Decorations/labels

$$
\stackrel{\bullet}{\circ}=\mathbf{C}^{n} \quad \stackrel{■}{\square}=\mathbf{C}^{k} \quad \stackrel{\diamond}{\diamond}=\mathbf{C}^{t n k} \quad \stackrel{\Delta}{\Delta}=\mathbf{C}^{t^{-1}}
$$

- Single channel (finite rank output)

- Product of conjugate channels

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
(2) By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E} \mathcal{D}=0$.

- Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{p}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.
(1) For all $i=1, \ldots, p$, add a wire between each white decoration of the i-th U box and the corresponding white decoration of the $\alpha(i)$-th \bar{U} box. In a similar manner, use β to pair black decorations.
(0) Erase all U and \bar{U} boxes. The resulting diagram is denoted by $\mathcal{D}_{(\alpha, \beta)}$.

Theorem

$$
\mathbb{E} \mathcal{D}=\sum_{\alpha, \beta \in \mathcal{S}_{p}} \mathcal{D}_{(\alpha, \beta)} \mathrm{Wg}\left(d, \alpha \beta^{-1}\right)
$$

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 "U" boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=\left(\begin{array}{ll}14)(23) \in \mathcal{S}_{4} .\end{array}\right.$
The original diagram

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 "U" boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The diagram with the boxes removed

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 "U" boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\beta=$ id.

Contribution: $n^{4} \cdot k^{2} \cdot(t n k)^{2} \cdot \mathrm{Wg}(\mathrm{id})$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 "U" boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\mathrm{id}, \beta=\delta$.

Contribution: $n^{4} \cdot k^{2} \cdot(t n k)^{4} \cdot \mathrm{Wg}(\delta)$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 "U" boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\delta, \beta=\mathrm{id}$.

Contribution: $n^{2} \cdot k^{2} \cdot(t n k)^{2} \cdot \mathrm{Wg}(\delta)$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 "U" boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\beta=\delta$.

Contribution: $n^{2} \cdot k^{2} \cdot(t n k)^{4} \cdot \mathrm{Wg}(i d)$.

Sketch of the proof

- We want to compute, for all $p \geq 1, \mathbb{E} \operatorname{Tr}\left(Z^{P}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k, and tnk.
- Asymptotic for Weingarten weights ($\sigma \in \mathcal{S}_{p}, d \rightarrow \infty, p$ fixed):

$$
\mathrm{Wg}(d, \sigma)=d^{-(p+|\sigma|)}\left(\operatorname{Mob}(\sigma)+O\left(d^{-2}\right)\right)
$$

- One has to identify asymptotically dominating terms. Computations for fixed n are intractable due to the complexity of the Weingarten function. In the limit $n \rightarrow \infty$, the structure of the dominating terms is very simple.

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$,

$$
\operatorname{spec}\left(Z_{n}\right) \rightarrow(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) \in \Delta_{k^{2}}
$$

Computing $H^{\min }(\Phi)$

Strategy for B_{1}

- Remember: we want

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\min }^{p}(\Phi) .
$$

- We shall do more: we compute the exact limit (as $n \rightarrow \infty$) of $H_{\text {min }}^{p}(\Phi)$.

Theorem (Belinschi, Collins, N. '13)

For all $p \geq 1$,

$$
\lim _{n \rightarrow \infty} H_{p}^{\min }(\Phi)=H_{p}(a, b, b, \ldots, b)
$$

where a, b do not depend on $p, b=(1-a) /(k-1)$ and $a=\varphi(1 / k, t)$ with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

Entanglement of a vector

For a vector

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

define $H(x)=H(\lambda(x))=H(\rho)=-\sum_{i} \lambda_{i}(x) \log \lambda_{i}(x)$, the entropy of entanglement of the bipartite pure state x.

Note that
(1) The state x is separable, $x=e \otimes f$, iff. $H(x)=0$.
(2) The state x is maximally entangled, $x=k^{-1 / 2} \sum_{i} e_{i} \otimes f_{i}$, iff.

$$
H(x)=\log k .
$$

Recall that we are interested in computing

$$
\begin{aligned}
H^{\min }(\Phi) & =\min _{x \in \mathbb{C}^{d},\|x\|=1} H\left(\Phi\left(P_{x}\right)\right)=\min _{y \in \operatorname{Im} V,\|y\|=1} H\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{y}\right) \\
& =\min _{y \in \operatorname{Im} V,\|y\|=1} H(y) .
\end{aligned}
$$

Entanglement of a subspace

For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$, define

$$
H_{p}^{\min }(V)=\min _{y \in V,\|y\|=1} H_{p}(y),
$$

the minimal entanglement of vectors in V.
Here, we abuse notation: recall that we are interested in random isometries $V: \mathbb{C}^{\text {tnk }} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$. Since the quantities $H_{p}^{\text {min }}$ only depend on the range of V, also write $V=\operatorname{ran} V$.

A subspace V is called entangled if $H^{\min }(V)>0$, i.e. if it does not contain separable vectors $x \otimes y$.

Singular values of vectors from a subspace

\rightsquigarrow Entropy is just a statistic, look at the set of all singular values directly! For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension $\operatorname{dim} V=d$, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}=\{\lambda(x): x \in V,\|x\|=1\} .
$$

\rightsquigarrow Our goal is to understand K_{V}.

- The set K_{V} is a compact subset of the ordered probability simplex Δ_{k}^{\downarrow}.
- Local invariance: $K_{\left(U_{1} \otimes U_{2}\right) V}=K_{V}$, for unitary matrices $U_{1} \in \mathcal{U}(k)$ and $U_{2} \in \mathcal{U}(n)$.
- Monotonicity: if $V_{1} \subset V_{2}$, then $K_{V_{1}} \subset K_{V_{2}}$.
- Recovering minimum entropies:

$$
H_{p}^{\min }(\Phi)=H_{p}^{\min }(V)=\min _{\lambda \in K_{V}} H_{p}(\lambda) .
$$

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the p-Rényi entropy [Grudka, Horodecki, Pankowski '09].

- Let $k=n$ and put $V=\Lambda^{2}\left(\mathbb{C}^{n}\right)$
- The subspace V is almost half of the total space: $\operatorname{dim} V=n(n-1) / 2$.
- Example of a vector in V :

$$
V \ni x=\frac{1}{\sqrt{2}}(e \otimes f-f \otimes e) .
$$

- Fact: singular values of vectors in V come in pairs.
- Hence, the least entropy vector in V is as above, with $e \perp f$ and $H(x)=\log 2$.
- Thus, $H^{\min }(V)=\log 2$ and one can show that

$$
K_{V}=\left\{\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots\right) \in \Delta_{n}: \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1 / 2\right\} .
$$

Examples - K_{V}

$V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.

Examples - K_{V}

$V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.

Examples - K_{V}

$V=\operatorname{span}\left\{I_{3}, G\right\}$, where G is a 3×3 Ginibre random matrix.

Examples - K_{V}

$V=\operatorname{span}\left\{I_{3}, G\right\}$, where G is a 3×3 Ginibre random matrix.

An open problem

Find explicit (i.e. non-random) examples of subspaces $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ with
(1) large $\operatorname{dim} V$;
(2) large $H^{\text {min }}(V)$.

Main result

Recall that we are interested in random isometries/subspaces in the following asymptotic regime: k fixed, $n \rightarrow \infty$, and $d \sim t k n$, for a fixed parameter $t \in(0,1)$.

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V_{n}, the set $K_{V_{n}}$ of singular values of unit vectors from V_{n} converges (almost surely, in the Hausdorff distance) to a deterministic, convex subset $K_{k, t}$ of the probability simplex Δ_{k}

$$
K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\} .
$$

Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed, $n \rightarrow \infty, d \sim t k n$, we have the following a.s. convergence result for random quantum channels Φ (defined via random isometries $\left.V: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}\right)$:

$$
\lim _{n \rightarrow \infty} H_{p}^{\min }(\Phi)=\min _{\lambda \in K_{k, t}} H_{p}(\lambda)
$$

It is not just a bound, the exact limit value is obtained.

Theorem (Belinschi, Collins, N. '13)

For all $p \geq 1$,

$$
\lim _{n \rightarrow \infty} H_{p}^{\min }(\Phi)=\min _{\lambda \in K_{k, t}} H_{p}(\lambda)=H_{p}(a, b, b, \ldots, b)
$$

where a, b do not depend on $p, b=(1-a) /(k-1)$ and $a=\varphi(1 / k, t)$ with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

Asymptotic freeness of random matrices

Theorem (Voiculescu '98)

Let $\left(A_{n}\right)$ and $\left(B_{n}\right)$ be sequences of $n \times n$ matrices such that A_{n} and B_{n} converge in distribution (with respect to $n^{-1} \mathrm{Tr}$) for $n \rightarrow \infty$.
Furthermore, let $\left(U_{n}\right)$ be a sequence of Haar unitary $n \times n$ random matrices. Then, A_{n} and $U_{n} B_{n} U_{n}^{*}$ are asymptotically free for $n \rightarrow \infty$.

If A_{n}, B_{n} are matrices of size n, whose spectra converge towards μ_{a}, μ_{b}, the spectrum of $A_{n}+U_{n} B_{n} U_{n}^{*}$ converges to $\mu_{a} \boxplus \mu_{b}$; here, $\mu_{a} \boxplus \mu_{b}$ is the distribution of $a+b$, where $a, b \in(\mathcal{A}, \tau)$ are free random variables having distributions resp. μ_{a}, μ_{b}.

If A_{n}, B_{n} are matrices of size n such that $A_{n} \geq 0$, whose spectra converge towards $\mu_{\mathrm{a}}, \mu_{\mathrm{b}}$, the spectrum of $A_{n}^{1 / 2} U_{n} B_{n} U_{n}^{*} A_{n}^{1 / 2}$ converges to $\mu_{\mathrm{a}} \boxtimes \mu_{b}$.

Example: truncation of random matrices

Let $P_{n} \in \mathcal{M}_{n}$ a projection of rank $n / 2$; its eigenvalues are 0 and 1 , with multiplicity $n / 2$. Hence, the distribution of P_{n} converges, when $n \rightarrow \infty$, to the Bernoulli probability measure $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.
Let $C_{n} \in \mathcal{M}_{n / 2}$ be the top $n / 2 \times n / 2$ corner of $U_{n} P_{n} U_{n}^{*}$, with U_{n} a Haar random unitary matrix. What is the distribution of C_{n} ?

Up to zero blocks, $C_{n}=Q_{n}\left(U_{n} P_{n} U_{n}^{*}\right) Q_{n}$, where Q_{n} is the diagonal orthogonal projection on the first $n / 2$ coordinates of \mathbb{C}^{n}. The distribution of Q_{n} converges to $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.
Free probability theory tells us that the distribution of C_{n} will converge to

$$
\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right) \boxtimes\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right)=\frac{1}{\pi \sqrt{x(1-x)}} \mathbf{1}_{[0,1]}(x) d x
$$

which is the arcsine distribution.

Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of relative rank $1 / 2$ and size $n=4000$; in red, the density of the arcsine distribution.

Definition

For a positive integer k, embed \mathbb{R}^{k} as a self-adjoint real subalgebra \mathcal{R} of a C^{*}-ncps (\mathcal{A}, τ), so that $\tau(x)=\left(x_{1}+\cdots+x_{k}\right) / k$. Let p_{t} be a projection of rank $t \in(0,1]$ in \mathcal{A}, free from \mathcal{R}. On the real vector space \mathbb{R}^{k}, we introduce the following norm, called the (t)-norm:

$$
\|x\|_{(t)}:=\left\|p_{t} x p_{t}\right\|_{\infty},
$$

where the vector $x \in \mathbb{R}^{k}$ is identified with its image in \mathcal{R}.

- One can show that $\|\cdot\|_{(t)}$ is indeed a norm, which is permutation invariant.
- When $t>1-1 / k,\|\cdot\|_{(t)}=\|\cdot\|_{\infty}$ on \mathbb{R}^{k}.
- $\lim _{t \rightarrow 0^{+}}\|x\|_{(t)}=k^{-1}\left|\sum_{i} x_{i}\right|$.

Corners of randomly rotated projections

Theorem (Collins '05)

In \mathbb{C}^{n}, choose at random according to the Haar measure two independent subspaces V_{n} and V_{n}^{\prime} of respective dimensions $q_{n} \sim$ sn and $q_{n}^{\prime} \sim t n$ where $s, t \in(0,1]$. Let $P_{n}\left(r e s p . P_{n}^{\prime}\right)$ be the orthogonal projection onto $V_{n}\left(\right.$ resp. $\left.V_{n}^{\prime}\right)$. Then,
$\lim _{n}\left\|P_{n} P_{n}^{\prime} P_{n}\right\|_{\infty}=\varphi(s, t)=\sup \operatorname{supp}\left((1-s) \delta_{0}+s \delta_{1}\right) \boxtimes\left((1-t) \delta_{0}+t \delta_{1}\right)$,
with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

Hence, we can compute

$$
\|\underbrace{1, \cdots, 1}_{j \text { times }} \underbrace{0, \cdots, 0}_{k-j \text { times }}\|_{(t)}=\varphi\left(\frac{j}{k}, t\right) .
$$

$K_{V_{n}} \rightarrow K_{k, t}$: idea of the proof

A simpler question: what is the largest maximal singular value $\max _{x \in V,\|x\|=1} \lambda_{1}(x)$ of vectors from the subspace V ?

$$
\begin{aligned}
\max _{x \in V,\|x\|=1} \lambda_{1}(x) & =\max _{x \in V,\|x\|=1} \lambda_{1}\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \\
& =\max _{x \in V,\|x\|=1}\left\|\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right\| \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \cdot P_{y}\right] \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1 x \in V,\|x\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} \cdot P_{y} \otimes I_{n} \cdot P_{V}\right\|_{\infty}
\end{aligned}
$$

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.
- Recall that

$$
\max _{x \in V,\|x\|=1} \lambda_{1}(x)=\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} P_{y} \otimes \mathrm{I}_{n} P_{V}\right\|_{\infty}
$$

- For fixed y, P_{V} and $P_{y} \otimes \mathrm{I}_{n}$ are independent projectors of relative ranks t and $1 / k$ respectively.
- Thus,

$$
\begin{aligned}
\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n} \cdot P_{V}\right\|_{\infty} & \rightarrow\left\|\left((1-t) \delta_{0}+t \delta_{1}\right) \boxtimes\left((1-1 / k) \delta_{0}+1 / k \delta_{1}\right)\right\| \\
& =\varphi(t, 1 / k)=\|(1,0, \ldots, 0)\|_{(t)}
\end{aligned}
$$

- We can take the max over y at no cost, by considering a finite net of y 's, since k is fixed.
- To get the full result $\lim \sup _{n \rightarrow \infty} K_{V_{n}} \subset K_{k, t}$, use $\langle\lambda, x\rangle$ (for all directions x) instead of λ_{1}.
- The inclusion liminf ${ }_{n \rightarrow \infty} K_{V_{n}} \supset K_{k, t}$, is much easier, and follows from the convergence in distribution.

Additivity violations

Recall

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\min }^{p}(\Phi)
$$

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, if $Z_{n}=(\Phi \otimes \bar{\Phi})\left(E_{t n k}\right)$

$$
\operatorname{spec}\left(Z_{n}\right) \rightarrow(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) \in \Delta_{k^{2}}
$$

Theorem (Belinschi, Collins, N. '13)

For all $p \geq 1$,

$$
\lim _{n \rightarrow \infty} H_{p}^{\min }(\Phi)=H_{p}(a, b, b, \ldots, b)
$$

where $b=(1-a) /(k-1)$ and $a=\varphi(1 / k, t)$ with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

Putting things together

Theorem (Belinschi, Collins, N. '13)

Using the limit for $H^{\text {min }}(\Phi)$ and the upper bound for $H^{\text {min }}(\Phi)$, the lowest dimension for which a violation of the additivity can be observed is $k=183$. For large k, violations of size $1-\varepsilon$ bits can be obtained.

How to improve this?
(1) Other asymptotic regimes
(2) Use $\psi \neq \bar{\Phi}$
(3) For $\Phi \otimes \bar{\Phi}$, compute the actual limit of $H^{\text {min }}(\Phi \otimes \bar{\Phi})$, and not just an upper bound.

The End

thank you for your attention

