Random quantum channels and additivity violations

Ion Nechita

CNRS, LPT Toulouse

Vienna, March 10th 2016

Sandom quantum channels and their minimum output entropy

2 Computing $H^{\min}(\Phi)$

3 Lower bounding $H^{\min}(\Phi \otimes \overline{\Phi})$

Additivity violations

Random quantum channels and their minimum output entropy

Quantum states and entropies

• Quantum states (or density matrices)

$$\mathcal{M}_d^{1,+}(\mathbb{C}) = \{ \rho \in \mathcal{M}_d(\mathbb{C}) : \rho \ge 0 \text{ and } \operatorname{Tr} \rho = 1 \}.$$

• Extremal states (i.e. rank one projectors) are called pure states.

von Neumann and Rényi entropies

$$H(
ho)=H^1(
ho)=-\operatorname{Tr}(
ho\log
ho)\qquad H^p(
ho)=rac{\log\operatorname{Tr}
ho^p}{1-p},\quad p>0.$$

• Two quantum systems: tensor product of Hilbert spaces

$$\rho_{12} \in \left[\mathcal{M}_{d_1}(\mathbb{C}) \otimes \mathcal{M}_{d_2}(\mathbb{C})\right]^{1,+}.$$

Entropies are additive

$$H^p(\rho_1 \otimes \rho_2) = H^p(\rho_1) + H^p(\rho_2).$$

Additivity for MOE of quantum channels

• Quantum channels: CPTP maps $\Phi : \mathcal{M}_{in}(\mathbb{C}) \to \mathcal{M}_{out}(\mathbb{C})$

- CP complete positivity: $\Phi \otimes \operatorname{id}_r$ is a positive map, $\forall r \geq 1$
- TP trace preservation: $Tr \circ \Phi = Tr$.
- *p*-Minimal Output Entropy of a quantum channel

$$egin{aligned} &\mathcal{H}^p_{\min}(\Phi) = \min_{eta \in \mathcal{M}^{1,+}_{\mathrm{in}}(\mathbb{C})} \mathcal{H}^p(\Phi(
ho)) \ &= \min_{x \in \mathbb{C}^{\mathrm{in}}} \mathcal{H}^p(\Phi(P_x)). \end{aligned}$$

• Is the *p*-MOE additive ?

$$H^p_{\min}(\Phi\otimes\Psi)=H^p_{\min}(\Phi)+H^p_{\min}(\Psi)\quad \forall\Phi,\Psi.$$

• NO !!!

- *p* > 1: Hayden + Winter '08;
- *p* = 1: Hastings '08
- Why care? Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.

Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random isometries

$$\Phi(
ho) = [\mathsf{id}_{\mathsf{out}} \otimes \mathsf{Tr}_{\mathsf{anc}}](V
ho V^*),$$

where V is a Haar random partial isometry

$$V: \mathbb{C}^{\mathsf{in}} \to \mathbb{C}^{\mathsf{out}} \otimes \mathbb{C}^{\mathsf{anc}}.$$

Equivalently, via the Stinespring dilation theorem

$$\Phi(\rho) = [\mathsf{id}_{\mathsf{out}} \otimes \mathsf{Tr}_{\mathsf{anc}}](U(\rho \otimes P_y)U^*),$$

where $y \in \mathbb{C}^{\frac{\text{out-anc}}{\text{in}}}$ and $U \in \mathcal{M}_{\text{out-anc}}(\mathbb{C})$ is a Haar random unitary matrix.

Random quantum channels from i.i.d. random unitary matrices

$$\Phi(\rho) = \sum_{i=1}^{k} p_i U_i \rho U_i^*,$$

for (random) probabilities p_i and i.i.d. Haar distributed unitary operators U_i .

Here, we focus on random quantum channels coming from random isometries, with the following parameters.

- in = tnk,
- out = k,
- anc = *n*,

where $n, k \in \mathbb{N}$ and $t \in (0, 1)$. In general, we shall assume that

- $n \to \infty$
- k is fixed
- t is fixed.

In other words, we are interested in $\Phi : \mathcal{M}_{tnk}(\mathbb{C}) \to \mathcal{M}_k(\mathbb{C})$,

$$\Phi(\rho) = [\mathrm{id}_k \otimes \mathrm{Tr}_n](V \rho V^*),$$

where V is a random isometry obtained by keeping the first tnk columns of a $nk \times nk$ Haar random unitary.

• Choose Φ to be random and $\Psi = \overline{\Phi}$; this way, $H^p_{\min}(\Psi) = H^p_{\min}(\Phi)$.

Bound

$$H^p_{\min}(\Phi \otimes \overline{\Phi}) \leq B_2 < 2B_1 \leq 2H^p_{\min}(\Phi).$$

Computing $H^{\min}(\Phi)$

Remember: we want

$$H^{p}_{\min}(\Phi\otimes\bar{\Phi})\leq B_{2}<2B_{1}\leq 2H^{p}_{\min}(\Phi).$$

• We shall do more: we compute the exact limit (as $n \to \infty$) of $H^{p}_{\min}(\Phi)$.

Theorem (Belinschi, Collins, N. '13)

For all $p \ge 1$, $\lim_{n \to \infty} H_p^{min}(\Phi) = H_p(a, \underbrace{b, b, \dots, b}_{k-1}),$ where a, b do not depend on p, b = (1 - a)/(k - 1) and $a = \varphi(1/k, t)$ with

$$\varphi(s,t) = \begin{cases} s+t-2st+2\sqrt{st(1-s)(1-t)} & \text{if } s+t < 1; \\ 1 & \text{if } s+t \ge 1. \end{cases}$$

Entanglement of a vector

For a vector

$$x = \sum_{i=1}^k \sqrt{\lambda_i(x)} e_i \otimes f_i,$$

define $H(x) = H(\lambda(x)) = -\sum_i \lambda_i(x) \log \lambda_i(x)$, the entropy of entanglement of the bipartite pure state x.

Note that

- The state x is separable, $x = e \otimes f$, iff H(x) = 0.
- The state x is maximally entangled, $x = k^{-1/2} \sum_{i} e_i \otimes f_i$, iff $H(x) = \log k$.

Recall that we are interested in computing

$$H^{\min}(\Phi) = \min_{x \in \mathbb{C}^d, \|x\|=1} H(\Phi(P_x)) = \min_{y \in \operatorname{Im} V, \|y\|=1} H([\operatorname{id}_k \otimes \operatorname{Tr}_n]P_y)$$
$$= \min_{y \in \operatorname{Im} V, \|y\|=1} H(y).$$

For a subspace $V \subset \mathbb{C}^k \otimes \mathbb{C}^n$, define

$$H_p^{\min}(V) = \min_{y \in V, \, ||y||=1} H_p(y),$$

the minimal entanglement of vectors in V.

Here, we abuse notation: recall that we are interested in random isometries $V : \mathbb{C}^{tnk} \to \mathbb{C}^k \otimes \mathbb{C}^n$. Since the quantities H_p^{\min} only depend on the range of V, also write $V = \operatorname{ran} V$.

A subspace V is called entangled if $H^{\min}(V) > 0$, i.e. if it does not contain separable vectors $x \otimes y$.

Singular values of vectors from a subspace

→ Entropy is just a statistic, look at the set of all singular values directly! For a subspace $V \subset \mathbb{C}^k \otimes \mathbb{C}^n$ of dimension dim V = d, define the set eigen-/singular values or Schmidt coefficients

$$K_V = \{\lambda(x) \, : \, x \in V, \|x\| = 1\}.$$

 \rightsquigarrow Our goal is to understand K_V .

- The set K_V is a compact subset of the ordered probability simplex Δ_k^{\downarrow} .
- Local invariance: $K_{(U_1 \otimes U_2)V} = K_V$, for unitary matrices $U_1 \in U(k)$ and $U_2 \in U(n)$.
- Monotonicity: if $V_1 \subset V_2$, then $K_{V_1} \subset K_{V_2}$.
- Recovering minimum entropies:

$$H_p^{\min}(\Phi) = H_p^{\min}(V) = \min_{\lambda \in K_V} H_p(\lambda).$$

Examples

The anti-symmetric subspace: non-random counter-example for additivity, when p > 2 [Grudka, Horodecki, Pankowski '09].

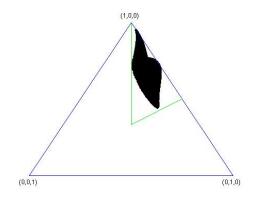
- Let k = n and put $V = \Lambda^2(\mathbb{C}^n)$
- The subspace V is almost half of the total space: $\dim V = n(n-1)/2.$
- Example of a vector in V:

$$V \ni x = \frac{1}{\sqrt{2}}(e \otimes f - f \otimes e).$$

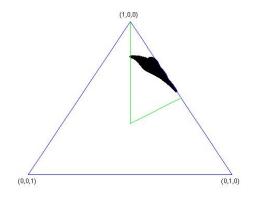
- Fact: singular values of vectors in V come in pairs.
- Hence, the least entropy vector in V is as above, with $e \perp f$ and $H(x) = \log 2$.
- Thus, $H^{\min}(V) = \log 2$ and one can show that

$$K_V = \{(\lambda_1, \lambda_1, \lambda_2, \lambda_2, \ldots) \in \Delta_n : \lambda_i \ge 0, \sum_i \lambda_i = 1/2\}.$$

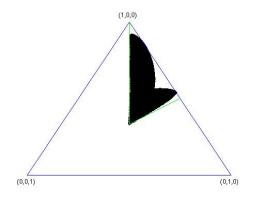
 $V = \mathrm{span}\{\mathit{G}_1, \mathit{G}_2\},$ where $\mathit{G}_{1,2}$ are 3×3 independent Ginibre random matrices.



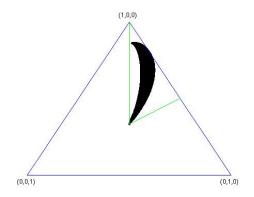
 $V = \mathrm{span}\{\mathit{G}_1, \mathit{G}_2\},$ where $\mathit{G}_{1,2}$ are 3×3 independent Ginibre random matrices.



 $V = \operatorname{span}{I_3, G}$, where G is a 3×3 Ginibre random matrix.



 $V = \operatorname{span}{I_3, G}$, where G is a 3×3 Ginibre random matrix.



Find explicit (i.e. non-random) examples of subspaces $V \subset \mathbb{C}^k \otimes \mathbb{C}^n$ with

- large dim V;
- **2** large $H^{\min}(V)$.

Recall that we are interested in random isometries/subspaces in the following asymptotic regime: k fixed, $n \to \infty$, and $d \sim tkn$, for a fixed parameter $t \in (0, 1)$.

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V_n , the set K_{V_n} of singular values of unit vectors from V_n converges (almost surely, in the Hausdorff distance) to a deterministic, convex subset $K_{k,t}$ of the probability simplex Δ_k

$$\mathcal{K}_{k,t} := \{\lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \le \|x\|_{(t)}\}.$$

Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed, $n \to \infty, d \sim tkn$, we have the following a.s. convergence result for random quantum channels Φ (defined via random isometries $V : \mathbb{C}^d \to \mathbb{C}^k \otimes \mathbb{C}^n$):

$$\lim_{n\to\infty} H_p^{\min}(\Phi) = \min_{\lambda\in K_{k,t}} H_p(\lambda).$$

It is not just a bound, the exact limit value is obtained.

Theorem (Belinschi, Collins, N. '16)

For all $p \ge 1$,

$$\lim_{n\to\infty}H_p^{\min}(\Phi)=\min_{\lambda\in K_{k,t}}H_p(\lambda)=H_p(a,b,b,\ldots,b),$$

where a, b do not depend on p, b = (1 - a)/(k - 1) and $a = \varphi(1/k, t)$ with

$$\varphi(s,t) = \begin{cases} s+t-2st+2\sqrt{st(1-s)(1-t)} & \text{if } s+t < 1; \\ 1 & \text{if } s+t \ge 1. \end{cases}$$

Theorem (Voiculescu '98)

Let (A_n) and (B_n) be sequences of $n \times n$ matrices such that A_n and B_n converge in distribution (with respect to $n^{-1} \operatorname{Tr}$) for $n \to \infty$. Furthermore, let (U_n) be a sequence of Haar unitary $n \times n$ random matrices. Then, A_n and $U_n B_n U_n^*$ are asymptotically free for $n \to \infty$.

If A_n , B_n are matrices of size n, whose spectra converge towards μ_a , μ_b , the spectrum of $A_n + U_n B_n U_n^*$ converges to $\mu_a \boxplus \mu_b$; here, $\mu_a \boxplus \mu_b$ is the distribution of a + b, where $a, b \in (A, \tau)$ are free random variables having distributions resp. μ_a, μ_b .

If A_n, B_n are matrices of size n such that $A_n \ge 0$, whose spectra converge towards μ_a, μ_b , the spectrum of $A_n^{1/2} U_n B_n U_n^* A_n^{1/2}$ converges to $\mu_a \boxtimes \mu_b$.

Let $P_n \in \mathcal{M}_n$ a projection of rank n/2; its eigenvalues are 0 and 1, with multiplicity n/2. Hence, the distribution of P_n converges, when $n \to \infty$, to the Bernoulli probability measure $\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$.

Let $C_n \in \mathcal{M}_{n/2}$ be the top $n/2 \times n/2$ corner of $U_n P_n U_n^*$, with U_n a Haar random unitary matrix. What is the distribution of C_n ?

Up to zero blocks, $C_n = Q_n(U_nP_nU_n^*)Q_n$, where Q_n is the diagonal orthogonal projection on the first n/2 coordinates of \mathbb{C}^n . The distribution of Q_n converges to $\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1$.

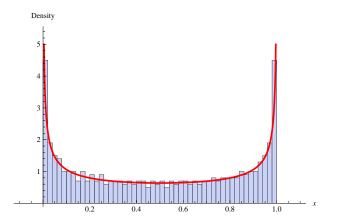
Free probability theory tells us that the distribution of C_n will converge to

$$(\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1) \boxtimes (\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1) = \frac{1}{\pi\sqrt{x(1-x)}} \mathbf{1}_{[0,1]}(x) dx,$$

which is the arcsine distribution.

Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of relative rank 1/2 and size n = 4000; in red, the density of the arcsine distribution.



Definition

For a positive integer k, embed \mathbb{R}^k as a self-adjoint real subalgebra \mathcal{R} of a C^* -ncps (\mathcal{A}, τ) , so that $\tau(x) = (x_1 + \cdots + x_k)/k$. Let p_t be a projection of rank $t \in (0, 1]$ in \mathcal{A} , free from \mathcal{R} . On the real vector space \mathbb{R}^k , we introduce the following norm, called the (t)-norm:

$$||x||_{(t)} := ||p_t x p_t||_{\infty},$$

where the vector $x \in \mathbb{R}^k$ is identified with its image in \mathcal{R} .

- One can show that $\|\cdot\|_{(t)}$ is indeed a norm, which is permutation invariant.
- When t > 1 1/k, $\| \cdot \|_{(t)} = \| \cdot \|_{\infty}$ on \mathbb{R}^k .
- $\lim_{t\to 0^+} \|x\|_{(t)} = k^{-1} |\sum_i x_i|.$

Theorem (Collins '05)

In \mathbb{C}^n , choose at random according to the Haar measure two independent subspaces V_n and V'_n of respective dimensions $q_n \sim sn$ and $q'_n \sim tn$ where $s, t \in (0, 1]$. Let P_n (resp. P'_n) be the orthogonal projection onto V_n (resp. V'_n). Then, almost surely,

$$\lim_{n} \|P_{n}P_{n}'P_{n}\|_{\infty} = \varphi(s,t) = \sup \operatorname{supp}((1-s)\delta_{0} + s\delta_{1}) \boxtimes ((1-t)\delta_{0} + t\delta_{1}),$$

with

$$\varphi(s,t) = \begin{cases} s+t-2st+2\sqrt{st(1-s)(1-t)} & \text{if } s+t<1; \\ 1 & \text{if } s+t \ge 1. \end{cases}$$

Hence, we can compute

$$\|\underbrace{1,\cdots,1}_{j \text{ times}},\underbrace{0,\cdots,0}_{k-j \text{ times}}\|_{(t)} = \varphi(\frac{j}{k},t).$$

$K_{V_n} \rightarrow K_{k,t}$: idea of the proof

A simpler question: what is the largest maximal singular value $\max_{x \in V, ||x||=1} \lambda_1(x)$ of vectors from the subspace V ?

$$\max_{x \in V, ||x||=1} \lambda_1(x) = \max_{x \in V, ||x||=1} \lambda_1([\mathrm{id}_k \otimes \mathrm{Tr}_n]P_x)$$

$$= \max_{x \in V, ||x||=1} ||[\mathrm{id}_k \otimes \mathrm{Tr}_n]P_x||$$

$$= \max_{x \in V, ||x||=1} \max_{y \in \mathbb{C}^k, ||y||=1} \mathrm{Tr}\left[([\mathrm{id}_k \otimes \mathrm{Tr}_n]P_x) \cdot P_y\right]$$

$$= \max_{x \in V, ||x||=1} \max_{y \in \mathbb{C}^k, ||y||=1} \mathrm{Tr}\left[P_x \cdot P_y \otimes \mathrm{I}_n\right]$$

$$= \max_{y \in \mathbb{C}^k, ||y||=1} \max_{x \in V, ||x||=1} \mathrm{Tr}\left[P_x \cdot P_y \otimes \mathrm{I}_n\right]$$

$$= \max_{y \in \mathbb{C}^k, ||y||=1} ||P_V \cdot P_y \otimes \mathrm{I}_n \cdot P_V||_{\infty}.$$

The set $K_{k,t}$ and t-norms

- $\mathcal{K}_{k,t} := \{\lambda \in \Delta_k \mid \forall x \in \Delta_k, \langle \lambda, x \rangle \leq \|x\|_{(t)}\}.$
- Recall that

$$\max_{x \in V, \|x\|=1} \lambda_1(x) = \max_{y \in \mathbb{C}^k, \|y\|=1} \|P_V P_y \otimes I_n P_V\|_{\infty}.$$

• For fixed y, P_V and $P_y \otimes I_n$ are independent projectors of relative ranks t and 1/k respectively.

Thus,

$$\begin{split} \| \mathsf{P}_{\mathsf{V}} \cdot \mathsf{P}_{\mathsf{y}} \otimes \mathrm{I}_n \cdot \mathsf{P}_{\mathsf{V}} \|_{\infty} &\to \| \left((1-t)\delta_0 + t\delta_1 \right) \boxtimes \left((1-1/k)\delta_0 + 1/k\delta_1 \right) \| \\ &= \varphi(t, 1/k) = \| (1, 0, \dots, 0) \|_{(t)}. \end{split}$$

- We can take the max over y at no cost, by considering a finite net of y's, since k is fixed; remember that we are using almost sure convergence.
- To get the full result lim sup_{n→∞} K_{V_n} ⊂ K_{k,t}, use ⟨λ, x⟩ (for all directions x) instead of λ₁.
- The inclusion $\liminf_{n\to\infty} K_{V_n} \supset K_{k,t}$, is much easier, and follows from the convergence in distribution.

Lower bounding $H^{\min}(\Phi \otimes \overline{\Phi})$

Remember: we want

$$H^p_{\min}(\Phi\otimes\bar{\Phi})\leq B_2<2B_1\leq 2H^p_{\min}(\Phi).$$

- Use trivial bound H^p_{min}(Φ ⊗ Φ̄) ≤ H^p ([Φ ⊗ Φ̄](X₁₂)), for a particular choice of X₁₂ ∈ M_{tnk}(ℂ) ⊗ M_{tnk}(ℂ).
- X₁₂ = X₁ ⊗ X₂ do not yield counterexamples ⇒ choose a maximally entangled state

$$X_{12} = E_{tnk} = \left(\frac{1}{\sqrt{tnk}}\sum_{i=1}^{tnk} e_i \otimes e_i\right) \left(\frac{1}{\sqrt{tnk}}\sum_{j=1}^{tnk} e_j \otimes e_j\right)^*$$

• Bound entropies of the (random) density matrix

$$Z_n = [\Phi \otimes \overline{\Phi}](E_{tnk}) \in \mathcal{M}_k(\mathbb{C}) \otimes \mathcal{M}_k(\mathbb{C}).$$

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \to \infty$, the eigenvalues of $Z_n = [\Phi \otimes \overline{\Phi}](E_{tnk})$ converge to

$$\left(t+\frac{1-t}{k^2},\underbrace{\frac{1-t}{k^2},\ldots,\frac{1-t}{k^2}}_{\frac{k^2-1 \text{ times}}}\right) \in \Delta_{k^2}.$$

- Previously known bound (deterministic, comes from linear algebra): for all *t*, *n*, *k*, the largest eigenvalue of *Z_n* is at least *t*.
- Two improvements:
 - "better" largest eigenvalue,
 - In the whole spectrum.
- Precise knowledge of eigenvalues \rightsquigarrow optimal estimates for entropies.
- However, smaller eigenvalues are the "worst possible".

Proof strategy for a.s. spectrum Z_n

• Use the method of moments

Onvergence in moments:

$$\mathbb{E}\operatorname{Tr}(Z_n^p) \to \left(t + \frac{1-t}{k^2}\right)^p + (k^2 - 1)\left(\frac{1-t}{k^2}\right)^p;$$

Ø Borel-Cantelli for a.s. convergence:

$$\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\mathsf{Tr}(Z_n^p) - \mathbb{E}\,\mathsf{Tr}(Z_n^p)\right)^2\right] < \infty.$$

- We need to compute moments $\mathbb{E}\left[\operatorname{Tr}(Z_n^{p_1})^{q_1}\cdots\operatorname{Tr}(Z_n^{p_s})^{q_s}\right]$.
- Use the Weingarten formula to compute the unitary averages.

Unitary integration - Weingarten formula

• Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and (i_1, \ldots, i_p) , (i'_1, \ldots, i'_p) , (j_1, \ldots, j_p) , (j'_1, \ldots, j'_p) be p-tuples of positive integers from $\{1, 2, \ldots, d\}$. Then

$$\int_{\mathcal{U}(d)} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U_{i'_1 j'_1}} \cdots \overline{U_{i'_p j'_p}} \, dU = \sum_{\alpha, \beta \in \mathcal{S}_p} \delta_{i_1 i'_{\alpha(1)}} \cdots \delta_{i_p i'_{\alpha(p)}} \delta_{j_1 j'_{\beta(1)}} \cdots \delta_{j_p j'_{\beta(p)}} \operatorname{Wg}(d, \alpha \beta^{-1}).$$

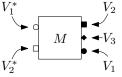
If $p \neq p'$ then

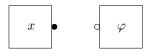
$$\int_{\mathcal{U}(d)} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U_{i'_1 j'_1}} \cdots \overline{U_{i'_p j'_{p'}}} \ dU = 0.$$

• There is a graphical way of reading this formula on the diagrams !

Boxes & wires

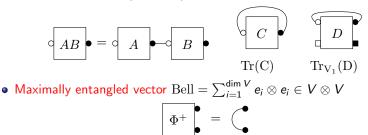
- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors ~ decorated boxes.





 $M \in V_1 \otimes V_2 \otimes V_3 \otimes V_1^* \otimes V_2^* \qquad x \in V_1 \qquad \varphi \in V_1^*$

• Tensor contractions (or traces) $V \otimes V^* \to \mathbb{C} \rightsquigarrow$ wires.

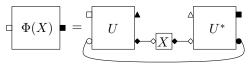


Graphical representation of quantum channels

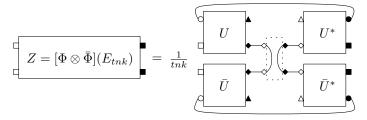
Decorations/labels

$$\overset{\bullet}{{}_{\scriptscriptstyle \bigcirc}} = \mathbf{C}^n \qquad \overset{\bullet}{{}_{\scriptscriptstyle \square}} = \mathbf{C}^k \qquad \overset{\bullet}{{}_{\scriptscriptstyle \diamondsuit}} = \mathbf{C}^{tnk} \qquad \overset{\bullet}{{}_{\scriptscriptstyle \bigtriangleup}} = \mathbf{C}^{t^{-1}}$$

• Single channel (finite rank output)



• Product of conjugate channels



"Graphical" Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

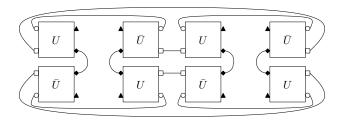
- Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- **②** By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D} = 0$.
- Otherwise, choose a pair of permutations (α, β) ∈ S²_p. These permutations will be used to pair decorations of U/U boxes.
- For all i = 1,..., p, add a wire between each white decoration of the i-th U box and the corresponding white decoration of the α(i)-th U box. In a similar manner, use β to pair black decorations.
- So Erase all U and \overline{U} boxes. The resulting diagram is denoted by $\mathcal{D}_{(\alpha,\beta)}$.

Theorem

$$\mathbb{E}\mathcal{D} = \sum_{\alpha,\beta\in\mathcal{S}_p} \mathcal{D}_{(\alpha,\beta)} \mathrm{Wg}(d,\alpha\beta^{-1}).$$

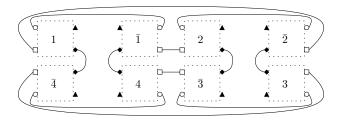
- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The original diagram



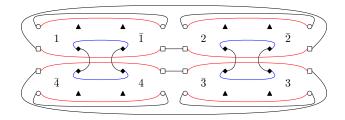
- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The diagram with the boxes removed



- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

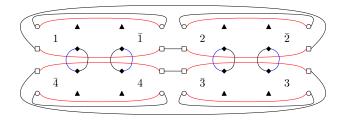
The wiring for $\alpha = \beta = id$.



Contribution: $n^4 \cdot k^2 \cdot (tnk)^2 \cdot Wg(id)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

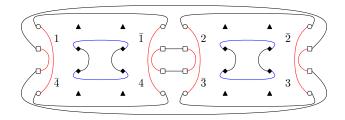
The wiring for $\alpha = id$, $\beta = \delta$.



Contribution: $n^4 \cdot k^2 \cdot (tnk)^4 \cdot Wg(\delta)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

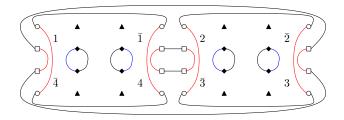
The wiring for $\alpha = \delta$, $\beta = id$.



Contribution: $n^2 \cdot k^2 \cdot (tnk)^2 \cdot Wg(\delta)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The wiring for $\alpha = \beta = \delta$.



Contribution: $n^2 \cdot k^2 \cdot (tnk)^4 \cdot Wg(id)$.

Sketch of the proof

- We want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$.
- One needs to compute the contribution of each diagram D_(α,β), where α, β ∈ S_{2p}.
- D_(α,β) is a collection of loops associated to vector spaces of dimensions n, k, and tnk.
- Asymptotic for Weingarten weights ($\sigma \in S_p$, $d \to \infty$, p fixed):

$$\operatorname{Wg}(d,\sigma) = d^{-(p+|\sigma|)}(\operatorname{Mob}(\sigma) + O(d^{-2})).$$

• One has to identify asymptotically dominating terms. Computations for fixed *n* are intractable due to the complexity of the Weingarten function. In the limit $n \to \infty$, the structure of the dominating terms is very simple.

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \to \infty$,

$$\operatorname{spec}(Z_n) \to \left(t + \frac{1-t}{k^2}, \underbrace{\frac{1-t}{k^2}, \ldots, \frac{1-t}{k^2}}_{k^2-1 \text{ times}}\right) \in \Delta_k$$

Additivity violations

$$H^{p}_{\min}(\Phi \otimes \overline{\Phi}) \leq B_{2} < 2B_{1} \leq 2H^{p}_{\min}(\Phi).$$

Theorem (Collins + N.'09)

For all k, t, almost surely as $n \to \infty$, if $Z_n = (\Phi \otimes \overline{\Phi})(E_{tnk})$

$$\operatorname{spec}(Z_n) \to \left(t + \frac{1-t}{k^2}, \underbrace{\frac{1-t}{k^2}, \ldots, \frac{1-t}{k^2}}_{k^2-1 \text{ times}}\right) \in \Delta_{k^2}.$$

Theorem (Belinschi, Collins, N. '16)

For all $p \ge 1$, $\lim_{n \to \infty} H_p^{min}(\Phi) = H_p(a, b, b, \dots, b),$ where b = (1-a)/(k-1) and $a = \varphi(1/k, t)$ with $\varphi(s, t) = \begin{cases} s+t-2st+2\sqrt{st(1-s)(1-t)} & \text{if } s+t < 1; \\ 1 & \text{if } s+t \ge 1. \end{cases}$

Theorem (Belinschi, Collins, N. '16)

Using the limit for $H^{\min}(\Phi)$ and the upper bound for $H^{\min}(\Phi)$, the lowest dimension for which a violation of the additivity can be observed is k = 183. For large k, violations of size $1 - \varepsilon$ bits can be obtained.

How to improve this ?

- Other asymptotic regimes
- (a) Use $\Psi \neq \overline{\Phi}$
- Sor Φ ⊗ Φ
 , compute the actual limit of H^{min}(Φ ⊗ Φ
), and not just an upper bound.

The End

thank you for your attention

- S. Belinschi, B. Collins, I.N. *Eigenvectors and eigenvalues in a random subspace of a tensor product* Inv. Math. 2012, arXiv:1008.3099
- S. Belinschi, B. Collins, I.N. Almost one bit violation for the additivity of the minimum output entropy CMP 2016, arXiv:1305.1567
- B. Collins, I.N. Random matrix techniques in quantum information theory - JMP 2016, arXiv:1509.04689