Random quantum channels and additivity violations

Ion Nechita

TU München and CNRS

Herstmonceux, July 15th 2015

Outline of the talk

Random quantum channels and their minimum output entropy

② Lower bounding $H^{\min}(\Phi \otimes \bar{\Phi})$

3 Computing $H^{\min}(\Phi)$

Additivity violations

Random quantum channels and their minimum output entropy

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{in}(\mathbb{C}) \to \mathcal{M}_{out}(\mathbb{C})$.
- Rényi entropies

$$p>0$$
 $H^p(\rho)=rac{\log \mathrm{Tr}
ho^p}{1-p},$ $H^1(\rho)=H(\rho)=-\mathrm{Tr}(
ho\log
ho).$

p-Minimal Output Entropy of a quantum channel

$$\begin{split} H^p_{\min}(\Phi) &= \min_{\rho \in \mathcal{M}^{1,+}_{\inf}(\mathbb{C})} H^p(\Phi(\rho)) \\ &= \min_{\mathbf{x} \in \mathbb{C}^{\ln}} H^p(\Phi(P_{\mathbf{x}})). \end{split}$$

• Is the p-MOE additive?

$$H_{\min}^{p}(\Phi \otimes \Psi) = H_{\min}^{p}(\Phi) + H_{\min}^{p}(\Psi) \quad \forall \Phi, \Psi.$$

- NO !!!
 - *p* > 1: Hayden + Winter '08;
 - *p* = 1: Hastings '08

Importance of additivity

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ .
- Shor '04 equivalence of additivity questions
 - additivity of MOE
 - ② additivity of the Holevo capacity χ (= C_{\otimes} in Andreas' talk)
 - \odot (strong super-) additivity of the entanglement of formation E_F .
- Additivity proved for some particular channels: unital qubit, depolarizing, entanglement breaking, etc.
- Holevo-Werner channel violates additivity of the p-Rényi entropy for p > 4.79. No known deterministic examples for p = 1 of p close to 1.
- Difficult, mathematically challenging problem.

Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random isometries

$$\Phi(\rho) = \operatorname{Tr}_{\mathsf{anc}}(V\rho V^*),$$

where V is a Haar partial isometry

$$V: \mathbb{C}^{\mathsf{in}} \to \mathbb{C}^{\mathsf{out}} \otimes \mathbb{C}^{\mathsf{anc}}.$$

Equivalently, via the Stinespring dilation theorem

$$\Phi(\rho) = \operatorname{Tr}_{\mathsf{anc}}(U(\rho \otimes P_y)U^*),$$

where $y \in \mathbb{C}^{\frac{\text{out} \times \text{anc}}{\text{in}}}$ and $U \in \mathcal{M}_{\text{out} \times \text{anc}}(\mathbb{C})$ is a Haar unitary matrix.

 Random quantum channels from i.i.d. random unitary matrices (random mixed unitary channels)

$$\Phi(\rho) = \sum_{i=1}^k p_i U_i \rho U_i^*,$$

for (random) probabilities p_i and i.i.d. Haar distributed unitary operators U_i .

Model of interest

Here, we focus on random quantum channels coming from random isometries, with the following parameters.

- in = tnk,
- out = k.
- anc = n,

where $n, k \in \mathbb{N}$ and $t \in (0,1)$. In general, we shall assume that

- $n \to \infty$
- k is fixed
- t is fixed.

In other words, we are interested in $\Phi: \mathcal{M}_{tnk}(\mathbb{C}) \to \mathcal{M}_k(\mathbb{C})$,

$$\Phi(\rho) = [\mathrm{id}_k \otimes \mathrm{Tr}_n](V \rho V^*),$$

where V is a random isometry obtained by keeping the first tnk columns of a $nk \times nk$ Haar random unitary.

How to get counterexamples?

- Choose Φ to be random and $\Psi = \bar{\Phi}$; this way, $H_{\min}^p(\Psi) = H_{\min}^p(\Phi)$.
- Bound

$$H_{\min}^{p}(\Phi \otimes \bar{\Phi}) \leq B_2 < 2B_1 \leq 2H_{\min}^{p}(\Phi).$$

Lower bounding $H^{min}(\Phi \otimes \bar{\Phi})$

Strategy for B_2

Remember: we want

$$H_{\min}^p(\Phi\otimes\bar{\Phi}) \leq B_2 < 2B_1 \leq 2H_{\min}^p(\Phi).$$

- Use trivial bound $H^p_{\min}(\Phi \otimes \bar{\Phi}) \leq H^p([\Phi \otimes \bar{\Phi}](X_{12}))$, for a particular choice of $X_{12} \in \mathcal{M}_{tnk}(\mathbb{C}) \otimes \mathcal{M}_{tnk}(\mathbb{C})$.
- $X_{12} = X_1 \otimes X_2$ do not yield counterexamples \Rightarrow choose a maximally entangled state

$$X_{12} = E_{tnk} = \left(\frac{1}{\sqrt{tnk}} \sum_{i=1}^{tnk} e_i \otimes e_i \right) \left(\frac{1}{\sqrt{tnk}} \sum_{j=1}^{tnk} e_j \otimes e_j \right)^*.$$

Bound entropies of the (random) density matrix

$$\label{eq:Zn} Z_n = [\Phi \otimes \overline{\Phi}](E_{tnk}) \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_k(\mathbb{C}).$$

Main result - finite rank output

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \to \infty$, the eigenvalues of $Z_n = [\Phi \otimes \bar{\Phi}](E_{tnk})$ converge to

$$\left(t+\frac{1-t}{k^2},\underbrace{\frac{1-t}{k^2},\ldots,\frac{1-t}{k^2}}_{k^2-1 \; times}\right) \in \Delta_{k^2}.$$

- Previously known bound (deterministic, comes from linear algebra): for all t, n, k, the largest eigenvalue of Z_n is at least t.
- Two improvements:
 - 1 "better" largest eigenvalue,
 - knowledge of the whole spectrum.
- Precise knowledge of eigenvalues \leadsto optimal estimates for entropies.
- However, smaller eigenvalues are the "worst possible".

Proof strategy for a.s. spectrum Z_n

- Use the method of moments
 - Convergence in moments:

$$\mathbb{E}\mathrm{Tr}(Z_n^p) \to \left(t + \frac{1-t}{k^2}\right)^p + (k^2-1)\left(\frac{1-t}{k^2}\right)^p;$$

Borel-Cantelli for a.s. convergence:

$$\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\mathrm{Tr}(Z_n^p) - \mathbb{E}\mathrm{Tr}(Z_n^p)\right)^2\right] < \infty.$$

- We need to compute moments $\mathbb{E}\left[\operatorname{Tr}(Z_n^{p_1})^{q_1}\cdots\operatorname{Tr}(Z_n^{p_s})^{q_s}\right]$.
- Use the Weingarten formula to compute the unitary averages.

Unitary integration - Weingarten formula

 Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and (i_1, \ldots, i_p) , (i'_1, \ldots, i'_p) , (j_1, \ldots, j_p) , (j'_1, \ldots, j'_p) be p-tuples of positive integers from $\{1, 2, \ldots, d\}$. Then

$$\int_{\mathcal{U}(d)} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U_{i'_1 j'_1}} \cdots \overline{U_{i'_p j'_p}} \ dU =$$

$$\sum_{\alpha, \beta \in \mathcal{S}_p} \delta_{i_1 i'_{\alpha(1)}} \cdots \delta_{i_p i'_{\alpha(p)}} \delta_{j_1 j'_{\beta(1)}} \cdots \delta_{j_p j'_{\beta(p)}} \operatorname{Wg}(d, \alpha \beta^{-1}).$$

If $p \neq p'$ then

$$\int_{\mathcal{U}(d)} U_{i_1j_1} \cdots U_{i_pj_p} \overline{U_{i'_1j'_1}} \cdots \overline{U_{i'_pj'_{p'}}} \ dU = 0.$$

• There is a graphical way of reading this formula on the diagrams!

Boxes & wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors → decorated boxes.

• Tensor contractions (or traces) $V \otimes V^* \to \mathbb{C} \leadsto$ wires.

 $M \in V_1 \otimes V_2 \otimes V_3 \otimes V_1^* \otimes V_2^* \qquad x \in V_1 \qquad \varphi \in V_1^*$

• Maximally entangled vector $\operatorname{Bell} = \sum_{i=1}^{\dim V} e_i \otimes e_i \in V \otimes V$ $\Phi^+ = \Phi$

Graphical representation of quantum channels

Decorations/labels

$${\overset{\bullet}{\circ}} = \mathbf{C}^n \qquad {\overset{\blacksquare}{\Box}} = \mathbf{C}^k \qquad {\overset{\bullet}{\circ}} = \mathbf{C}^{tnk} \qquad {\overset{\blacktriangle}{\vartriangle}} = \mathbf{C}^{t^{-1}}$$

• Single channel (finite rank output)

• Product of conjugate channels

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

- **9** Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- ② By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D}=0$.
- **①** Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_p^2$. These permutations will be used to pair decorations of U/\overline{U} boxes.
- For all $i=1,\ldots,p$, add a wire between each white decoration of the i-th U box and the corresponding white decoration of the $\alpha(i)$ -th \overline{U} box. In a similar manner, use β to pair black decorations.
- **⑤** Erase all U and \overline{U} boxes. The resulting diagram is denoted by $\mathcal{D}_{(\alpha,\beta)}$.

Theorem

$$\mathbb{E}\mathcal{D} = \sum_{\alpha,\beta \in \mathcal{S}_{o}} \mathcal{D}_{(\alpha,\beta)} \mathrm{Wg}(d,\alpha\beta^{-1}).$$

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in \mathcal{S}_4$.

The original diagram

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in \mathcal{S}_4$.

The diagram with the boxes removed

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in \mathcal{S}_4$.

The wiring for $\alpha = \beta = id$.

Contribution: $n^4 \cdot k^2 \cdot (tnk)^2 \cdot Wg(id)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The wiring for $\alpha = id$, $\beta = \delta$.

Contribution: $n^4 \cdot k^2 \cdot (tnk)^4 \cdot Wg(\delta)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in \mathcal{S}_4$.

The wiring for $\alpha = \delta$, $\beta = id$.

Contribution: $n^2 \cdot k^2 \cdot (tnk)^2 \cdot Wg(\delta)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in \mathcal{S}_4$.

The wiring for $\alpha = \beta = \delta$.

Contribution: $n^2 \cdot k^2 \cdot (tnk)^4 \cdot Wg(id)$.

Sketch of the proof

- We want to compute, for all $p \ge 1$, $\mathbb{E}\mathrm{Tr}(Z^p)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha,\beta\in\mathcal{S}_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions n, k, and tnk.
- Asymptotic for Weingarten weights ($\sigma \in \mathcal{S}_p$, $d \to \infty$, p fixed):

$$Wg(d,\sigma) = d^{-(p+|\sigma|)}(Mob(\sigma) + O(d^{-2})).$$

• One has to identify asymptotically dominating terms. Computations for fixed n are intractable due to the complexity of the Weingarten function. In the limit $n \to \infty$, the structure of the dominating terms is very simple.

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \to \infty$,

$$\operatorname{spec}(Z_n) o \left(t + rac{1-t}{k^2}, \underbrace{rac{1-t}{k^2}, \ldots, rac{1-t}{k^2}}_{k^2-1 \ times}
ight) \in \Delta_{k^2}.$$

Computing $H^{\min}(\Phi)$

Strategy for B_1

Remember: we want

$$H_{\min}^p(\Phi \otimes \bar{\Phi}) \leq B_2 < 2B_1 \leq 2H_{\min}^p(\Phi).$$

• We shall do more: we compute the exact limit (as $n \to \infty$) of $H^p_{\min}(\Phi)$.

Theorem (Belinschi, Collins, N. '13)

For all $p \ge 1$,

$$\lim_{n\to\infty} H_p^{min}(\Phi) = H_p(a, b, b, \dots, b),$$

where a, b do not depend on p, b=(1-a)/(k-1) and $a=\varphi(1/k,t)$ with

$$\varphi(s,t) = \begin{cases} s+t-2st+2\sqrt{st(1-s)(1-t)} & \text{if } s+t<1; \\ 1 & \text{if } s+t\geq 1. \end{cases}$$

Entanglement of a vector

For a vector

$$x = \sum_{i=1}^{k} \sqrt{\lambda_i(x)} e_i \otimes f_i,$$

define $H(x) = H(\lambda(x)) = H(\rho) = -\sum_i \lambda_i(x) \log \lambda_i(x)$, the entropy of entanglement of the bipartite pure state x.

Note that

- **1** The state x is separable, $x = e \otimes f$, iff. H(x) = 0.
- **②** The state x is maximally entangled, $x = k^{-1/2} \sum_{i} e_{i} \otimes f_{i}$, iff. $H(x) = \log k$.

Recall that we are interested in computing

$$H^{\min}(\Phi) = \min_{x \in \mathbb{C}^d, \|x\| = 1} H(\Phi(P_x)) = \min_{y \in \operatorname{Im} V, \|y\| = 1} H([\operatorname{id}_k \otimes \operatorname{Tr}_n] P_y)$$
$$= \min_{y \in \operatorname{Im} V, \|y\| = 1} H(y).$$

Entanglement of a subspace

For a subspace $V \subset \mathbb{C}^k \otimes \mathbb{C}^n$, define

$$H_p^{\min}(V) = \min_{y \in V, \|y\|=1} H_p(y),$$

the minimal entanglement of vectors in V.

Here, we abuse notation: recall that we are interested in random isometries $V: \mathbb{C}^{tnk} \to \mathbb{C}^k \otimes \mathbb{C}^n$. Since the quantities H_p^{\min} only depend on the range of V, also write $V = \operatorname{ran} V$.

A subspace V is called entangled if $H^{\min}(V) > 0$, i.e. if it does not contain separable vectors $x \otimes y$.

Singular values of vectors from a subspace

→ Entropy is just a statistic, look at the set of all singular values directly!

For a subspace $V\subset\mathbb{C}^k\otimes\mathbb{C}^n$ of dimension dim V=d, define the set eigen-/singular values or Schmidt coefficients

$$K_V = {\lambda(x) : x \in V, ||x|| = 1}.$$

- \rightsquigarrow Our goal is to understand K_V .
 - The set K_V is a compact subset of the ordered probability simplex $\Delta_{\iota}^{\downarrow}$.
 - Local invariance: $K_{(U_1 \otimes U_2)V} = K_V$, for unitary matrices $U_1 \in \mathcal{U}(k)$ and $U_2 \in \mathcal{U}(n)$.
 - Monotonicity: if $V_1 \subset V_2$, then $K_{V_1} \subset K_{V_2}$.
 - Recovering minimum entropies:

$$H_p^{\min}(\Phi) = H_p^{\min}(V) = \min_{\lambda \in K_V} H_p(\lambda).$$

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the *p*-Rényi entropy [Grudka, Horodecki, Pankowski '09].

- Let k = n and put $V = \Lambda^2(\mathbb{C}^n)$
- The subspace V is almost half of the total space: $\dim V = n(n-1)/2.$
- Example of a vector in V:

$$V \ni x = \frac{1}{\sqrt{2}}(e \otimes f - f \otimes e).$$

- Fact: singular values of vectors in V come in pairs.
- Hence, the least entropy vector in V is as above, with $e \perp f$ and $H(x) = \log 2$.
- Thus, $H^{\min}(V) = \log 2$ and one can show that

$$\mathcal{K}_V = \{ \big(\lambda_1, \lambda_1, \lambda_2, \lambda_2, \ldots \big) \in \Delta_n \, : \, \lambda_i \geq 0, \, \sum_i \lambda_i = 1/2 \}.$$

 $V=\operatorname{span}\{\textit{G}_{1},\textit{G}_{2}\}\text{, where }\textit{G}_{1,2}$ are 3×3 independent Ginibre random matrices.

 $V=\operatorname{span}\{\textit{G}_{1},\textit{G}_{2}\}\text{, where }\textit{G}_{1,2}$ are 3×3 independent Ginibre random matrices.

 $V = \operatorname{span}\{I_3, G\}$, where G is a 3×3 Ginibre random matrix.

 $V = \operatorname{span}\{I_3, G\}$, where G is a 3×3 Ginibre random matrix.

An open problem

Find explicit (i.e. non-random) examples of subspaces $V \subset \mathbb{C}^k \otimes \mathbb{C}^n$ with

- lacktriangle large dim V;

Main result

Recall that we are interested in random isometries/subspaces in the following asymptotic regime: k fixed, $n \to \infty$, and $d \sim tkn$, for a fixed parameter $t \in (0,1)$.

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V_n , the set K_{V_n} of singular values of unit vectors from V_n converges (almost surely, in the Hausdorff distance) to a deterministic, convex subset $K_{k,t}$ of the probability simplex Δ_k

$$K_{k,t} := \{ \lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \leq ||x||_{(t)} \}.$$

Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t,k fixed, $n \to \infty$, $d \sim tkn$, we have the following a.s. convergence result for random quantum channels Φ (defined via random isometries $V: \mathbb{C}^d \to \mathbb{C}^k \otimes \mathbb{C}^n$):

$$\lim_{n\to\infty}H_p^{\min}(\Phi)=\min_{\lambda\in\mathcal{K}_{k,t}}H_p(\lambda).$$

It is not just a bound, the exact limit value is obtained.

Theorem (Belinschi, Collins, N. '13)

For all $p \geq 1$,

$$\lim_{n\to\infty} H_p^{min}(\Phi) = \min_{\lambda\in\mathcal{K}_{k,t}} H_p(\lambda) = H_p(a,b,b,\ldots,b),$$

where a, b do not depend on p, b=(1-a)/(k-1) and $a=\varphi(1/k,t)$ with

$$\varphi(s,t) = \begin{cases} s+t-2st+2\sqrt{st(1-s)(1-t)} & \text{if } s+t<1; \\ 1 & \text{if } s+t\geq 1. \end{cases}$$

Asymptotic freeness of random matrices

Theorem (Voiculescu '98)

Let (A_n) and (B_n) be sequences of $n \times n$ matrices such that A_n and B_n converge in distribution (with respect to $n^{-1}\mathrm{Tr}$) for $n \to \infty$. Furthermore, let (U_n) be a sequence of Haar unitary $n \times n$ random matrices. Then, A_n and $U_nB_nU_n^*$ are asymptotically free for $n \to \infty$.

If A_n, B_n are matrices of size n, whose spectra converge towards μ_a, μ_b , the spectrum of $A_n + U_n B_n U_n^*$ converges to $\mu_a \boxplus \mu_b$; here, $\mu_a \boxplus \mu_b$ is the distribution of a + b, where $a, b \in (\mathcal{A}, \tau)$ are free random variables having distributions resp. μ_a, μ_b .

If A_n , B_n are matrices of size n such that $A_n \ge 0$, whose spectra converge towards μ_a , μ_b , the spectrum of $A_n^{1/2}U_nB_nU_n^*A_n^{1/2}$ converges to $\mu_a \boxtimes \mu_b$.

Example: truncation of random matrices

Let $P_n \in \mathcal{M}_n$ a projection of rank n/2; its eigenvalues are 0 and 1, with multiplicity n/2. Hence, the distribution of P_n converges, when $n \to \infty$, to the Bernoulli probability measure $\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$.

Let $C_n \in \mathcal{M}_{n/2}$ be the top $n/2 \times n/2$ corner of $U_n P_n U_n^*$, with U_n a Haar random unitary matrix. What is the distribution of C_n ?

Up to zero blocks, $C_n = Q_n(U_nP_nU_n^*)Q_n$, where Q_n is the diagonal orthogonal projection on the first n/2 coordinates of \mathbb{C}^n . The distribution of Q_n converges to $\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$.

Free probability theory tells us that the distribution of C_n will converge to

$$(\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1) \boxtimes (\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1) = \frac{1}{\pi\sqrt{x(1-x)}}\mathbf{1}_{[0,1]}(x)dx,$$

which is the arcsine distribution.

Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of relative rank 1/2 and size n=4000; in red, the density of the arcsine distribution.

The *t*-norm

Definition

For a positive integer k, embed \mathbb{R}^k as a self-adjoint real subalgebra \mathcal{R} of a C^* -ncps (\mathcal{A},τ) , so that $\tau(x)=(x_1+\cdots+x_k)/k$. Let p_t be a projection of rank $t\in(0,1]$ in \mathcal{A} , free from \mathcal{R} . On the real vector space \mathbb{R}^k , we introduce the following norm, called the (t)-norm:

$$||x||_{(t)} := ||p_t x p_t||_{\infty},$$

where the vector $x \in \mathbb{R}^k$ is identified with its image in \mathcal{R} .

- One can show that $\|\cdot\|_{(t)}$ is indeed a norm, which is permutation invariant.
- When t > 1 1/k, $\|\cdot\|_{(t)} = \|\cdot\|_{\infty}$ on \mathbb{R}^k .
- $\lim_{t\to 0^+} ||x||_{(t)} = k^{-1} |\sum_i x_i|$.

Corners of randomly rotated projections

Theorem (Collins '05)

In \mathbb{C}^n , choose at random according to the Haar measure two independent subspaces V_n and V'_n of respective dimensions $q_n \sim$ sn and $q'_n \sim$ tn where $s,t \in (0,1]$. Let P_n (resp. P'_n) be the orthogonal projection onto V_n (resp. V'_n). Then,

$$\lim_n \|P_n P_n' P_n\|_{\infty} = \varphi(s,t) = \sup \sup ((1-s)\delta_0 + s\delta_1) \boxtimes ((1-t)\delta_0 + t\delta_1),$$

with

$$\varphi(s,t) = \begin{cases} s+t-2st+2\sqrt{st(1-s)(1-t)} & \text{if } s+t<1; \\ 1 & \text{if } s+t\geq 1. \end{cases}$$

Hence, we can compute

$$\|\underbrace{1,\cdots,1}_{j \text{ times}},\underbrace{0,\cdots,0}_{k-j \text{ times}}\|_{(t)}=arphi(rac{j}{k},t).$$

$K_{V_n} \to K_{k,t}$: idea of the proof

A simpler question: what is the largest maximal singular value $\max_{x \in V, \|x\|=1} \lambda_1(x)$ of vectors from the subspace V?

$$\begin{aligned} \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \lambda_1(\mathbf{x}) &= \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \lambda_1([\mathrm{id}_k \otimes \mathrm{Tr}_n] P_{\mathbf{x}}) \\ &= \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \|[\mathrm{id}_k \otimes \mathrm{Tr}_n] P_{\mathbf{x}}\| \\ &= \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \max_{\mathbf{y} \in \mathbb{C}^k, \|\mathbf{y}\| = 1} \mathrm{Tr}\left[([\mathrm{id}_k \otimes \mathrm{Tr}_n] P_{\mathbf{x}}) \cdot P_{\mathbf{y}}\right] \\ &= \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \max_{\mathbf{y} \in \mathbb{C}^k, \|\mathbf{y}\| = 1} \mathrm{Tr}\left[P_{\mathbf{x}} \cdot P_{\mathbf{y}} \otimes \mathrm{I}_n\right] \\ &= \max_{\mathbf{x} \in V, \|\mathbf{x}\| = 1} \max_{\mathbf{y} \in \mathbb{C}^k, \|\mathbf{y}\| = 1} \mathrm{Tr}\left[P_{\mathbf{x}} \cdot P_{\mathbf{y}} \otimes \mathrm{I}_n\right] \\ &= \max_{\mathbf{y} \in \mathbb{C}^k, \|\mathbf{y}\| = 1} \|P_{\mathbf{y}} \cdot P_{\mathbf{y}} \otimes \mathrm{I}_n \cdot P_{\mathbf{y}}\|_{\infty}. \end{aligned}$$

The set $K_{k,t}$ and t-norms

- $K_{k,t} := \{ \lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \leq \|x\|_{(t)} \}.$
- Recall that

$$\max_{x \in V, \|x\|=1} \lambda_1(x) = \max_{y \in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n P_V\|_{\infty}.$$

- For fixed y, P_V and $P_y \otimes I_n$ are independent projectors of relative ranks t and 1/k respectively.
- Thus,

$$||P_{V} \cdot P_{y} \otimes I_{n} \cdot P_{V}||_{\infty} \to ||((1-t)\delta_{0} + t\delta_{1}) \boxtimes ((1-1/k)\delta_{0} + 1/k\delta_{1})||$$

= $\varphi(t, 1/k) = ||(1, 0, ..., 0)||_{(t)}.$

- We can take the max over y at no cost, by considering a finite net of y's, since k is fixed.
- To get the full result $\limsup_{n\to\infty} K_{V_n} \subset K_{k,t}$, use $\langle \lambda, x \rangle$ (for all directions x) instead of λ_1 .
- The inclusion $\liminf_{n\to\infty} K_{V_n} \supset K_{k,t}$, is much easier, and follows from the convergence in distribution.

Additivity violations

Recall

$$H_{\min}^p(\Phi \otimes \bar{\Phi}) \leq B_2 < 2B_1 \leq 2H_{\min}^p(\Phi).$$

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \to \infty$, if $Z_n = (\Phi \otimes \bar{\Phi})(E_{tnk})$

$$\operatorname{spec}(Z_n) \to \left(t + \frac{1-t}{k^2}, \underbrace{\frac{1-t}{k^2}, \dots, \frac{1-t}{k^2}}_{k^2-1 \text{ times}}\right) \in \Delta_{k^2}.$$

Theorem (Belinschi, Collins, N. '13)

For all
$$p \geq 1$$
,

$$\lim_{n\to\infty}H_p^{min}(\Phi)=H_p(a,b,b,\ldots,b),$$

where b = (1 - a)/(k - 1) and $a = \varphi(1/k, t)$ with

$$\varphi(s,t) = \begin{cases} s+t-2st+2\sqrt{st(1-s)(1-t)} & \text{if } s+t<1; \\ 1 & \text{if } s+t\geq 1. \end{cases}$$

Putting things together

Theorem (Belinschi, Collins, N. '13)

Using the limit for $H^{min}(\Phi)$ and the upper bound for $H^{min}(\Phi)$, the lowest dimension for which a violation of the additivity can be observed is k = 183. For large k, violations of size $1 - \varepsilon$ bits can be obtained.

How to improve this?

- Other asymptotic regimes
- $② \ \mathsf{Use} \ \Psi \neq \bar{\Phi}$
- **③** For $\Phi \otimes \bar{\Phi}$, compute the actual limit of $H^{min}(\Phi \otimes \bar{\Phi})$, and not just an upper bound.

The End

thank you for your attention