
USING RANDOM MATRICES IN QUANTUM INFORMATION THEORY

ION NECHITA

Abstract. The goal of this series of lectures is to present some recent results in quantum informa-
tion theory which make use of random matrices. After an introduction to random matrix theory, I
will present the method of moments, one of the most successful methods used to study the spectra
of large random matrices. This will be the occasion to discuss integration over Gaussian spaces.
On the quantum information side, I will focus on two main topics, random quantum states and
random quantum channels. I will then prove two recent results, one on the asymptotic eigenvalue
distribution of the partial transposition of random quantum states, and another on the output set
of random quantum channels. Both will require some terminology and results from free probability,
which will also be discussed in detail.
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1. Lecture 1 — Generalities. Wishart matrices

1.1. Introduction. The birth of random matrix theory can be traced to statistics and physics.
Wishart introduced the distribution that bears his name in the 1920’s [Wis28], in order to ex-
plain the discrepancy between the eigenvalues of a measured covariance matrix, and an expected
covariance matrix. Later, Wigner was studying nuclear physics when he introduced [Wig55] the
semi-circle distribution. Since then, random matrix theory has played a role in many fields of
mathematics and science, including operator algebras [VDN92], combinatorics, complex analysis,
theoretical physics and telecommunication theory, just to cite a few. Quantum information theory
is definitely one of the most recent of fields of application; for more on this, we direct the interested
reader to the recent review [CN16].

In quantum information theory, randomness is built in, by the axioms of quantum mechanics.
Since quantum states are modeled by (unit trace, positive semidefinite) matrices, it is clear that
the two fields intersect. However, we can see two more reasons for the use of random matrices
in quantum information. First, we would like to understand the typical properties of quantum
states and channels, relative to tasks ans paradigms in quantum information theory. Very early,
properties such as the average entanglement of quantum states were studied [Pag93], and several

probability distribution over the set of quantum states were introduced [ŻS01]. Second, it turns
out that some problems – in particular the minimum output entropy additivity problem, which we
discuss at length here – did not have an obvious non-random answer, therefore it became not only
natural, but also important, to consider random quantum objects.

One paper which popularized the use of random techniques in quantum information was [HLSW04].
This work pointed out that some well-established techniques in the mathematics of random matrices
– measure concentration in this case – could be of use in quantum information.

Let us now gather here some basic definitions from quantum information theory and set up some
notation.

A quantum state is a positive semidefinite matrix of unit trace. The set of all quantum states is
a convex body denoted by

M1,+
d (C) := {ρ ∈Md(C) : ρ ≥ 0 and Tr ρ = 1}.

The extremal points of M1,+
d (C) are the rank one projectors xx∗ (x ∈ Cd, ‖x‖ = 1), and they are

called pure states.
Of particular interest are states of multiple quantum systems, which are quantum states acting

on the tensor power of the corresponding Hilbert spaces. Of particular importance are the separable
states, which in the bipartite case can be described as

SEPd1,d2 := conv{ρ1 ⊗ ρ2}ρi∈M1,+
di

(C)
.

Non-separable states are called entangled, and among those, of particular importance is the
maximally entangled state d−1Ωd ∈M1,+

d2
(C), where

Ωd =
d∑
i=1

ei ⊗ ei, (1.1)

where {ei} is an orthonormal basis of Cd.

1.2. Wishart matrices and their limit distribution. The probability density of the normal
distribution is:

f(x | µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2

Here, µ is the mean. The parameter σ is its standard deviation with its variance then σ2. A random
variable with a Gaussian distribution is said to be normally distributed.
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Suppose X and Y are random vectors in Rk such that (X,Y ) is a 2k-dimensional normal random
vector. Then we say that the complex random vector Z = X + iY has the complex normal
distribution. The normal distribution (resp. random vector) are also called Gaussian distribution
(resp. random vectors).

Historically the first ensemble of random matrices having been studied is the Wishart ensemble
[Wis28], see [BS10, Chapter 3] or [AGZ10, Section 2.1] for a modern presentation.

Definition 1.1. Let G ∈ Md×s(C) be a random matrix with complex, standard, i.i.d. Gaussian
entries. The distribution of the positive-semidefinite matrix W = GG∗ ∈Md(C) is called a Wishart
distribution of parameters (d, s) and is denoted by Wd,s.

The study of the asymptotic behavior of Wishart random matrices is due to Marčenko and
Pastur [MP67], while the stronger convergence results have been proved by analytic tools such as
determinantal point processes; one can also recover the stronger forms of the theorem as direct
consequences of the much more general results [Mal12]. Since we aim at giving complete proofs of
our results, we state it here in a rather week form: the convergence in moments.

Definition 1.2. A sequence of random matrices Xd is said to converge in moments to a probability
distribution ν if for all positive integers p, we have

lim
d→∞

E
∫
tpdµXd = E

1

d
Tr(Xp

d) =

∫
tpdν,

where µXd is the empirical eigenvalue distribution of Xd

µXd =
1

d

d∑
i=1

δλi(Xd).

Theorem 1.3. Consider a sequence sd of positive integers which behaves as sd ∼ cd as d → ∞,
for some constant c ∈ (0,∞). Let Wd be a sequence of positive-semidefinite random matrices such
that Wd is distributed according to Wd,sd. Then, the sequence Wd converges in moments to the
Marčenko-Pastur distribution πc given by

πc = max(1− c, 0)δ0 +

√
(b− x)(x− a)

2πx
1(a,b)(x) dx, (1.2)

where a = (1−√c)2 and b = (1 +
√
c)2.

The Marčenko-Pastur distribution πc is sometimes called the free Poisson distribution, see [NS06,
Proposition 12.11]. We plotted in Figure 1 its density in the cases c = 1 and c = 4.
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Figure 1. The density of the Marčenko-Pastur distributions π1 (left) and π4 (right).
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M
x M y N

Figure 2. Some simple diagrams

Remark 1.4. The Dirac mass appearing in (1.2) is due to the fact that if c < 1, the matrix Wd is
rank deficient. Since cd < d, a fraction 1− c of the eigenvalues of Wd are null, yielding the Dirac
mass at zero.

We postpone the proof of Theorem 1.3 to Section 1.6.
We end this section by the statement of the so-called Carleman condition, which ensures that a

sequence of moments defines a unique probability measure.

Proposition 1.5. Let µ be a probability measure on R having finite moments

mn =

∫
tpdµ(t)

which satisfy
∞∑
n=1

m
−1/(2n)
2n = +∞.

Then, µ is the only measure on R having the sequence (mn) as moments.

1.3. Graphical notation for tensors. Most operations from linear and multilinear algebra (com-
position, tensor product, (partial) traces) can be efficiently represented graphically. The leading
idea is that a string in a diagram means a tensor contraction. Many graphical theories for tensors
and linear algebra computations have been developed in the literature [Pen05, Coe10]. Although
they are all more or less equivalent, we will stick to the one introduced in [CN10b], as it allows
to compute the expectation of random diagrams in a diagrammatic way subsequently. For more
details on this method, we refer the reader to the paper [CN10b] and to other work which make

use of this technique [CN11a, CN10a, CNŻ10, CNŻ13, FŚ13, CGGPG13, Lan15]
In the graphical calculus, matrices (or, more generally, tensors) are represented by boxes. Each

box has differently shaped symbols, where the number of different types of them equals that of
different spaces (exceptions are mentioned below). Those symbols are empty (white) or filled
(black), corresponding to primal or dual spaces. Wires connect these symbols, corresponding to
tensor contractions. A diagram is a collection of such boxes and wires and corresponds to an
element of an abstract tensor product space. Rather than going through the whole theory, we focus
next on a few key examples.

Suppose that each diagram in Figure 2 comes equipped with two vector spaces V1 and V2 which
we shall represent respectively by circle and square shaped symbols. In the first diagram, M is a
tensor (or a matrix, depending on which point of view we adopt) M ∈ V ∗1 ⊗V1, and the wire applies
the contraction V ∗1 ⊗V1 → C to M . The result of the diagram Da is thus TDa = Tr(M) ∈ C. In the
second diagram, again there are no free decorations, hence the result is the complex number TDb =
〈y,Mx〉. Finally, in the third example, N is a (2, 2) tensor or a linear map N ∈ End(V1⊗V2, V1⊗V2).
When one applies to the tensor N the contraction of the couple (V1, V

∗
1 ), the result is the partial

trace of N over the space V1: TDc = TrV1(N) ∈ End(V2, V2). We depict in Figure 3 the maximally
entangled (un-normalized) state Ωd from (1.1), as well as its partial trace, [id⊗Tr](Ωd) = Id.
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Ωd
=Ωd

Figure 3. The maximally entangled state (left) and its partial trace (right).

1.4. Wick formula, algebraic and diagrammatic formulations. The following theorem is
the link between combinatorics and probability theory for Gaussian vectors: it allows to compute
moments of any Gaussian vector thanks to its covariance matrix. A Gaussian space V is a real vector
space of random variables having moments of all orders, with the property that each of these random
variables has centered Gaussian distributions. In order to specify the covariance information, such
a Gaussian space comes with a positive symmetric bilinear form (x, y) → E[xy]. Gaussian spaces
are in one-to-one correspondence with Euclidean spaces. In particular, the Euclidean norm of a
random variable determines it fully (via its variance) and if two random variables are given, their
joint distribution is determined by their angle. The following is usually called the Wick Lemma:

Theorem 1.6. Let V be a Gaussian space and x1, . . . , xk be elements in V . If k = 2l + 1 then
E[x1 · · ·xk] = 0 and if k = 2l then

E[x1 · · ·xk] =
∑

p={{i1,j1},...,{il,jl}}
pairing of {1,...,k}

l∏
m=1

E[ximxjm ]. (1.3)

In particular it follows that if x1, . . . , xp are independent standard Gaussian random variables, then

E[x2k1
1 . . . x

2kp
p ] =

p∏
i=1

(2ki)!!.

The main difference between the real case discussed above and the complex case is that one has
to pair Gaussian variables to their conjugates in the complex situation. This follows from the fact
that if Z is a standard complex Gaussian random variable,

E[Z2] = E[Z̄2] = 0, while E[ZZ̄] = 1.

We shall now recast the Wick formula above in the graphical formalism described in the previous
section. Consider a diagram which containts a new special box G corresponding to a Gaussian
random matrix. We shall compute the expected value of a random diagram with respect to the
Gaussian probability measure; as we shall see, this operation will consist of expanding the diagram,
by erasing the Gaussian boxes and replacing them with wires.

To start, consider D a diagram which contains, amongst other constant tensors, boxes corre-
sponding to independent Gaussian random matrices of covariance one (identity). One can deal
with more general Gaussian matrices by multiplying the standard ones with constant matrices.
Note that a box can appear several times, adjoints of boxes are allowed and the diagram may be
disconnected. Also, Gaussian matrices need not be square.

The expectation value of such a random diagram D can be computed by a removal procedure
as in the unitary case. Without loss of generality, we assume that we do not have in our diagram
adjoints of Gaussian matrices, but instead their complex conjugate box. This assumption allows
for a more straightforward use of the Wick formula from Theorem 1.6. We can assume that D
contains only one type of random Gaussian box G; other independent random Gaussian matrices
are assumed constant at this stage as they can be removed in the same manner afterwards.

A removal of the diagram D is a pairing between Gaussian boxes G and their conjugates Ḡ. The
set of removals is denoted by RemG(D) and it may be empty: if the number of G boxes is different
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Figure 4. Pairing of boxes in the Gaussian case
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AG ḠE

A
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Figure 5. Applying Theorem 1.7 to compute E[GAG∗].

from the number of Ḡ boxes, then RemG(D) = ∅ (since no pairing between matrices and their
conjugates can exist). Otherwise, a removal r can identified with a permutation α ∈ Sp, where p is
the number of G and Ḡ boxes. In the Gaussian/Wick calculus, one pairs conjugate boxes: white
and black decorations are paired in an identical manner, hence only one permutation is needed to
encode the removal.

To each removal r associated to a permutation α ∈ Sp corresponds a removed diagram Dr
constructed as follows. One starts by erasing the boxes G and Ḡ, but keeps the decorations
attached to these boxes. Then, the decorations (white and black) of the i-th G box are paired with
the decorations of the α(i)-th Ḡ box in a coherent manner, see Figure 4.

The graphical reformulation of the Wick formula from Theorem 1.6 becomes the following the-
orem, which we state without proof.

Theorem 1.7. The following holds true:

EG[D] =
∑

r∈RemG(D)

Dr.

In Figure 5, we present an example of application of the theorem above. We consider, on the
first row, the diagram corresponding to E[GAG∗], where G ∈Mn×k(C) is a n×k Gaussian matrix,
and A ∈Mk(C) is a square, deterministic matrix. The first row contains the diagram D associated
to the algebraic expression. In the second row, we rewrite the same diagram, replacing G∗ by Ḡ>,
in order to be able to apply Theorem 1.7. The third row contains the result of the application: we
erase the G/Ḡ boxed and we add the wires corresponding to the permutation (1) ∈ S1 (in red).
We recognize the diagrams for the identity matrix and for the trace of A: E[GAG∗] = Tr(A)In.

1.5. Non-crossing partitions and permutations. For a permutation σ ∈ Sp, denote by #σ the
number of its cycles, including the trivial ones (fixed points). Denote also by |σ| its length, i.e. the
minimum number of transposition which multiply to σ. It is well known that for all permutations
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Figure 6. A non-crossing partition {{1, 2, 4}, {3}} (left) vs. a crossing one
{{1, 3}, {2, 4}} (right).

σ ∈ Sp,
#σ + |σ| = p.

The set of non-crossing partitions will play a crucial role in what follows. Recall that a partition
π of [p] := {1, 2, . . . , p} is called non-crossing if there are now quadruples (a, b, c, d) such that a, b
(resp. c, d) belong to the same block of π, and a < c < b < d; see Figure 6 for some examples. The
are supremum and infimum operations on NC(p), which turn it into a lattice, see [NS06, Lecture
9]. The number of elements in the set NC(p) is the Catalan number

Catp =
1

p+ 1

(
2p

p

)
.

These numbers satisfy the recurrence relation

Catp =

p∑
i=1

Cati−1Catp−i,

and thus their generating series is given by

M(z) =

∞∑
p=0

Catpz
p =

1−
√

1− 4z

2z
.

We collect now a some properties of the distance function over the symmetric group, which allow
us to bijectively identify a subset of Sp with NC(p). This result can be traced back to [Bia97].

Lemma 1.8. The function d(σ, τ) = |σ−1τ | is an integer valued distance on Sp. Besides, it has
the following properties:

• the diameter of Sp is p− 1;
• d(·, ·) is left and right translation invariant;
• for three permutations σ1, σ2, τ ∈ Sp, the quantity d(τ, σ1) + d(τ, σ2) has the same parity as
d(σ1, σ2);
• the set of geodesic points (elements which saturate the triangular inequality) between the

identity permutation id and some permutation σ ∈ Sp is in bijection with the set of non-
crossing partitions smaller than π, where the partition π encodes the cycle structure of σ.
Moreover, the preceding bijection preserves the lattice structure.

1.6. Proof of the Marcenko-Pastur theorem. Proof of the Marčenko-Pastur theorem We have
now all the elements to present a short and elegant proof of Theorem 1.3.

Proof of Theorem 1.3. The proof will consist of three independent steps: computing the moments,
at fixed d, of the random matrix Wd, letting d → ∞ and computing the limiting moments, and
finally identifying the probability measure having precisely these moments.

Step 1. Moment formula
We are interested, for any fixed dimensions d, s, in computing the p-th moment of the random

matrix Wd = GG∗, where G is a d × s matrix with i.i.d. complex standard Gaussian random
entries. To do this, we consider the diagram D corresponding to the random variable Tr(W p

d ). This
diagram contains p pairs (G, Ḡ) of Gaussian boxes, which are connected as in Figures 7 and 8. More
precisely, the label corresponding to Cd which is attached to the i-th G-box is connected to the
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G ḠE = = ds

Figure 7. The first moment of a Wishart matrix using the graphical Wick calculus
from Theorem 1.7. Round labels correspond to Cd, while square labels correspond
to Cs.

G ḠE G Ḡ

Figure 8. The second moment of a Wishart matrix using the graphical Wick cal-
culus. On the top row, the diagram for ETr(W 2

d ). On the bottom row, the two
diagrams corresponding to the permutations id = (1)(2), on the left, and (12), on
the right. Their values are respectively ds2 and d2s.

corresponding label attached to the (i− 1)-th Ḡ-box. On the other hand, the label corresponding
to Cs which is attached to the i-th G-box is connected to the corresponding label attached to the
i-th Ḡ-box. Using the graphical Wick formula from Theorem 1.7, we have

ETr(W p
d ) = ED =

∑
α∈Sp

Dα,

where Dα is the removal diagram obtained by deleting the G/Ḡ boxed and connecting the labels
according to the permutation α. It is clear that each diagram Dα consists only of loops of two
types: ones coming from round labels corresponding to Cd spaces, and others coming from square
labels corresponding to Cs spaces. The number of loops of each type is the number of cycles in the
permutation β−1α, where β encodes the initial wiring of the labels of each type; see Figures 7 and
8 for some examples. In conclusion, we have

ETr(W p
d ) =

∑
α∈Sp

d#(γ−1α)s#α. (1.4)

In the formula above, #(·) is the number of cycles function, and γ is the full cycle permtuation

γ = (p (p− 1) · · · 3 2 1) ∈ Sp.

Step 2. Asymptotic moments
Let us now consider the asymptotic regime we are interested in, d → ∞ and s ∼ cd, for some

fixed parameter c ∈ (0,∞). Since the terms in (1.4) are all positive, we have

ETr(W p
d ) ∼

∑
α∈Sp

c#αd#(γ−1α)+#α.

The dominating terms in the sum above are those maximizing the quantity #(γ−1α) + #α over
the symmetric group. Using the properties of the distance function | · | on permutations from
Lemma 1.8, we have

#(γ−1α) + #α = 2p− (|α|+ |γ−1α|) ≤ 2p− |γ| = p+ 1,
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where equality is attained iff α is a geodesic permutation (it saturates the triangle inequality
|id−1α|+ |α−1γ| ≥ |id−1γ|). We conclude that

ETr(W p
d ) ∼ dp+1

∑
σ∈NC(p)

c#σ.

Notice that considering only the dominating terms from the sum (1.4), indexed over all permuta-
tions, selects the ones for which the permutations are non-crossing partitions.

Step 3. The Marčenko-Pastur distribution
We are going to treat here the case c = 1; the general case is similar. We can rewrite the

asymptotic moment formula as

lim
d→∞

E
1

d
Tr
[
(d−1Wd)

p
]

= Catp.

We claim that the unique probability measure µ having the Catalan numbers as moments is the
one from (1.2):

π1 =

√
x(4− x)

2πx
1(0,4)(x) dx.

To show this, recall that the generating function of the Catalan number must be the moment
generating function of µ:

Mµ(z) =
∞∑
p=0

zp
∫
tpdµ =

1−
√

1− 4z

2z
,

where the relation above holds formally (as a power series in z), and analytically, in a small
neighborhood of 0. The Cauchy transform of µ reads now

Gµ(z) =

∫
1

z − tdµ(t) = z−1Mµ(z−1) =
1−
√

1− 4z−1

2
,

which holds now on a neighborhood of the infinity in the complex plane. One recovers the density
of µ via the Stieltjes inversion formula, which says that if we denote by

hε(t) := − 1

π
=Gµ(t+ iε),

then
dµ

dt
= lim

ε→0
hε(t).

In our case, we recover µ = π1.
The uniqueness clame comes from the fact that π1 is compactly supported, hence it satisfies the

Carleman condition from Proposition 1.5. �

2. Lecture 2 — Partial transposition of random quantum states. Free probability

2.1. Some elements of free probability theory. We have studied random matrices in the
previous lecture by their moments: the only properties of the ambient probability space we have
used were the fact that the random variables have an algebra structure, and the existence of the
expectation functional. We abstract out these notions in the following definition [NS06, Lecture 1].

Definition 2.1. A non-commutative probability space is an algebra A with unit endowed with a
tracial state ϕ. An element of A is called a (non-commutative) random variable.

In these lectures we have already encountered the non-commutative probability space of ran-
dom matrices (Md(L

∞−(Ω,P)),E[d−1 Tr(·)]), where we use the standard notation L∞−(Ω,P) =
∩p≥1L

p(Ω,P); the L∞− space contains all random variables with moments of all orders. We shall
encounter another example in Section 2.2.
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In classical probability theory, the notion of independence of random variables plays a very
important role; in particular, it allows to compute the joint distribution of independent random
variables in terms of the marginal distributions (i.e. the distributions of the individual random
variables). The notion of freeness is a non-commutative alternative to classical independence.

Definition 2.2. Let A1, . . . ,Ak be subalgebras of A having the same unit as A. They are said to
be free if for all ai ∈ Aji (i = 1, . . . , k) such that ϕ(ai) = 0, one has

ϕ(a1 · · · ak) = 0

as soon as j1 6= j2, j2 6= j3, . . . , jk−1 6= jk. Collections S1, S2, . . . of random variables are said to be
free if the unital subalgebras they generate are free.

Let (a1, . . . , ak) be a k-tuple of selfadjoint random variables and let C〈X1, . . . , Xk〉 be the free
∗-algebra of non commutative polynomials on C generated by the k indeterminates X1, . . . , Xk.
The joint distribution of the family {ai}ki=1 is the linear form

µ(a1,...,ak) : C〈X1, . . . , Xk〉 → C
P 7→ ϕ(P (a1, . . . , ak)).

In the case of a single, self-adjoint random variable x, if the moments of x coincide with those of a
compactly supported probability measure µ, i.e.

∀p ≥ 1, ϕ(xp) =

∫
tpdµ(t),

we say that x has distribution µ. The most important distribution in free probability theory is the
semicircular distribution

µSC(0,1) =

√
4− x2

2π
1[−2,2](x)dx,

which is, for reasons we will not get into, the free world equivalent of the Gaussian distribution in
classical probability (see [NS06, Lecture 8] for the details). A random variable x having distribution
µSC(0,1) has the Catalan number for moments:

ϕ(xp) =

{
Catp := 1

p+1

(
2p
p

)
, if p is even

0, if p is odd.

More generally, if x has distribution µSC(0,1), we say that y = σx+m has distribution

µSC(m,σ2) =

√
4σ2 − (x−m)2

2πσ2
1[m=2σ,m+2σ](x)dx. (2.1)
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Figure 9. The density of the semicircular distributions µSC(0,1) (left) and µSC(1,1/4) (right).
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Remark 2.3. If the non-commutative random variable x has (standard) semicircular distribution,
then x2 has a free Poisson (or Marchenko-Pastur distribution) of parameter c = 1.

Given a k-tuple (a1, . . . , ak) of free random variables such that the distribution of ai is µai ,
the joint distribution µ(a1,...,ak) is uniquely determined by the µai ’s. A family (an1 , . . . , a

n
k)n of k-

tuples of random variables is said to converge in distribution towards (a1, . . . , ak) iff for all P ∈
C〈X1, . . . , Xk〉, µ(an1 ,...,a

n
k )(P ) converges towards µ(a1,...,ak)(P ) as n → ∞. Sequences of random

variables (an1 )n, . . . , (a
n
k)n are called asymptotically free as n → ∞ iff the k-tuple (an1 , . . . , a

n
k)n

converges in distribution towards a family of free random variables.
Given two free random variables a, b ∈ A, the distribution µa+b is uniquely determined by µa

and µb. The free additive convolution of µa and µb is defined by µa�µb = µa+b. When x = x∗ ∈ A,
we identify µx with the spectral measure of x with respect to τ . The operation � induces a binary
operation on the set of probability measures on R. Similarly, we write µa � µb = µa−b.

2.2. The full Fock space, free semicircular random variables. We discuss now a more ab-
stract non-commutative probability space, in which freeness appears naturally.

Definition 2.4. Let H be a complex Hilbert space. The full Fock space over H is defined to be

F(H) =
∞⊕
n=0

H⊗n = CΩ⊕
∞⊕
n=1

H⊗n.

The bounded operators on F(H), together with the vacuum state

τ(X) = 〈Ω, XΩ〉
form a non-commutative probability space. We also define, for a vector f ∈ H, the creation and
annihilation operators `(h) and `(h)∗, defined as follows:

`(f)Ω = f

`(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn
and

`(f)∗Ω = 0

`(f)∗f1 = 〈f, f1〉Ω
`(f)∗f1 ⊗ · · · ⊗ fn = 〈f, f1〉f2 ⊗ · · · ⊗ fn.

The following theorem is taken from [NS06, Section 7], where it is proven in a more general form.

Theorem 2.5. Let f, g ∈ H be two orthogonal vectors. Then the non-commutative random vari-
ables x = `(f) + `(f)∗ and y = `(g) + `(g)∗ are semicircular and free.

Proof. Let us first show that both x and y have semicircular distributions; moreover, without loss
of generality, let us assume that ‖f‖ = 1, and task to show that x has µSC(0,1) distribution.

To do this, fix some moment order p, and consider τ(xp):

τ(xp) =
∑

w:[p]→{1,∗}

〈Ω, `(f)w(p)`(f)w(p−1) · · · `(f)w(2)`(f)w(1)Ω〉.

For each choice of the function w, the scalar product above is either 0 or 1; we have thus to count
how many choices of w give 1. It is clear that a function w gives 1 iff p = 2q is even, and the lattice
path induced by w is a Dyck path. Recall that a Dyck path is a path in the lattice Z2, starting at
(0, 0), ending at (p = 2q, 0), having (1,±1) steps, and, importantly, staying above the x-axis at all
times; see Figure 10 for an example. The number of such paths is given by the Catalan numbers,
and the first part of the proof is complete.
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Figure 10. A Dyck path.

Let us now show that x and y are free. Let us first identify which elements in the algebra
generated by {1, `(f)} are traceless. It is easy enough to see that, after some cancellations of the
form `(f)∗`(f) = ‖f‖2, the only such elements are of the form

`(f) · · · `(f)`(f)∗ · · · `(f)∗,

where the product above is non empty. The conclusion follows by considering arbitrary alternating
products of the above type for f and g, and by noting that whenever `(f)∗`(g) appears, the end
result is zero; hence, the ∗-algebras generated by `(f) and `(g) are free. The conclusion follows. �

2.3. The partial transpose of random quantum states. We study here the asymptotical
eigenvalue distribution of the partial transposition of random quantum states. Here, by random,
we mean the probability distributions on M1,+

d (C) known as the induced measures, which were

introduced in [ŻS01]. A random quantum state ρ having the induced measure of parameters (d, s)

is simply a normalized Wishart matrix of the same parameters, see also [Nec07, ŻPNC11]

ρ =
W

TrW
=

GG∗

Tr(GG∗)
.

However, since we are just interested in the positivity of certain operators, it is enough to work
with the cone of positive semidefinite matrices (and the Wishart matrices) instead of working with
quantum states. Recall that the cone of separable matrices is defined as

SEPd,n = {A ∈Mdn : A =
∑
i

Bi ⊗ Ci, where Bi, Ci ≥ 0} ⊆ PSDdn.

The question whether a given mixed quantum state is separable or entangled has been proven to
be an NP-hard one [Gur03]. To circumvent this worst-case intractability, entanglement criteria
are used. These are efficiently computable conditions which are necessary for separability; in other
words, an entanglement criterion is a (usually convex) super-set Xd of the set of separable states,
for which the membership problem is efficiently solvable (see [AS15] for the number of such criteria
needed to obtain a good approximation of the set of separable states). As in the previous section,
from a probabilistic point of view, estimating the probability that a random quantum state (sampled
from the induced ensemble) is an element of Xd is central.

In what follows we shall tackle this problem for one entanglement criterion in the framework
of thresholds. Given a family Gd ⊆ PSDd of convex cones, a pair of functions (s′d, s

′′
d) is called a

threshold for the family Gd if the following two properties are satisfied:

(1) If Wd is a sequence of Wishart random matrices of parameters (d, sd) with sd ≥ s′′d, then

lim
d→∞

P[Wd ∈ Gd] = 1.

(2) If Wd is a sequence of Wishart random matrices of parameters (d, sd) with sd ≤ s′d, then

lim
d→∞

P[Wd ∈ Gd] = 0.
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Let us start with the most used example, the positive partial transpose criterion (PPT). The PPT
criterion has been introduced by Peres in [Per96]: if a positive semidefinite matrix A ∈Md ⊗Mn

is separable, then
AΓ := [id⊗ transp](A) ≥ 0.

Note that the positivity of AΓ is equivalent to the positivity of A Γ= [transp ⊗ id](A), so it does
not matter on which tensor factor the transpose application acts. We denote by PPT d,n the PPT
cone

PPT d,n := {A ∈Mdn : AΓ ≥ 0} ⊇ SEPd,n.
This necessary condition for separability has been shown to be also sufficient for qubit-qubit and
qubit-qutrit systems (dn ≤ 6) in [HHH96]; the result was a simple consequence of the fact that
all the positive application from M2 to M2,3 are decomposable. These non trivial facts are due
to Woronowocz [Wor76]. The PPT criterion for random quantum states has first been studied
numerically in [ŽPBC07]. The analytic results in the following proposition are from [Aub12] (in

the balanced case) and from [BN13] (in the unbalanced case); see also [FŚ13] for some improvements
in the balanced case and the relation to meanders.

Proposition 2.6. Consider a sequence Wd ∈ Mdnd of random Wishart matrices of parameters
(dnd, cdnd), where nd is a function of d and c is a positive constant.

In the balanced regime nd = d, the (properly rescaled) empirical eigenvalue distribution of the
matrices WΓ

d converges to a semicircular measure µSC(1,1/c) of mean 1 and variance 1/c, see (2.1).
In particular, the threshold for the sets PPT d,d (d→∞) is c0 = 4.

In the unbalanced regime nd = n fixed, the (properly rescaled) empirical eigenvalue distribution
of the matrices d−1WΓ

d converges to a free difference of free Poisson distributions (see Section 2.1
for the definitions)

πcn(n+1)/2 � πcn(n−1)/2.

In particular, the threshold for the sets PPT d,n (n fixed, d→∞) is

c0 = 2 + 2

√
1− 1

n2
.

Proof. We are going to sketch the proof of the convergence result in the unbalanced case; for the
balanced case, see [Aub12] and for the threshold in the unbalanced case, see [BN13, Section 6].

Using again the graphical Wick formula, one can find the following expression for the (unnor-
malized) moments of WΓ

d :

ETr[(Wd
Γ)p] =

∑
α∈Sp

s#αd#(γ−1α)n#(γα).

Using the fact that, for every noncrossing partition σ ∈ NC(p), denoting by e(σ) the number of
blocks of even size of σ, we have 1 + e(σ) = #(σγ), we arrive at the formula

E(dn)−1 Tr[(d−1Wd
Γ
)p] ∼

∑
σ∈NC(p)

n#σ+e(σ)c#σ

∼
∑

σ∈NC(p)

∏
b∈σ

cn1+1|b| is even

∼
∑

σ∈NC(p)

∏
b∈σ

(
cn(n+ 1)

2
+
cn(n− 1)

2
(−1)|b|

)
.

We can now identify the free difference of free Poisson operators using the free cumulant approach
of [NS06]: the free cumulant of order p of the limiting measure is

cn(n+ 1)

2
+
cn(n− 1)

2
(−1)|b|.
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�

Remark 2.7. The computation of the limiting distribution of in the unbalanced case performed
above was done using the method of moments. A more general approach, allowing to answer the
same question for general maps and general matrix distributions, was provided in [ANV16] using
operator valued free probability theory.

Remark 2.8. The value of the threshold in the theorem above has a practical significance: if one
considers a random pure quantum state on H = Cd ⊗ Cn ⊗ Ccdn, takes the partial trace on the
third subsystem, and the partial transposition on the second subsystem, then the resulting matrix is
positive semidefinite if c > c0, and has negative eigenvalues if c < c0, with large probability as n is
fixed and d→∞.

3. Lecture 3 — Random quantum channels and their minimum output entropy

3.1. Quantum channels, minimum output entropies, additivity. In Quantum Information
Theory, a quantum channel is the most general transformation of a quantum system. Quantum
channels generalize the unitary evolution of isolated quantum systems to open quantum systems.
Mathematically, we recall that a quantum channel is a linear completely positive trace preserving
map Φ fromMn(C) to itself. The trace preservation condition is necessary since quantum channels
should map density matrices to density matrices. The complete positivity condition can be stated
as

∀d ≥ 1, Φ⊗ Id :Mnd(C)→Mnd(C) is a positive map.

The following three characterizations of quantum channels turn out to be very useful; they are
due to Stinespring [Sti55] and Choi [Cho75].

Proposition 3.1. A linear map Φ :Mn(C)→Mn(C) is a quantum channel if and only if one of
the following three equivalent conditions holds.

(1) (Stinespring dilation) There exists a finite dimensional Hilbert space K = Cd, a density

matrix Y ∈M1,+
d (C) and an unitary operator U ∈ Und such that

Φ(X) = TrK [U(X ⊗ Y )U∗] , ∀X ∈Mn(C). (3.1)

(2) (Kraus decomposition) There exists an integer k and matrices L1, . . . , Lk ∈ Mn(C) such
that

Φ(X) =

k∑
i=1

LiXL
∗
i , ∀X ∈Mn(C).

and
k∑
i=1

L∗iLi = In.

(3) (Choi matrix) The following matrix, called the Choi matrix of Φ

Mn2(C) 3 CΦ = [id⊗ Φ](Ωd) =
n∑

i,j=1

Eij ⊗ Φ(Eij) (3.2)

is positive-semidefinite and satisfies [id⊗ Tr](CΦ) = In.

It can be shown that the dimension of the ancilla space K in the Stinespring dilation theorem can
be chosen d = dimK = n2 and that the state Y can always be considered to be a rank one projector.
A similar result holds for the number of Kraus operators: one can always find a decomposition with
k = n2 operators.

As in classical information theory [Sha48], entropic quantities play a very important role in
quantum information theory. We define next the quantities of interest for the current work. Let
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∆k = {x ∈ Rk+ |
∑k

i=1 xi = 1} be the (k − 1)-dimensional probability simplex. For a positive real
number p ∈ (0, 1)∪ (1,∞), define the Rényi entropy of order p of a probability vector x ∈ ∆k to be

Hp(x) =
1

1− p log

k∑
i=1

xpi .

Since limp→1Hp(x) exists, we define the Shannon entropy of x to be this limit, namely:

H(x) = H1(x) = −
k∑
i=1

xi log xi.

We also define the values for the parameters p = 0,∞:

H0(x) = log #{i : xi 6= 0}
H∞(x) = − log ‖x‖∞.

We extend these definitions to density matrices by functional calculus: for ρ ∈M1,+
n (C), we put

H0(ρ) = log rk(ρ)

Hp(ρ) =
1

1− p log Tr ρp p ∈ (0, 1) ∪ (1,∞)

H(ρ) = H1(ρ) = −Tr ρ log ρ

H∞(ρ) = − log ‖ρ‖∞.
Of special interest for the computation of capacities of quantum channels to transmit classical

information are the following quantities, called the minimum output entropies of the channel. As
the Rényi entropies, they are indexed by some positive real parameter p

Hmin
p (Φ) = min

ρ∈M1,+
n (C)

Hp(Φ(ρ)). (3.3)

The following theorem summarizes some of the most important breakthroughs in quantum in-
formation theory in the last decade. It is based in particular on the papers [Has09, HW08], and
concerns the minimum output entropies of quantum channels, defined in (3.3). The result came as
a surprise to the community, since additivity (i.e. equality in (3.4)) was shown to hold for many
examples of quantum channels.

Theorem 3.2. For every p ∈ [1,∞], there exist quantum channels Φ and Ψ such that

Hmin
p (Φ⊗Ψ) < Hmin

p (Φ) +Hmin
p (Ψ). (3.4)

Except for some particular cases (p > 4.79, [WH02] and p > 2, [GHP10]), the proof of this
theorem uses the random method, i.e. the channels Φ,Ψ are random channels, and the above
inequality occurs with non-zero probability. At this moment, we are not aware of any explicit,
non-random choices for Φ,Ψ in the case 1 ≤ p ≤ 2.

The additivity property for the minimum output entropy Hmin(·) was related in [Sho04] to the
additivity of another important entropic quantity, the Holevo quantity

χ(Φ) = max
{pi,Xi}

[
H

(∑
i

piΦ(Xi)

)
−
∑
i

piH(Φ(Xi))

]
.

The regularized Holevo quantity provides [Hol98, SW97] the classical capacity of a quantum channel
Φ, i.e. the maximum rate at which classical information can be reliably sent through the noisy
channel. The importance of the additivity question stems mainly from the difficulty in computing
the above regularized quantity. Indeed, if additivity holds, there would be no need for regularization,
and the classical capacity of the channel Φ would simply be equal to the Holevo (or one-shot)
capacity χ(Φ).
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3.2. Random quantum channels. As discussed before, all the known counter-examples from
Theorem 3.2, at least in the case p = 1 or p close to 1, come from random constructions. We will
define now what we mean by a random quantum channel. Note that the model described below is
just one of many possible. It has the merit of providing the largest violations for the inequality in
Theorem 3.2, as well as the lowest output dimensions, see [BCN16].

We consider the probability distributions on quantum channels (i.e. trace preserving, completely
positive maps)

Φ :Md(C)→Mk(C), Φ(X) = [idk⊗Trn](V XV ∗), (3.5)

where V : Cd → Ck ⊗ Cn is a random Haar isometry ; note that Φ is a quantum channel, by the
Stinespring dilation result from Proposition 3.1. By a random Haar isometry we mean the unique
invariant probability measure on the Stiefel manifold Vd(Cnk). A random isometry V can also be
seen as a truncation of a random Haar unitary U ∈ Unk.

It has been shown by many authors [FK10, ASW11, CN11b, BCN16] that sequences (Φn) of
random quantum channels violate asymptotically, with probability one, the additivity relation
from Theorem 3.2; most of the examples use the asymptotic regime dn ∼ tkn for suitable fixed
output dimension k and input space ratio t ∈ (0, 1).

All the counter examples use the so-called Hayden-Winter trick, that is letting Ψ = Φ̄ and lower
bounding the left hand side of the additivity relation (3.4) by the output of the maximally entangled
state Ωd. The details of this lower bound can be found in [CN10b], we shall not discuss them here.
We study the behavior of the right hand side of (3.4) in the next subsection.

3.3. Strong convergence and the (t)-norm. Strong convergence and the (t)-norm
We have seen in Section 2.2 how freeness appears naturally in the full Fock space setting. Another

very important situation where freeness manifests itself is the asymptotic theory of random matrices.
The following result was one of Voiculescu’s breakthroughs [Voi98].

Theorem 3.3. Let (An) and (Bn) be sequences of n × n matrices such that An and Bn converge
in distribution (with respect to n−1Tr) for n → ∞. Furthermore, let (Un) be a sequence of Haar
unitary n× n random matrices. Then, An and UnBnU

∗
n are asymptotically free for n→∞.

If An, Bn are matrices of size n, whose spectra converge towards µa, µb, the spectrum of An +
UnBnU

∗
n converges to µa�µb; for the definition of the free additive convolution �, see Section

2.1. Similarly, If An, Bn are matrices of size n such that An ≥ 0, whose spectra converge towards

µa, µb, the spectrum of A
1/2
n UnBnU

∗
nA

1/2
n converges to µa�µb; the operation � is called the free

multiplicative convolution.
Actually, if the matrices An and Bn have well-behaved eigenvalues, not only do the moments of

An +UnBnU
∗
n converge to those of a+ b with a, b free, but we also have a norm convergence, called

strong convergence

almost surely, lim
n→∞

‖An + UnBnU
∗
n‖∞ = ‖a+ b‖.

Note that in the above setting, we need to consider a, b ∈ (A, τ) a C∗ non-commutative probability
space. This result has been shown for GUE matrices in [HT05], and further extended in [Mal12,
CM14].

Let us now consider an example, the truncation of random matrices. Let Pn ∈Mn a projection
of rank n/2; its eigenvalues are 0 and 1, with multiplicity n/2. Hence, the distribution of Pn
converges, when n → ∞, to the Bernoulli probability measure 1

2δ0 + 1
2δ1. Let Cn ∈ Mn/2 be the

top n/2 × n/2 corner of UnPnU
∗
n, with Un a Haar random unitary matrix. Up to zero blocks,

Cn = Qn(UnPnU
∗
n)Qn, where Qn is the diagonal orthogonal projection on the first n/2 coordinates

of Cn. The distribution of Qn converges to 1
2δ0 + 1

2δ1. A direct computation in free probability



USING RANDOM MATRICES IN QUANTUM INFORMATION THEORY 17

theory tells us that the distribution of Cn will converge to[
1

2
δ0 +

1

2
δ1

]
�

[
1

2
δ0 +

1

2
δ1

]
=

1

π
√
x(1− x)

1[0,1](x)dx,

which is the arcsine distribution.
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2
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5

Density

Figure 11. Histogram of eigenvalues of a truncated randomly rotated projector of
relative rank 1/2 and size n = 4000; in red, the density of the arcsine distribution.

We introduce now a new norm, which will play a crucial role in computing MOE for random
quantum channels.

Definition 3.4. For a positive integer k, embed Rk as a self-adjoint real subalgebra R of a C∗-ncps
(A, τ), so that τ(x) = (x1 + · · ·+ xk)/k. Let pt be a projection of rank t ∈ (0, 1] in A, free from R.
On the real vector space Rk, we introduce the following norm, called the (t)-norm:

‖x‖(t) := ‖ptxpt‖∞,
where the vector x ∈ Rk is identified with its image in R.

One can show that ‖ · ‖(t) is indeed a norm, which is permutation invariant. When t > 1− 1/k,

‖ · ‖(t) = ‖ · ‖∞ on Rk, and we can show that limt→0+ ‖x‖(t) = k−1|∑i xi|.
For vectors x with non-negative elements, ‖x‖(t) is the right end of the support of the probability

measure [∑
i

δxi

]
� [(1− t)δ0 + tδ1] .

Let us now look at an example of a computation for the t-norm, in the case where x has just
components taking two values.

Theorem 3.5. In Cn, choose at random according to the Haar measure two independent subspaces
Vn and V ′n of respective dimensions qn ∼ sn and q′n ∼ tn where s, t ∈ (0, 1]. Let Pn (resp. P ′n) be
the orthogonal projection onto Vn (resp. V ′n). Then,

lim
n
‖PnP ′nPn‖∞ = ϕ(s, t) = sup supp((1− s)δ0 + sδ1) � ((1− t)δ0 + tδ1),

with

ϕ(s, t) =

{
s+ t− 2st+ 2

√
st(1− s)(1− t) if s+ t < 1;

1 if s+ t ≥ 1.
(3.6)

Hence, we can compute
‖ 1, · · · , 1︸ ︷︷ ︸

j times

, 0, · · · , 0︸ ︷︷ ︸
k−j times

‖(t) = ϕ(j/k, t).
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3.4. The MOE of a (large) random quantum channel. From now on, we shall abuse notation:
recall that we are interested in random isometries V : Cd → Ck ⊗ Cn. Since the quantities Hmin

p

only depend on the range of V , also write V = ranV . For a subspace V ⊂ Ck ⊗ Cn, define

Hmin
p (V ) = min

y∈V , ‖y‖=1
Hp(y),

the minimal p-entropy of vectors in V ; for a channel as in (3.5), we have

Hmin
p (V ) = Hmin

p (Φ).

For a subspace V ⊂ Ck ⊗ Cn of dimension dimV = d, define the set eigen-/singular values or
Schmidt coefficients

KV = {λ(x) : x ∈ V, ‖x‖ = 1}.
Our goal is to understand KV , and thus, the particular statistic Hmin

p (V ). The set KV is a

compact subset of the ordered probability simplex ∆↓k, having the following properties

• Local invariance: K(U1⊗U2)V = KV , for unitary matrices U1 ∈ U(k) and U2 ∈ U(n).
• Monotonicity: if V1 ⊂ V2, then KV1 ⊂ KV2 .
• Recovering minimum entropies:

Hmin
p (Φ) = Hmin

p (V ) = min
λ∈KV

Hp(λ).

Example 3.6. The anti-symmetric subspace provides the (explicit) counter-example for the addi-
tivity of the p-Rényi entropy [GHP10]. Let k = n and put V = Λ2(Cn). The subspace V is almost
half of the total space: dimV = n(n− 1)/2. Antisymmetric vectors in V are typically

V 3 x =
1√
2

(e⊗ f − f ⊗ e).

Since singular values of vectors in V come in pairs, the least entropy vector in V is as above, with
e ⊥ f and H(x) = log 2. Thus, Hmin(V ) = log 2 and one can show that

KV = {(λ1, λ1, λ2, λ2, . . .) ∈ ∆n : λi ≥ 0,
∑
i

λi = 1/2}.

Problem 3.7. Find explicit (i.e. non-random) examples of subspaces V ⊂ Ck ⊗ Cn with

• large dimV ;
• large Hmin(V ).

We state now the main result of this section, a characterization of the set KV , for a random
isometry V of large size [BCN12]. Recall that we are interested in random isometries/subspaces in
the following asymptotic regime: k fixed, n→∞, and d ∼ tkn, for a fixed parameter t ∈ (0, 1).

Theorem 3.8. For a sequence of uniformly distributed random subspaces Vn, the set KVn of sin-
gular values of unit vectors from Vn converges (almost surely, in the Hausdorff distance) to a
deterministic, convex subset Kk,t of the probability simplex ∆k

Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k, 〈λ, x〉 ≤ ‖x‖(t)}.
The theorem above allows for the computation of the asymptotic behavior of channel statistics

which are related to the output set of random quantum channels. The problem is reduced to the
analogous question on the deterministic set Kk,t. The case of the MOE was treated in [BCN16],
where the following corollary was proved.

Corollary 3.9. For all p ≥ 1,

lim
n→∞

Hmin
p (Φ) = min

λ∈Kk,t
Hp(λ) = Hp(a, b, b, . . . , b),
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where a, b do not depend on p, b = (1 − a)/(k − 1) and a = ϕ(1/k, t), where the function ϕ was
defined in (3.6).

Proof of Theorem 3.8. The statement in the proof concerns the duals of the set Kk,t, so we are

going to consider how far does the set KVn extend into some given direction a ∈ ∆↓k.
Let us start by considering the direction a = (1, 0, . . . , 0). We would like to compute the largest

maximal singular value maxx∈V,‖x‖=1 λ1(x) of vectors from the subspace V ?

max
x∈V,‖x‖=1

λ1(x) = max
x∈V,‖x‖=1

‖[idk ⊗ Trn]Px‖∞

= max
x∈V,‖x‖=1

max
y∈Ck,‖y‖=1

Tr [([idk ⊗ Trn]Px) · Py]

= max
x∈V,‖x‖=1

max
y∈Ck,‖y‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck,‖y‖=1

max
x∈V,‖x‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck,‖y‖=1

‖PV · Py ⊗ In · PV ‖∞.

For fixed y, PV and Py ⊗ In are independent projectors of relative ranks t and 1/k respectively.
Thus, almost surely,

‖PV · Py ⊗ In · PV ‖∞ → ‖ ((1− t)δ0 + tδ1)� ((1− 1/k)δ0 + 1/kδ1) ‖
= ϕ(t, 1/k) = ‖(1, 0, . . . , 0)‖(t).

The computation above shows that the asymptotic behavior of ‖PV ·Py⊗In ·PV ‖∞ is independent
of y. We can thus take the max over y at no cost, by considering a finite net of y’s, since k is fixed.

To get the full result lim supn→∞KVn ⊂ Kk,t, we have to consider 〈λ, a〉 for all directions a; the
computations are similar.

The inclusion lim infn→∞KVn ⊃ Kk,t, is much easier, and follows from the convergence in distri-
bution/moments.

�
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