Bipartite unitary operators inducing special classes of quantum channels

Ion Nechita

CNRS, LPT Toulouse

joint work with Tristan Benoist, Julien Deschamps and Clément Pellegrini

Grenoble, May 9th 2016

Stinespring dilation for quantum channels

Theorem

Any quantum channel $L : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ (i.e. completely positive, trace preserving linear map) can be written as

 $L(\rho) = [\mathrm{id} \otimes \mathrm{Tr}] (U(\rho \otimes \beta)U^*)$

for some environment of size k ($k = n^2$ suffices), a quantum state $\beta \in \mathcal{M}_n^{1,+}(\mathbb{C})$ and a global unitary operator $U \in \mathcal{U}_{nk}$.

Theorem

Any quantum channel $L : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ (i.e. completely positive, trace preserving linear map) can be written as

 $L(\rho) = [\mathrm{id} \otimes \mathrm{Tr}] (U(\rho \otimes \beta)U^*)$

for some environment of size k ($k = n^2$ suffices), a quantum state $\beta \in \mathcal{M}_n^{1,+}(\mathbb{C})$ and a global unitary operator $U \in \mathcal{U}_{nk}$.

• What if we do not know / have access to β , the state of the environment ?

The main problem

$$L_{U,eta}(
ho):= [\mathrm{id}\otimes\mathrm{Tr}]\,(U(
ho\otimeseta)U^*)$$

Our mantra

Given a family $\mathcal L$ of quantum channels, characterize the set

 $\mathcal{U}_{\mathcal{L}} := \{ U \in \mathcal{U}_{nk} : \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U,\beta} \in \mathcal{L} \}.$

The main problem

$$L_{U,eta}(
ho):= [\mathrm{id}\otimes\mathrm{Tr}]\left(U(
ho\otimeseta)U^*
ight)$$

Our mantra

Given a family $\mathcal L$ of quantum channels, characterize the set

$$\mathcal{U}_{\mathcal{L}} := \{ U \in \mathcal{U}_{nk} : \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U,\beta} \in \mathcal{L} \}.$$

• If the set \mathcal{L} is unitarily invariant, i.e.

$$L \in \mathcal{L} \iff \forall V_{1,2} \in \mathcal{U}_n, \ V_1 L(V_2 \cdot V_2^*) V_1^* \in \mathcal{L},$$

then the set $\mathcal{U}_{\mathcal{L}}$ is invariant by local unitary multiplication:

 $U \in \mathcal{U}_{\mathcal{L}} \iff \forall V_{1,2} \in \mathcal{U}_n, \forall W_{1,2} \in \mathcal{U}_k, \ (V_1 \otimes W_2) U(V_2 \otimes W_2) \in \mathcal{U}_{\mathcal{L}}.$

The main problem

$$L_{U,eta}(
ho):= [\mathrm{id}\otimes\mathrm{Tr}]\left(U(
ho\otimeseta)U^*
ight)$$

Our mantra

Given a family $\mathcal L$ of quantum channels, characterize the set

$$\mathcal{U}_{\mathcal{L}} := \{ U \in \mathcal{U}_{nk} : \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U,\beta} \in \mathcal{L} \}.$$

• If the set \mathcal{L} is unitarily invariant, i.e.

$$L \in \mathcal{L} \iff \forall V_{1,2} \in \mathcal{U}_n, \ V_1 L(V_2 \cdot V_2^*) V_1^* \in \mathcal{L},$$

then the set $\mathcal{U}_{\mathcal{L}}$ is invariant by local unitary multiplication:

 $U \in \mathcal{U}_{\mathcal{L}} \iff \forall V_{1,2} \in \mathcal{U}_n, \forall W_{1,2} \in \mathcal{U}_k, \ (V_1 \otimes W_2) U(V_2 \otimes W_2) \in \mathcal{U}_{\mathcal{L}}.$

a $\mathcal{L}_{aut} = \{V \cdot V^*\}_{V \in \mathcal{U}_n}$ **b** $\mathcal{L}_{mixed} = \operatorname{conv}\{V \cdot V^*\}_{V \in \mathcal{U}_n}$ **c** $\mathcal{L}_{const} = \{\operatorname{constant channels}\}$ **c** $\mathcal{L}_{diag} = \{L : L(\operatorname{diag}) \subseteq \operatorname{diag}\}$ **c** $\mathcal{L}_{unital} = \{L : L(I) = I\}$ **c** $\mathcal{L}_{tens} = \{L : L(\mathcal{M}_d(\mathbb{C}) \otimes I_r) \subseteq \mathcal{M}_d(\mathbb{C}) \otimes I_r\}$

Processor / program point of view

Bužek, Ziman and collaborators study the same problem, under a different name

Lemma (Equivalent processors)

Two processors $U, V \in U_{nk}$ are equivalent, i.e. for all programs $\beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta} = L_{V,\beta}$, iff there exists $W \in U_k$ s.t. $U = (I_n \otimes W)V$.

$$\mathcal{U}_{aut} := \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta}(\rho) = V_{\beta} \rho V_{\beta}^* \}$$

Theorem

We have $\mathcal{U}_{aut} = \{ \mathbf{V} \otimes \mathbf{W} : \mathbf{V} \in \mathcal{U}_n, \ \mathbf{W} \in \mathcal{U}_k \}.$ For $U = \mathbf{V} \otimes \mathbf{W}, \ L_{U,\beta}(\rho) = \mathbf{V}\rho \mathbf{V}^*.$

$$\mathcal{U}_{aut} := \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta}(\rho) = V_{\beta} \rho V_{\beta}^* \}$$

Theorem

We have $\mathcal{U}_{aut} = \{ \mathbf{V} \otimes \mathbf{W} : \mathbf{V} \in \mathcal{U}_n, \ \mathbf{W} \in \mathcal{U}_k \}.$ For $U = \mathbf{V} \otimes \mathbf{W}, \ L_{U,\beta}(\rho) = \mathbf{V}\rho\mathbf{V}^*.$

$$\mathcal{U}_{\text{single}} := \{ U \in \mathcal{U}_{nk} \, | \, \text{the set} \, \{ L_{U,\beta} \, : \, \beta \in \mathcal{M}^{1,+}_k(\mathbb{C}) \} \text{ has } 1 \text{ element} \}.$$

In other words, $U \in \mathcal{U}_{single}$ iff the channel $L_{U,\beta}$ does not depend on β , the state of the environment.

Proposition

We have $\mathcal{U}_{single} = \mathcal{U}_{aut} = \{ V \otimes W \}.$

 $\mathcal{U}_{const} := \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta} \text{ is a constant channel} \}.$

Theorem

If $k \neq rn$ for $r=1,2,\ldots,$ then \mathcal{U}_{const} is empty. If $k=r \cdot n$ for some positive r, then

$$\mathcal{U}_{const} = \{ (I_n \otimes V)(F_n \otimes I_r)(I_n \otimes W) : V, W \in \mathcal{U}_k \},\$$

where $F_n \in U_{n^2}$ denotes the flip operator. For $U \in U_{const}$ as above, $L_{U,\beta}(\rho) = [\operatorname{id}_n \otimes \operatorname{Tr}_r](W\beta W^*)$. $\mathcal{U}_{const} := \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta} \text{ is a constant channel} \}.$

Theorem

If $k \neq rn$ for $r = 1, 2, ..., then U_{const}$ is empty. If $k = r \cdot n$ for some positive r, then

$$\mathcal{U}_{const} = \{ (I_n \otimes V)(F_n \otimes I_r)(I_n \otimes W) : V, W \in \mathcal{U}_k \},\$$

where $F_n \in U_{n^2}$ denotes the flip operator. For $U \in U_{const}$ as above, $L_{U,\beta}(\rho) = [\operatorname{id}_n \otimes \operatorname{Tr}_r](W\beta W^*)$.

Corollary

If n = k, then $\mathcal{U}_{const} = F_n \cdot \mathcal{U}_{aut} = F_n \cdot \{ V \otimes W : V, W \in \mathcal{U}_n \}$.

$$\mathcal{U}_{unital} := \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta}(I) = I \}$$

Theorem

One has

$$\mathcal{U}_{unital} = \mathcal{U}_{nk} \cap \mathcal{U}_{nk}^{\mathsf{F}}$$

where $A^{\Gamma} = [id \otimes transp](A)$ denotes the partial transposition of A. In other words, $U \in U_{unital}$ iff both U and U^{Γ} are unitary operators.

$$\mathcal{U}_{unital} := \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), L_{U,\beta}(I) = I \}$$

Theorem

One has

$$\mathcal{U}_{unital} = \mathcal{U}_{nk} \cap \mathcal{U}_{nk}^{\mathsf{F}}$$

where $A^{\Gamma} = [id \otimes transp](A)$ denotes the partial transposition of A. In other words, $U \in U_{unital}$ iff both U and U^{Γ} are unitary operators.

- $\mathcal{U}_{aut} = \{ V \otimes W : V, W \in \mathcal{U}_n \} \subseteq \mathcal{U}_{unital}.$
- If n > 1, then $\mathcal{U}_{const} \cap \mathcal{U}_{unital} = \emptyset$.
- *U_{unital}* is a non-smooth algebraic variety. The dimension of the enveloping tangent space of *U_{unital}* is generically *nk*(*n* + *k* - 1).

Sampling from \mathcal{U}_{unital}

- Although it is easy to check whether a given U is an element of *U_{unital}*, we do not know how to parametrize or to sample from *U_{unital}*.
- We conjecture that the following algorithm produces (random) elements from $\mathcal{U}_{\textit{unital}}$

Sampling from U_{unital}

- **Input:** Integers n, k and an error parameter $\varepsilon > 0$.
- Start with a Haar distributed unitary random unitary operator $U \in U_{nk}$.
- So While $||U^{\Gamma}(U^{\Gamma})^* I_{nk}||_2 > \varepsilon$, repeat the next step:
- U ← Pol(U^Γ), where Pol(X) is the unitary operator V appearing in the polar decomposition of X: X = VP with P ≥ 0.
- **5 Output:** U, an operator at distance at most ε from \mathcal{U}_{unital} .

Block-diagonal (or control) unitary operators wrt the system A (resp. B)

$$\mathcal{U}^{A}_{block-diag} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{k} U_i \otimes e_i f_i^*,$$

with $U_i \in \mathcal{U}_n$ and $\{e_i\}, \{f_i\}$ orthonormal bases in $\mathbb{C}^k\}$

Block-diagonal (or control) unitary operators wrt the system A (resp. B)

$$\mathcal{U}_{block-diag}^{A} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{k} U_i \otimes e_i f_i^*,$$

with $U_i \in \mathcal{U}_n$ and $\{e_i\}, \{f_i\}$ orthonormal bases in $\mathbb{C}^k \}$

$$\mathcal{U}_{block-diag}^{B} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{n} e_{i} f_{i}^{*} \otimes U_{i},$$

with $U_{i} \in \mathcal{U}_{k}$ and $\{e_{i}\}, \{f_{i}\}$ orthonormal bases in $\mathbb{C}^{n}\}$

n

Block-diagonal (or control) unitary operators wrt the system A (resp. B)

$$\mathcal{U}^{A}_{block-diag} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{k} U_i \otimes e_i f_i^*,$$
with $U \in \mathcal{U}$ and $\{c_i\}$ $\{f_i\}$ orthonorm

with $U_i \in \mathcal{U}_n$ and $\{e_i\}, \{f_i\}$ orthonormal bases in $\mathbb{C}^k\}$

$$\mathcal{U}^{\mathcal{B}}_{block-diag} = \{ U \in \mathcal{U}_{nk} \mid U = \sum_{i=1}^{n} e_i f_i^* \otimes U_i, \}$$

with $U_i \in \mathcal{U}_k$ and $\{e_i\}, \{f_i\}$ orthonormal bases in \mathbb{C}^n

More generally, $U \in \mathcal{U}^{\mathcal{A}}_{block-diag}$ iff

$$U=\sum_{i=1}^r U_i\otimes R_i,$$

where U_i are unitary operators acting on \mathbb{C}^n and R_i are partial isometries $R_i : \mathbb{C}^k \to \mathbb{C}^k$ such that $\sum_{i=1}^r R_i R_i^* = \sum_{i=1}^r R_i^* R_i = I_k$. Moreover, the decomposition is unique, up to the permutation of the terms in the sum and $\mathbb{C}U_i \neq \mathbb{C}U_j$ for $i \neq j$.

Proposition If n = 2, then

 $\mathcal{U}^{\mathcal{B}}_{block-diag} \subseteq \mathcal{U}^{\mathcal{A}}_{block-diag}.$

In particular, when n = k = 2, we have

$$\mathcal{U}^{\mathcal{A}}_{block-diag} = \mathcal{U}^{\mathcal{B}}_{block-diag}.$$

Proposition

If n = 2, then

$$\mathcal{U}^{\mathcal{B}}_{block-diag} \subseteq \mathcal{U}^{\mathcal{A}}_{block-diag}.$$

In particular, when n = k = 2, we have

$$\mathcal{U}^{\mathcal{A}}_{block-diag} = \mathcal{U}^{\mathcal{B}}_{block-diag}.$$

$$\begin{aligned} \mathcal{U}_{block-diag}^{B} \ni U &= e_{1}f_{1}^{*} \otimes U_{1} + e_{2}f_{2}^{*} \otimes U_{2} \\ &= (I \otimes U_{1})\left[e_{1}f_{1}^{*} \otimes I + e_{2}f_{2}^{*} \otimes (U_{1}^{*}U_{2})\right] \\ &= (I \otimes U_{1})\left[e_{1}f_{1}^{*} \otimes \left(\sum_{i=1}^{k}g_{i}g_{i}^{*}\right) + e_{2}f_{2}^{*} \otimes \left(\sum_{i=1}^{k}\lambda_{i}g_{i}g_{i}^{*}\right)\right] \\ &= (I \otimes U_{1})\sum_{i=1}^{k}(e_{1}f_{1}^{*} + \lambda_{i}e_{2}f_{2}^{*}) \otimes g_{i}g_{i}^{*} \\ &= (I \otimes U_{1})\sum_{i=1}^{k}W_{i} \otimes g_{i}g_{i}^{*} = \sum_{i=1}^{k}W_{i} \otimes h_{i}g_{i}^{*} \in \mathcal{U}_{block-diag}^{A}. \end{aligned}$$

$$\begin{aligned} \mathcal{U}_{mixed} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), \, L_{U,\beta} \in \operatorname{conv} \{ V \cdot V^* \}_{V \in \mathcal{U}_n} \} \\ &= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_k^{1,+}(\mathbb{C}), \, L_{U,\beta}(X) = \sum_{i=1}^{r(\beta)} p_i(\beta) U_i(\beta) X U_i(\beta)^* \} \end{aligned}$$

$$\begin{aligned} \mathcal{U}_{mixed} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, L_{U,\beta} \in \operatorname{conv} \{ V \cdot V^{*} \}_{V \in \mathcal{U}_{n}} \} \\ &= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, L_{U,\beta}(X) = \sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*} \} \\ \mathcal{U}_{prob} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*} \\ & \text{with } p_{i}(\beta) \geq 0 \text{ and } \sum_{i} p_{i}(\beta) = 1 \} \end{aligned}$$

$$\mathcal{U}_{mixed} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta} \in \operatorname{conv}\{V \cdot V^{*}\}_{V \in \mathcal{U}_{n}} \}$$

$$= \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r(\beta)} p_{i}(\beta)U_{i}(\beta)XU_{i}(\beta)^{*} \}$$

$$\mathcal{U}_{prob} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta)U_{i}XU_{i}^{*}$$
with $p_{i}(\beta) \geq 0$ and $\sum_{i} p_{i}(\beta) = 1 \}$

$$\mathcal{U}_{prob-lin} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta)U_{i}XU_{i}^{*}$$
with linear $p_{i}(\beta) \geq 0$ and $\sum_{i} p_{i}(\beta) = 1 \}$

$$\mathcal{U}_{mixed} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta} \in \operatorname{conv}\{V \cdot V^{*}\}_{V \in \mathcal{U}_{n}} \}$$

$$= \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r(\beta)} p_{i}(\beta)U_{i}(\beta)XU_{i}(\beta)^{*} \}$$

$$\mathcal{U}_{prob} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta)U_{i}XU_{i}^{*}$$
with $p_{i}(\beta) \geq 0$ and $\sum_{i} p_{i}(\beta) = 1 \}$

$$\mathcal{U}_{prob-lin} := \{ U \in \mathcal{U}_{nk} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \ L_{U,\beta}(X) = \sum_{i=1}^{r} p_{i}(\beta)U_{i}XU_{i}^{*}$$
with linear $p_{i}(\beta) \geq 0$ and $\sum_{i} p_{i}(\beta) = 1 \}$

We have the following chain of inclusions

$$\mathcal{U}_{block-diag}^{A} \subseteq \mathcal{U}_{prob-lin} \subseteq \mathcal{U}_{prob} \subseteq \mathcal{U}_{mixed} \subseteq \mathcal{U}_{unital}.$$

Theorem

For all n, k, we have $\mathcal{U}_{prob-lin} = \mathcal{U}^{\mathcal{A}}_{block-diag}$.

Theorem

For all n, k, we have $\mathcal{U}_{prob-lin} = \mathcal{U}^{A}_{block-diag}$.

- Since $\beta \mapsto p_i(\beta)$ are linear, there exists a POVM (M_i) such that $p_i(\beta) = \text{Tr}(M_i\beta)$.
- Prove the M_i 's have orthogonal supports.
- Construct a candidate unitary operator \tilde{U} .
- Use the lemma on equivalence of processors.

Theorem

For all n, k, we have $\mathcal{U}_{prob-lin} = \mathcal{U}^{A}_{block-diag}$.

- Since $\beta \mapsto p_i(\beta)$ are linear, there exists a POVM (M_i) such that $p_i(\beta) = \text{Tr}(M_i\beta)$.
- Prove the M_i 's have orthogonal supports.
- Construct a candidate unitary operator \tilde{U} .
- Use the lemma on equivalence of processors.

Proposition

When
$$n = 2$$
, $U^{A}_{block-diag} = U_{unital}$, so we have
 $U^{A}_{block-diag} = U_{prob-lin} = U_{prob} = U_{mixed} = U_{unital}$.

Non-invariant structures

• We focus next on some classes of channels which depend on some particular choice of basis

$$\mathcal{L}_{diag} = \{L : L(\operatorname{diag}) \subseteq \operatorname{diag}\}$$
$$\mathcal{L}_{tens} = \{L : L(\mathcal{M}_d(\mathbb{C}) \otimes I_r) \subseteq \mathcal{M}_d(\mathbb{C}) \otimes I_r\}$$

• We shall study both Schrödinger (quantum channels) and Heisenberg (unital CP maps) pictures

$$\begin{split} & L_{U,\beta}(\rho) = [\mathrm{id}\otimes\mathrm{Tr}] \left(U(\rho\otimes\beta) U^* \right) \\ & T_{U,\beta}(\rho) = [\mathrm{id}\otimes\mathrm{Tr}] \left(U^*(\rho\otimes I_k) U(I_n\otimes\beta) \right) \end{split}$$

We write

$$\begin{split} \mathcal{U}_{S,diag} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, L_{U,\beta} \in \mathcal{L}_{diag} \} \\ \mathcal{U}_{H,diag} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, T_{U,\beta} \in \mathcal{L}_{diag} \} \\ \mathcal{U}_{S,tens} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, L_{U,\beta} \in \mathcal{L}_{tens} \} \\ \mathcal{U}_{H,tens} &:= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, T_{U,\beta} \in \mathcal{L}_{tens} \} \end{split}$$

Definition

An operator $R \in M_{nk}(\mathbb{C}) \cong M_n(M_k(\mathbb{C}))$ is called a matrix of partial isometries if its blocks R_{ij} defined by $R = \sum_{i,j=1}^{n} e_i e_j^* \otimes R_{ij}$ are partial isometries. Let E_{ij} (resp. F_{ij}) be the initial (resp. final) spaces of the partial isometries R_{ij} . R is said to be of type (1,2,3,4) respectively if **③** For all $i \in [n]$, the subspaces $\{E_{ij}\}_{j \in [n]}$ form a partition of \mathbb{C}^k ; **④** For all $i \in [n]$, the subspaces $\{F_{ij}\}_{j \in [n]}$ form a partition of \mathbb{C}^k ; **④** For all $j \in [n]$, the subspaces $\{E_{ij}\}_{i \in [n]}$ form a partition of \mathbb{C}^k ; **④** For all $j \in [n]$, the subspaces $\{F_{ij}\}_{i \in [n]}$ form a partition of \mathbb{C}^k .

Lemma

A matrix of partial isometries is unitary iff it is of type (2,3).

Theorem

Let $\{e_1, \ldots, e_n\}$ be some fixed basis of \mathbb{C}^n and let diag be the diagonal sub-algebra of $\mathcal{M}_n(\mathbb{C})$. We have

$$\begin{aligned} \mathcal{U}_{H,diag} &= \{ matrices \ of \ partial \ isometries \ of \ type \ (2,3) \} \\ &= \{ unitary \ matrices \ of \ partial \ isometries \} \\ \mathcal{U}_{S,diag} &= \{ matrices \ of \ partial \ isometries \ of \ type \ (2,3,4) \} \end{aligned}$$

Theorem

In the case of the tensor product algebra, we have (here, n = dr)

$$\begin{aligned} \mathcal{U}_{H,tens} &= \{ (I_d \otimes V) \cdot (W \otimes I_r), : V \in \mathcal{U}_{rk}, \ W \in \mathcal{U}_{dk} \} \\ \mathcal{U}_{S,tens} &= \{ (I_d \otimes V^{\Gamma}) \cdot (W \otimes I_r), : \ V \in \mathcal{U}_{rk} \cap \mathcal{U}_{rk}^{\Gamma}, \ W \in \mathcal{U}_{dk} \} \end{aligned}$$

Quantum latin squares

 A matrix of partial isometries of type (1,2,3,4), with n = k and dim E_{ij} = dim F_{ij} = 1 for all i, j, is called a quantum Latin square.

Definition

A quantum Latin square (QLS) of order *n* is a matrix $X = (x_{ij})_{i,j=1}^{n}$, where $x_{ij} \in \mathbb{C}^{n}$ are such that the vectors on each row (resp. column) of X form an orthonormal basis of \mathbb{C}^{n} .

- Each classical latin square L_{ij} and each orthonormal basis {e_i} of Cⁿ induces a QLS by setting x_{ij} = e_{L_{ii}}.
- There exist non-classical QLS [Musto, Vicary]:

$$X = \begin{bmatrix} |0\rangle & |1\rangle & |2\rangle & |3\rangle \\ \frac{1}{\sqrt{2}}(|1\rangle - |2\rangle) & \frac{1}{\sqrt{5}}(i|0\rangle + 2|3\rangle) & \frac{1}{\sqrt{5}}(2|0\rangle + i|3\rangle) & \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle) \\ \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle) & \frac{1}{\sqrt{5}}(2|0\rangle + i|3\rangle) & \frac{1}{\sqrt{5}}(i|0\rangle + 2|3\rangle) & \frac{1}{\sqrt{2}}(|1\rangle - |2\rangle) \\ |3\rangle & |2\rangle & |1\rangle & |0\rangle \end{bmatrix}$$

Sampling quantum Latin squares

• We conjecture that the following algorithm, which generalizes Sinkhorn's classical procedure, produces (random) quantum Latin squares

Non-commutative Sinkhorn algorithm for sampling QLS

- **Input:** The dimension *n* and an error parameter $\varepsilon > 0$
- Start with x_{ij} independent uniform points on the unit sphere of \mathbb{C}^n .
- Solution While X is not an ε -QLS, do the steps (4-6)
- Of Define the matrix Y by making the rows of X unitary:

$$\forall i \in [n], \qquad y_{ij} = \mathsf{Pol}\left(\sum_{s=1}^n x_{is}e_s^*\right) \cdot e_j.$$

Define the matrix Z by making the columns of Y unitary:

$$\forall j \in [n], \qquad z_{ij} = \mathsf{Pol}\left(\sum_{s=1}^n y_{sj} e_s^*\right) \cdot e_i.$$

• $X \leftarrow Z$. • **Output:** X, an ε -QLS.

Open questions / work in progress

Question (Mixed channels)

For all values of n, k, we conjecture that $\mathcal{U}^{A}_{block-diag} = \mathcal{U}_{mixed}$.

Question (Other sets of channels)

Characterize the unitarily invariant sets

$$\begin{aligned} \mathcal{U}_{PPT} &= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \, L_{U,\beta} \text{ is a PPT channel } \} \\ \mathcal{U}_{EB} &= \{ U \in \mathcal{U}_{nk} \, | \, \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), \\ L_{U,\beta} \text{ is an entanglement breaking channel} \end{aligned}$$

 $\begin{array}{l} \textit{Obviously, } \mathcal{U}_{\textit{const}} \subseteq \mathcal{U}_{EB} \subseteq \mathcal{U}_{PPT}, \textit{ and, if } n = k, \\ \mathcal{U}^{A}_{\textit{block-diag}} \cdot F_n \subseteq \mathcal{U}_{EB} \subseteq \mathcal{U}_{PPT}. \textit{ Is there equality } ? \end{array}$

Question (Generating random bipartite unitary operators)

Show that the iterative algorithms for sampling from U_{unital} and $U_{S,diag}$ (or QLS) converge, and study the distribution of the limit.

}.

The End

thank you for your attention

- Deschamps, J., N.I., Pellegrini, C. *On some classes of bipartite unitary operators.* Preprint arXiv:1509.06543.
- Benoist, T., N.I. Unitary operators generating structure-preserving quantum dynamics. Soon[™] on the arXiv.
- Hillery, M., Ziman, M., Bužek, V. Implementation of quantum maps by programmable quantum processors. Physical Review A, 66(4), 042302 (2002).
- Musto, B., Vicary, J. *Quantum Latin squares and unitary error bases.* Preprint arXiv:1504.02715.