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Random quantum channels

and their minimum output entropy



Quantum states and entropies

Quantum states (or density matrices)

M1,+
d (C) = {ρ ∈Md(C) : ρ ≥ 0 and Tr ρ = 1}.

Extremal states (i.e. rank one projectors) are called pure states.

von Neumann and Rényi entropies

H(ρ) = H1(ρ) = −Tr(ρ log ρ) Hp(ρ) =
log Tr ρp

1− p
, p > 0.

Two quantum systems: tensor product of Hilbert spaces

ρ12 ∈ [Md1(C)⊗Md2(C)]1,+ .

Entropies are additive

Hp(ρ1 ⊗ ρ2) = Hp(ρ1) + Hp(ρ2).
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Additivity for MOE of quantum channels

Quantum channels: CPTP maps Φ :Min(C)→Mout(C)

CP - complete positivity: Φ⊗ idr is a positive map, ∀r ≥ 1
TP - trace preservation: Tr ◦ Φ = Tr.

p-Minimal Output Entropy of a quantum channel

Hp
min(Φ) = min

ρ∈M1,+
in (C)

Hp(Φ(ρ))

= min
x∈Cin

Hp(Φ(Px)).

Is the p-MOE additive ?

Hp
min(Φ⊗Ψ) = Hp

min(Φ) + Hp
min(Ψ) ∀Φ,Ψ.

NO !!!

p > 1: Hayden + Winter ’08;
p = 1: Hastings ’08

Why care? Simple formula for the (classical) capacity of quantum
channels: if additivity holds, then there is no need to use inputs
entangled over multiple uses of Φ.
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Random quantum channels

Counterexamples to additivity conjectures are random.

Random quantum channels from random isometries

Φ(ρ) = [idout⊗Tranc](V ρV
∗),

where V is a Haar random partial isometry

V : Cin → Cout ⊗ Canc.

Equivalently, via the Stinespring dilation theorem

Φ(ρ) = [idout⊗Tranc](U(ρ⊗ Py )U∗),

where y ∈ C out·anc
in and U ∈Mout·anc(C) is a Haar random unitary

matrix.

Random quantum channels from i.i.d. random unitary matrices

Φ(ρ) =
k∑

i=1

piUiρU
∗
i ,

for (random) probabilities pi and i.i.d. Haar distributed unitary
operators Ui .
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Model of interest

Here, we focus on random quantum channels coming from random
isometries, with the following parameters.

in = tnk ,

out = k ,

anc = n,

where n, k ∈ N and t ∈ (0, 1). In general, we shall assume that

n→∞
k is fixed
t is fixed.

In other words, we are interested in Φ :Mtnk(C)→Mk(C),

Φ(ρ) = [idk ⊗ Trn](V ρV ∗),

where V is a random isometry obtained by keeping the first tnk columns
of a nk × nk Haar random unitary.
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How to get counterexamples ?

Choose Φ to be random and Ψ = Φ̄; this way, Hp
min(Ψ) = Hp

min(Φ).

Bound
Hp

min(Φ⊗ Φ̄) ≤ B2 < 2B1 ≤ 2Hp
min(Φ).
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Computing Hmin(Φ)



Strategy for B1

Remember: we want

Hp
min(Φ⊗ Φ̄)≤B2 < 2B1 ≤ 2Hp

min(Φ).

We shall do more: we compute the exact limit (as n→∞) of
Hp

min(Φ).

Theorem (Belinschi, Collins, N. ’13)

For all p ≥ 1,
lim

n→∞
Hmin

p (Φ) = Hp(a, b, b, . . . , b︸ ︷︷ ︸
k−1

),

where a, b do not depend on p, b = (1− a)/(k − 1) and a = ϕ(1/k , t)
with

ϕ(s, t) =

{
s + t − 2st + 2

√
st(1− s)(1− t) if s + t < 1;

1 if s + t ≥ 1.
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Entanglement of a vector

For a vector

x =
k∑

i=1

√
λi (x)ei ⊗ fi ,

define H(x) = H(λ(x)) = −∑i λi (x) log λi (x), the entropy of
entanglement of the bipartite pure state x .

Note that

1 The state x is separable, x = e ⊗ f , iff H(x) = 0.

2 The state x is maximally entangled, x = k−1/2
∑

i ei ⊗ fi , iff
H(x) = log k .

Recall that we are interested in computing

Hmin(Φ) = min
x∈Cd , ‖x‖=1

H(Φ(Px)) = min
y∈ImV , ‖y‖=1

H([idk ⊗ Trn]Py )

= min
y∈ImV , ‖y‖=1

H(y).

11 / 42



Entanglement of a subspace

For a subspace V ⊂ Ck ⊗ Cn, define

Hmin
p (V ) = min

y∈V , ‖y‖=1
Hp(y),

the minimal entanglement of vectors in V .

Here, we abuse notation: recall that we are interested in random
isometries V : Ctnk → Ck ⊗ Cn. Since the quantities Hmin

p only depend
on the range of V , also write V = ranV .

A subspace V is called entangled if Hmin(V ) > 0, i.e. if it does not
contain separable vectors x ⊗ y .
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Singular values of vectors from a subspace

 Entropy is just a statistic, look at the set of all singular values directly!

For a subspace V ⊂ Ck ⊗ Cn of dimension dimV = d , define the set
eigen-/singular values or Schmidt coefficients

KV = {λ(x) : x ∈ V , ‖x‖ = 1}.

 Our goal is to understand KV .

The set KV is a compact subset of the ordered probability simplex
∆↓k .

Local invariance: K(U1⊗U2)V = KV , for unitary matrices U1 ∈ U(k)
and U2 ∈ U(n).

Monotonicity: if V1 ⊂ V2, then KV1 ⊂ KV2 .

Recovering minimum entropies:

Hmin
p (Φ) = Hmin

p (V ) = min
λ∈KV

Hp(λ).
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Examples

The anti-symmetric subspace: non-random counter-example for
additivity, when p > 2 [Grudka, Horodecki, Pankowski ’09].

Let k = n and put V = Λ2(Cn)

The subspace V is almost half of the total space:
dimV = n(n − 1)/2.

Example of a vector in V :

V 3 x =
1√
2

(e ⊗ f − f ⊗ e).

Fact: singular values of vectors in V come in pairs.

Hence, the least entropy vector in V is as above, with e ⊥ f and
H(x) = log 2.

Thus, Hmin(V ) = log 2 and one can show that

KV = {(λ1, λ1, λ2, λ2, . . .) ∈ ∆n : λi ≥ 0,
∑
i

λi = 1/2}.

14 / 42



Examples - KV

V = span{G1,G2}, where G1,2 are 3× 3 independent Ginibre random
matrices.
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Examples - KV

V = span{G1,G2}, where G1,2 are 3× 3 independent Ginibre random
matrices.
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Examples - KV

V = span{I3,G}, where G is a 3× 3 Ginibre random matrix.
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Examples - KV

V = span{I3,G}, where G is a 3× 3 Ginibre random matrix.
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An open problem

Find explicit (i.e. non-random) examples of subspaces V ⊂ Ck ⊗Cn with

1 large dimV ;

2 large Hmin(V ).
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Main result

Recall that we are interested in random isometries/subspaces in the
following asymptotic regime: k fixed, n→∞, and d ∼ tkn, for a fixed
parameter t ∈ (0, 1).

Theorem (Belinschi, Collins, N. ’10)

For a sequence of uniformly distributed random subspaces Vn, the set
KVn of singular values of unit vectors from Vn converges (almost surely,
in the Hausdorff distance) to a deterministic, convex subset Kk,t of the
probability simplex ∆k

Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.
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Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed,
n→∞, d ∼ tkn, we have the following a.s. convergence result for
random quantum channels Φ (defined via random isometries
V : Cd → Ck ⊗ Cn):

lim
n→∞

Hmin
p (Φ) = min

λ∈Kk,t

Hp(λ).

It is not just a bound, the exact limit value is obtained.

Theorem (Belinschi, Collins, N. ’16)

For all p ≥ 1,

lim
n→∞

Hmin
p (Φ) = min

λ∈Kk,t

Hp(λ) = Hp(a, b, b, . . . , b),

where a, b do not depend on p, b = (1− a)/(k − 1) and a = ϕ(1/k, t)
with

ϕ(s, t) =

{
s + t − 2st + 2

√
st(1− s)(1− t) if s + t < 1;

1 if s + t ≥ 1.
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Asymptotic freeness of random matrices

Theorem (Voiculescu ’98)

Let (An) and (Bn) be sequences of n × n matrices such that An and Bn

converge in distribution (with respect to n−1 Tr) for n→∞.
Furthermore, let (Un) be a sequence of Haar unitary n × n random
matrices. Then, An and UnBnU

∗
n are asymptotically free for n→∞.

If An,Bn are matrices of size n, whose spectra converge towards µa, µb,
the spectrum of An + UnBnU

∗
n converges to µa � µb; here, µa�µb is the

distribution of a + b, where a, b ∈ (A, τ) are free random variables
having distributions resp. µa, µb.

If An,Bn are matrices of size n such that An ≥ 0, whose spectra converge

towards µa, µb, the spectrum of A
1/2
n UnBnU

∗
nA

1/2
n converges to µa � µb.
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Example: truncation of random matrices

Let Pn ∈Mn a projection of rank n/2; its eigenvalues are 0 and 1, with
multiplicity n/2. Hence, the distribution of Pn converges, when n→∞,
to the Bernoulli probability measure 1

2δ0 + 1
2δ1.

Let Cn ∈Mn/2 be the top n/2× n/2 corner of UnPnU
∗
n , with Un a Haar

random unitary matrix. What is the distribution of Cn ?

Up to zero blocks, Cn = Qn(UnPnU
∗
n )Qn, where Qn is the diagonal

orthogonal projection on the first n/2 coordinates of Cn. The distribution
of Qn converges to 1

2δ0 + 1
2δ1.

Free probability theory tells us that the distribution of Cn will converge to

(
1

2
δ0 +

1

2
δ1)� (

1

2
δ0 +

1

2
δ1) =

1

π
√
x(1− x)

1[0,1](x)dx ,

which is the arcsine distribution.
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Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of
relative rank 1/2 and size n = 4000; in red, the density of the arcsine
distribution.
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The t-norm

Definition

For a positive integer k , embed Rk as a self-adjoint real subalgebra R of
a C∗-ncps (A, τ), so that τ(x) = (x1 + · · ·+ xk)/k . Let pt be a
projection of rank t ∈ (0, 1] in A, free from R. On the real vector space
Rk , we introduce the following norm, called the (t)-norm:

‖x‖(t) := ‖ptxpt‖∞,

where the vector x ∈ Rk is identified with its image in R.

One can show that ‖ · ‖(t) is indeed a norm, which is permutation
invariant.

When t > 1− 1/k , ‖ · ‖(t) = ‖ · ‖∞ on Rk .

limt→0+ ‖x‖(t) = k−1|∑i xi |.
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Corners of randomly rotated projections

Theorem (Collins ’05)

In Cn, choose at random according to the Haar measure two independent
subspaces Vn and V ′n of respective dimensions qn ∼ sn and q′n ∼ tn
where s, t ∈ (0, 1]. Let Pn (resp. P ′n) be the orthogonal projection onto
Vn (resp. V ′n). Then, almost surely,

lim
n
‖PnP

′
nPn‖∞ = ϕ(s, t) = sup supp((1− s)δ0 + sδ1)� ((1− t)δ0 + tδ1),

with

ϕ(s, t) =

{
s + t − 2st + 2

√
st(1− s)(1− t) if s + t < 1;

1 if s + t ≥ 1.

Hence, we can compute

‖ 1, · · · , 1︸ ︷︷ ︸
j times

, 0, · · · , 0︸ ︷︷ ︸
k−j times

‖(t) = ϕ(
j

k
, t).
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KVn
→ Kk,t : idea of the proof

A simpler question: what is the largest maximal singular value
maxx∈V ,‖x‖=1 λ1(x) of vectors from the subspace V ?

max
x∈V ,‖x‖=1

λ1(x) = max
x∈V ,‖x‖=1

λ1([idk ⊗ Trn]Px)

= max
x∈V ,‖x‖=1

‖[idk ⊗ Trn]Px‖

= max
x∈V ,‖x‖=1

max
y∈Ck ,‖y‖=1

Tr [([idk ⊗ Trn]Px) · Py ]

= max
x∈V ,‖x‖=1

max
y∈Ck ,‖y‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck ,‖y‖=1

max
x∈V ,‖x‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck ,‖y‖=1

‖PV · Py ⊗ In · PV ‖∞.
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The set Kk,t and t-norms

Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.
Recall that

max
x∈V ,‖x‖=1

λ1(x) = max
y∈Ck ,‖y‖=1

‖PVPy ⊗ InPV ‖∞.

For fixed y , PV and Py ⊗ In are independent projectors of relative
ranks t and 1/k respectively.

Thus,

‖PV · Py ⊗ In · PV ‖∞ → ‖ ((1− t)δ0 + tδ1)� ((1− 1/k)δ0 + 1/kδ1) ‖
= ϕ(t, 1/k) = ‖(1, 0, . . . , 0)‖(t).

We can take the max over y at no cost, by considering a finite net
of y ’s, since k is fixed; remember that we are using almost sure
convergence.

To get the full result lim supn→∞ KVn ⊂ Kk,t , use 〈λ, x〉 (for all
directions x) instead of λ1.

The inclusion lim infn→∞ KVn ⊃ Kk,t , is much easier, and follows
from the convergence in distribution.
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Lower bounding Hmin(Φ⊗ Φ̄)



Strategy for B2

Remember: we want

Hp
min(Φ⊗ Φ̄) ≤ B2 < 2B1≤2Hp

min(Φ).

Use trivial bound Hp
min(Φ⊗ Φ̄) ≤ Hp

(
[Φ⊗ Φ̄](X12)

)
, for a particular

choice of X12 ∈Mtnk(C)⊗Mtnk(C).

X12 = X1 ⊗ X2 do not yield counterexamples ⇒ choose a maximally
entangled state

X12 = Etnk =

(
1√
tnk

tnk∑
i=1

ei ⊗ ei

) 1√
tnk

tnk∑
j=1

ej ⊗ ej

∗ .
Bound entropies of the (random) density matrix

Zn = [Φ⊗ Φ](Etnk) ∈Mk(C)⊗Mk(C).
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Main result - finite rank output

Theorem (Collins + N. ’09)

For all k, t, almost surely as n→∞, the eigenvalues of
Zn = [Φ⊗ Φ̄](Etnk) converge tot +

1− t

k2
,

1− t

k2
, . . . ,

1− t

k2︸ ︷︷ ︸
k2−1 times

 ∈ ∆k2 .

Previously known bound (deterministic, comes from linear algebra):
for all t, n, k, the largest eigenvalue of Zn is at least t.

Two improvements:
1 “better” largest eigenvalue,
2 knowledge of the whole spectrum.

Precise knowledge of eigenvalues  optimal estimates for entropies.

However, smaller eigenvalues are the “worst possible”.
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Proof strategy for a.s. spectrum Zn

Use the method of moments
1 Convergence in moments:

ETr(Z p
n )→

(
t +

1− t

k2

)p

+ (k2 − 1)

(
1− t

k2

)p

;

2 Borel-Cantelli for a.s. convergence:

∞∑
n=1

E
[
(Tr(Z p

n )− ETr(Z p
n ))2

]
<∞.

We need to compute moments E [Tr(Z p1
n )q1 · · ·Tr(Z ps

n )qs ].

Use the Weingarten formula to compute the unitary averages.
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Unitary integration - Weingarten formula

Using matrix coordinates, we can reduce our problem to computing
integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and (i1, . . . , ip), (i ′1, . . . , i
′
p), (j1, . . . , jp),

(j ′1, . . . , j
′
p) be p-tuples of positive integers from {1, 2, . . . , d}. Then∫

U(d)
Ui1j1 · · ·Uip jpUi ′1 j

′
1
· · ·Ui ′p j

′
p
dU =∑

α,β∈Sp
δi1i ′α(1)

. . . δip i ′α(p)
δj1j′β(1) . . . δjp j

′
β(p)

Wg(d , αβ−1).

If p 6= p′ then ∫
U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′
1
· · ·Ui ′

p′ j
′
p′
dU = 0.

There is a graphical way of reading this formula on the diagrams !
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Boxes & wires

Graphical formalism inspired by works of Penrose, Coecke, Jones,
etc.

Tensors  decorated boxes.

M

V ∗
1

V ∗
2

V2

V3

V1

M ∈ V1 ⊗ V2 ⊗ V3 ⊗ V ∗
1 ⊗ V ∗

2

x

x ∈ V1

ϕ

ϕ ∈ V ∗
1

Tensor contractions (or traces) V ⊗ V ∗ → C  wires.

AB = A B
C D

Tr(C) TrV1
(D)

Maximally entangled vector Bell =
∑dimV

i=1 ei ⊗ ei ∈ V ⊗ V

Φ+ =
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Graphical representation of quantum channels

Decorations/labels

= Ct−1

= Ctnk= Cn = Ck

Single channel (finite rank output)

U U∗Φ(X) =
X

Product of conjugate channels

U U∗

Z = [Φ⊗ Φ̄](Etnk) =

Ū Ū∗

1
tnk
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“Graphical” Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and
U∗. Apply the following removal procedure:

1 Start by replacing U∗ boxed by U boxes (by reversing decoration
shading).

2 By the (algebraic) Weingarten formula, if the number p of U boxes
is different from the number of U boxes, then ED = 0.

3 Otherwise, choose a pair of permutations (α, β) ∈ S2p . These

permutations will be used to pair decorations of U/U boxes.
4 For all i = 1, . . . , p, add a wire between each white decoration of the

i-th U box and the corresponding white decoration of the α(i)-th U
box. In a similar manner, use β to pair black decorations.

5 Erase all U and U boxes. The resulting diagram is denoted by
D(α,β).

Theorem

ED =
∑

α,β∈Sp
D(α,β)Wg(d , αβ−1).
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Example: ETr(Z 2)

We have to compute a sum over all pairings of 4 “U” boxes with 4
“U” boxes.

Diagrams associated to pairings are indexed by 2 permutations
(α, β) ∈ S24 . Consider the permutation δ = (1 4) (2 3) ∈ S4.

The original diagram

U Ū

Ū U

U Ū

Ū U
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Example: ETr(Z 2)

We have to compute a sum over all pairings of 4 “U” boxes with 4
“U” boxes.

Diagrams associated to pairings are indexed by 2 permutations
(α, β) ∈ S24 . Consider the permutation δ = (1 4) (2 3) ∈ S4.

The diagram with the boxes removed

1 1̄

4̄ 4

2 2̄

3̄ 3
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Example: ETr(Z 2)

We have to compute a sum over all pairings of 4 “U” boxes with 4
“U” boxes.

Diagrams associated to pairings are indexed by 2 permutations
(α, β) ∈ S24 . Consider the permutation δ = (1 4) (2 3) ∈ S4.

The wiring for α = β = id.

1 1̄

4̄ 4

2 2̄

3̄ 3

Contribution: n4 · k2 · (tnk)2 ·Wg(id).
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Example: ETr(Z 2)

We have to compute a sum over all pairings of 4 “U” boxes with 4
“U” boxes.

Diagrams associated to pairings are indexed by 2 permutations
(α, β) ∈ S24 . Consider the permutation δ = (1 4) (2 3) ∈ S4.

The wiring for α = id, β = δ.

1 1̄

4̄ 4

2 2̄

3̄ 3

Contribution: n4 · k2 · (tnk)4 ·Wg(δ).
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Example: ETr(Z 2)

We have to compute a sum over all pairings of 4 “U” boxes with 4
“U” boxes.

Diagrams associated to pairings are indexed by 2 permutations
(α, β) ∈ S24 . Consider the permutation δ = (1 4) (2 3) ∈ S4.

The wiring for α = δ, β = id.

1 1̄

4̄ 4

2 2̄

3̄ 3

Contribution: n2 · k2 · (tnk)2 ·Wg(δ).
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Example: ETr(Z 2)

We have to compute a sum over all pairings of 4 “U” boxes with 4
“U” boxes.

Diagrams associated to pairings are indexed by 2 permutations
(α, β) ∈ S24 . Consider the permutation δ = (1 4) (2 3) ∈ S4.

The wiring for α = β = δ.

1 1̄

4̄ 4

2 2̄

3̄ 3

Contribution: n2 · k2 · (tnk)4 ·Wg(id).
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Sketch of the proof

We want to compute, for all p ≥ 1, ETr(Z p).
One needs to compute the contribution of each diagram D(α,β),
where α, β ∈ S2p.
D(α,β) is a collection of loops associated to vector spaces of
dimensions n, k, and tnk.
Asymptotic for Weingarten weights (σ ∈ Sp, d →∞, p fixed):

Wg(d , σ) = d−(p+|σ|)(Mob(σ) + O(d−2)).

One has to identify asymptotically dominating terms. Computations
for fixed n are intractable due to the complexity of the Weingarten
function. In the limit n→∞, the structure of the dominating terms
is very simple.

Theorem (Collins + N. ’09)

For all k, t, almost surely as n→∞,

spec(Zn)→

t +
1− t

k2
,

1− t

k2
, . . . ,

1− t

k2︸ ︷︷ ︸
k2−1 times

 ∈ ∆k2 .
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Additivity violations



Recall

Hp
min(Φ⊗ Φ̄) ≤ B2 < 2B1 ≤ 2Hp

min(Φ).

Theorem (Collins + N. ’09)

For all k, t, almost surely as n→∞, if Zn = (Φ⊗ Φ̄)(Etnk)

spec(Zn)→

t +
1− t

k2
,

1− t

k2
, . . . ,

1− t

k2︸ ︷︷ ︸
k2−1 times

 ∈ ∆k2 .

Theorem (Belinschi, Collins, N. ’16)

For all p ≥ 1,
lim

n→∞
Hmin

p (Φ) = Hp(a, b, b, . . . , b),

where b = (1− a)/(k − 1) and a = ϕ(1/k , t) with

ϕ(s, t) =

{
s + t − 2st + 2

√
st(1− s)(1− t) if s + t < 1;

1 if s + t ≥ 1.
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Putting things together

Theorem (Belinschi, Collins, N. ’16)

Using the limit for Hmin(Φ) and the upper bound for Hmin(Φ), the lowest
dimension for which a violation of the additivity can be observed is
k = 183. For large k , violations of size 1− ε bits can be obtained.

How to improve this ?

1 Other asymptotic regimes

2 Use Ψ 6= Φ̄

3 For Φ⊗ Φ̄, compute the actual limit of Hmin(Φ⊗ Φ̄), and not just
an upper bound.
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The End
thank you for your attention
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