Bipartite unitary operators inducing special classes of quantum channels

Ion Nechita
CNRS, LPT Toulouse
joint work with Tristan Benoist, Julien Deschamps and Clément Pellegrini

Grenoble, May 9th 2016

Stinespring dilation for quantum channels

Theorem

Any quantum channel $L: \mathcal{M}_{n}(\mathbb{C}) \rightarrow \mathcal{M}_{n}(\mathbb{C})$ (i.e. completely positive, trace preserving linear map) can be written as

$$
L(\rho)=[\mathrm{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

for some environment of size k ($k=n^{2}$ suffices), a quantum state $\beta \in \mathcal{M}_{n}^{1,+}(\mathbb{C})$ and a global unitary operator $U \in \mathcal{U}_{n k}$.

Stinespring dilation for quantum channels

Theorem

Any quantum channel $L: \mathcal{M}_{n}(\mathbb{C}) \rightarrow \mathcal{M}_{n}(\mathbb{C})$ (i.e. completely positive, trace preserving linear map) can be written as

$$
L(\rho)=[\mathrm{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

for some environment of size k ($k=n^{2}$ suffices), a quantum state $\beta \in \mathcal{M}_{n}^{1,+}(\mathbb{C})$ and a global unitary operator $U \in \mathcal{U}_{n k}$.

- What if we do not know / have access to β, the state of the environment ?

The main problem

$$
L_{U, \beta}(\rho):=[\mathrm{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

Our mantra

Given a family \mathcal{L} of quantum channels, characterize the set

$$
\mathcal{U}_{\mathcal{L}}:=\left\{U \in \mathcal{U}_{n k}: \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \mathcal{L}\right\} .
$$

The main problem

$$
L_{U, \beta}(\rho):=[\operatorname{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

Our mantra

Given a family \mathcal{L} of quantum channels, characterize the set

$$
\mathcal{U}_{\mathcal{L}}:=\left\{U \in \mathcal{U}_{n k}: \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \mathcal{L}\right\} .
$$

- If the set \mathcal{L} is unitarily invariant, i.e.

$$
L \in \mathcal{L} \Longleftrightarrow \forall V_{1,2} \in \mathcal{U}_{n}, V_{1} L\left(V_{2} \cdot V_{2}^{*}\right) V_{1}^{*} \in \mathcal{L},
$$

then the set $\mathcal{U}_{\mathcal{L}}$ is invariant by local unitary multiplication:

$$
U \in \mathcal{U}_{\mathcal{L}} \Longleftrightarrow \forall V_{1,2} \in \mathcal{U}_{n}, \forall W_{1,2} \in \mathcal{U}_{k},\left(V_{1} \otimes W_{2}\right) U\left(V_{2} \otimes W_{2}\right) \in \mathcal{U}_{\mathcal{L}}
$$

The main problem

$$
L_{U, \beta}(\rho):=[\operatorname{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right)
$$

Our mantra

Given a family \mathcal{L} of quantum channels, characterize the set

$$
\mathcal{U}_{\mathcal{L}}:=\left\{U \in \mathcal{U}_{n k}: \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \mathcal{L}\right\} .
$$

- If the set \mathcal{L} is unitarily invariant, i.e.

$$
L \in \mathcal{L} \Longleftrightarrow \forall V_{1,2} \in \mathcal{U}_{n}, V_{1} L\left(V_{2} \cdot V_{2}^{*}\right) V_{1}^{*} \in \mathcal{L}
$$

then the set $\mathcal{U}_{\mathcal{L}}$ is invariant by local unitary multiplication:

$$
U \in \mathcal{U}_{\mathcal{L}} \Longleftrightarrow \forall V_{1,2} \in \mathcal{U}_{n}, \forall W_{1,2} \in \mathcal{U}_{k},\left(V_{1} \otimes W_{2}\right) U\left(V_{2} \otimes W_{2}\right) \in \mathcal{U}_{\mathcal{L}} .
$$

(1) $\mathcal{L}_{\text {aut }}=\left\{V \cdot V^{*}\right\}_{V \in \mathcal{U}_{n}}$
(1) $\mathcal{L}_{\text {mixed }}=\operatorname{conv}\left\{V \cdot V^{*}\right\} V \in \mathcal{U}_{n}$
(2) $\mathcal{L}_{\text {const }}=\{$ constant channels $\}$
(3) $\mathcal{L}_{\text {unital }}=\{L: L(I)=I\}$
($\mathcal{L}_{\text {diag }}=\{L: L(\operatorname{diag}) \subseteq \operatorname{diag}\}$
(- $\mathcal{L}_{\text {tens }}=\left\{L: L\left(\mathcal{M}_{d}(\mathbb{C}) \otimes I_{r}\right) \subseteq \mathcal{M}_{d}(\mathbb{C}) \otimes I_{r}\right\}$

Processor / program point of view

- Bužek, Ziman and collaborators study the same problem, under a different name

Lemma (Equivalent processors)

Two processors $U, V \in \mathcal{U}_{n k}$ are equivalent, i.e. for all programs $\beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}=L_{V, \beta}$, iff there exists $W \in \mathcal{U}_{k}$ s.t. $U=\left(I_{n} \otimes W\right) V$.

Unitary conjugations

$$
\mathcal{U}_{\text {aut }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(\rho)=V_{\beta} \rho V_{\beta}^{*}\right\}
$$

Theorem

We have $\mathcal{U}_{\text {aut }}=\left\{V \otimes W: V \in \mathcal{U}_{n}, W \in \mathcal{U}_{k}\right\}$.
For $U=V \otimes W, L_{U, \beta}(\rho)=V \rho V^{*}$.

Unitary conjugations

$$
\mathcal{U}_{\text {aut }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(\rho)=V_{\beta} \rho V_{\beta}^{*}\right\}
$$

Theorem

We have $\mathcal{U}_{\text {aut }}=\left\{V \otimes W: V \in \mathcal{U}_{n}, W \in \mathcal{U}_{k}\right\}$.
For $U=V \otimes W, L_{U, \beta}(\rho)=V \rho V^{*}$.

$$
\mathcal{U}_{\text {single }}:=\left\{U \in \mathcal{U}_{n k} \mid \text { the set }\left\{L_{U, \beta}: \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C})\right\} \text { has } 1 \text { element }\right\} .
$$

In other words, $U \in \mathcal{U}_{\text {single }}$ iff the channel $L_{U, \beta}$ does not depend on β, the state of the environment.

Proposition

We have $\mathcal{U}_{\text {single }}=\mathcal{U}_{\text {aut }}=\{V \otimes W\}$.

Unitary conjugations

Unitary conjugations

Unitary conjugations

Unitary conjugations

Unitary conjugations

$$
\sqrt{L_{V \otimes W, \beta}(\rho)}=\cdot \sqrt{V} \cdot \sqrt{\rho} \cdot \sqrt{V^{*} b}
$$

Constant channels

$$
\mathcal{U}_{\text {const }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \text { is a constant channel }\right\} .
$$

Theorem

If $k \neq r n$ for $r=1,2, \ldots$, then $\mathcal{U}_{\text {const }}$ is empty. If $k=r \cdot n$ for some positive r, then

$$
\mathcal{U}_{\text {const }}=\left\{\left(I_{n} \otimes V\right)\left(F_{n} \otimes I_{r}\right)\left(I_{n} \otimes W\right): V, W \in \mathcal{U}_{k}\right\}
$$

where $F_{n} \in \mathcal{U}_{n^{2}}$ denotes the flip operator.
For $U \in \mathcal{U}_{\text {const }}$ as above, $L_{U, \beta}(\rho)=\left[\mathrm{id}_{n} \otimes \operatorname{Tr}_{r}\right]\left(W \beta W^{*}\right)$.

Constant channels

$$
\mathcal{U}_{\text {const }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \text { is a constant channel }\right\} .
$$

Theorem

If $k \neq r n$ for $r=1,2, \ldots$, then $\mathcal{U}_{\text {const }}$ is empty. If $k=r \cdot n$ for some positive r, then

$$
\mathcal{U}_{\text {const }}=\left\{\left(I_{n} \otimes V\right)\left(F_{n} \otimes I_{r}\right)\left(I_{n} \otimes W\right): V, W \in \mathcal{U}_{k}\right\}
$$

where $F_{n} \in \mathcal{U}_{n^{2}}$ denotes the flip operator.
For $U \in \mathcal{U}_{\text {const }}$ as above, $L_{U, \beta}(\rho)=\left[\mathrm{id}_{n} \otimes \operatorname{Tr}_{r}\right]\left(W \beta W^{*}\right)$.

Corollary
If $n=k$, then $\mathcal{U}_{\text {const }}=F_{n} \cdot \mathcal{U}_{\text {aut }}=F_{n} \cdot\left\{V \otimes W: V, W \in \mathcal{U}_{n}\right\}$.

Constant channels

Unital channels

$$
\mathcal{U}_{\text {unital }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{u, \beta}(I)=I\right\}
$$

Theorem

One has

$$
\mathcal{U}_{\text {unital }}=\mathcal{U}_{n k} \cap \mathcal{U}_{n k}^{\ulcorner }
$$

where $A^{\Gamma}=[\mathrm{id} \otimes \operatorname{transp}](A)$ denotes the partial transposition of A. In other words, $U \in \mathcal{U}_{\text {unital }}$ iff both U and $U^{\ulcorner }$are unitary operators.

Unital channels

$$
\mathcal{U}_{\text {unital }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(I)=I\right\}
$$

Theorem

One has

$$
\mathcal{U}_{\text {unital }}=\mathcal{U}_{n k} \cap \mathcal{U}_{n k}^{\ulcorner }
$$

where $A^{\Gamma}=[\mathrm{id} \otimes \operatorname{transp}](A)$ denotes the partial transposition of A. In other words, $U \in \mathcal{U}_{\text {unital }}$ iff both U and $U^{\ulcorner }$are unitary operators.

- $\mathcal{U}_{\text {aut }}=\left\{V \otimes W: V, W \in \mathcal{U}_{n}\right\} \subseteq \mathcal{U}_{\text {unital }}$.
- If $n>1$, then $\mathcal{U}_{\text {const }} \cap \mathcal{U}_{\text {unital }}=\emptyset$.
- $\mathcal{U}_{\text {unital }}$ is a non-smooth algebraic variety. The dimension of the enveloping tangent space of $\mathcal{U}_{\text {unital }}$ is generically $n k(n+k-1)$.
- Although it is easy to check whether a given U is an element of $\mathcal{U}_{\text {unital }}$, we do not know how to parametrize or to sample from $\mathcal{U}_{\text {unital }}$.
- We conjecture that the following algorithm produces (random) elements from $\mathcal{U}_{\text {unital }}$

Sampling from $\mathcal{U}_{\text {unital }}$

(1) Input: Integers n, k and an error parameter $\varepsilon>0$.
(2) Start with a Haar distributed unitary random unitary operator $U \in \mathcal{U}_{n k}$.
(3) While $\left\|U^{\ulcorner }\left(U^{\ulcorner }\right)^{*}-I_{n k}\right\|_{2}>\varepsilon$, repeat the next step:
(1) $U \leftarrow \operatorname{Pol}\left(U^{\ulcorner }\right)$, where $\operatorname{Pol}(X)$ is the unitary operator V appearing in the polar decomposition of $X: X=V P$ with $P \geq 0$.

- Output: U, an operator at distance at most ε from $\mathcal{U}_{\text {unital }}$.

Block diagonal unitary matrices

Block-diagonal (or control) unitary operators wrt the system A (resp. B)
$\mathcal{U}_{\text {block-diag }}^{A}=\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{k} U_{i} \otimes e_{i} f_{i}^{*}\right.$,
with $U_{i} \in \mathcal{U}_{n}$ and $\left\{e_{i}\right\},\left\{f_{i}\right\}$ orthonormal bases in $\left.\mathbb{C}^{k}\right\}$

Block diagonal unitary matrices

Block-diagonal (or control) unitary operators wrt the system A (resp. B)

$$
\begin{aligned}
& \mathcal{U}_{\text {block-diag }=}^{A}\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{k} U_{i} \otimes e_{i} f_{i}^{*},\right. \\
& \left.\quad \text { with } U_{i} \in \mathcal{U}_{n} \text { and }\left\{e_{i}\right\},\left\{f_{i}\right\} \text { orthonormal bases in } \mathbb{C}^{k}\right\} \\
& \mathcal{U}_{\text {block-diag }}^{B}=\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{n} e_{i} f_{i}^{*} \otimes U_{i},\right. \\
& \\
& \text { with } \left.U_{i} \in \mathcal{U}_{k} \text { and }\left\{e_{i}\right\},\left\{f_{i}\right\} \text { orthonormal bases in } \mathbb{C}^{n}\right\}
\end{aligned}
$$

Block diagonal unitary matrices

Block-diagonal (or control) unitary operators wrt the system A (resp. B)

$$
\begin{aligned}
& \mathcal{U}_{\text {block-diag }=}^{A}=\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{k} U_{i} \otimes e_{i} f_{i}^{*},\right. \\
& \left.\quad \text { with } U_{i} \in \mathcal{U}_{n} \text { and }\left\{e_{i}\right\},\left\{f_{i}\right\} \text { orthonormal bases in } \mathbb{C}^{k}\right\} \\
& \mathcal{U}_{\text {block-diag }}^{B}=\left\{U \in \mathcal{U}_{n k} \mid U=\sum_{i=1}^{n} e_{i} f_{i}^{*} \otimes U_{i},\right. \\
& \\
& \text { with } \left.U_{i} \in \mathcal{U}_{k} \text { and }\left\{e_{i}\right\},\left\{f_{i}\right\} \text { orthonormal bases in } \mathbb{C}^{n}\right\}
\end{aligned}
$$

More generally, $U \in \mathcal{U}_{\text {block-diag }}^{A}$ iff

$$
U=\sum_{i=1}^{r} U_{i} \otimes R_{i}
$$

where U_{i} are unitary operators acting on \mathbb{C}^{n} and R_{i} are partial isometries $R_{i}: \mathbb{C}^{k} \rightarrow \mathbb{C}^{k}$ such that $\sum_{i=1}^{r} R_{i} R_{i}^{*}=\sum_{i=1}^{r} R_{i}^{*} R_{i}=I_{k}$. Moreover, the decomposition is unique, up to the permutation of the terms in the sum and $\mathbb{C} U_{i} \neq \mathbb{C} U_{j}$ for $i \neq j$.

Block diagonal unitary matrices

Proposition
If $n=2$, then

$$
\mathcal{U}_{\text {block-diag }}^{B} \subseteq \mathcal{U}_{\text {block-diag }}^{A} .
$$

In particular, when $n=k=2$, we have

$$
\mathcal{U}_{\text {block-diag }}^{A}=\mathcal{U}_{\text {block-diag }}^{B} .
$$

Block diagonal unitary matrices

Proposition

If $n=2$, then

$$
\mathcal{U}_{\text {block-diag }}^{B} \subseteq \mathcal{U}_{\text {block-diag }}^{A} .
$$

In particular, when $n=k=2$, we have

$$
\mathcal{U}_{\text {block-diag }}^{A}=\mathcal{U}_{\text {block-diag }}^{B} .
$$

$$
\begin{aligned}
\mathcal{U}_{\text {block-diag }}^{B} \ni U & =e_{1} f_{1}^{*} \otimes U_{1}+e_{2} f_{2}^{*} \otimes U_{2} \\
& =\left(I \otimes U_{1}\right)\left[e_{1} f_{1}^{*} \otimes I+e_{2} f_{2}^{*} \otimes\left(U_{1}^{*} U_{2}\right)\right] \\
& =\left(I \otimes U_{1}\right)\left[e_{1} f_{1}^{*} \otimes\left(\sum_{i=1}^{k} g_{i} g_{i}^{*}\right)+e_{2} f_{2}^{*} \otimes\left(\sum_{i=1}^{k} \lambda_{i} g_{i} g_{i}^{*}\right)\right] \\
& =\left(I \otimes U_{1}\right) \sum_{i=1}^{k}\left(e_{1} f_{1}^{*}+\lambda_{i} e_{2} f_{2}^{*}\right) \otimes g_{i} g_{i}^{*} \\
& =\left(I \otimes U_{1}\right) \sum_{i=1}^{k} W_{i} \otimes g_{i} g_{i}^{*}=\sum_{i=1}^{k} W_{i} \otimes h_{i} g_{i}^{*} \in \mathcal{U}_{\text {block-diag }}^{A}
\end{aligned}
$$

Mixed quantum channels

$$
\begin{aligned}
\mathcal{U}_{\text {mixed }} & :=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \operatorname{conv}\left\{V \cdot V^{*}\right\}_{V \in \mathcal{U}_{n}}\right\} \\
& =\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*}\right\}
\end{aligned}
$$

Mixed quantum channels

$$
\begin{aligned}
& \mathcal{U}_{\text {mixed }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \operatorname{conv}\left\{V \cdot V^{*}\right\}_{V \in \mathcal{U}_{n}}\right\} \\
& =\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*}\right\} \\
& \mathcal{U}_{\text {prob }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
& \text { with } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\}
\end{aligned}
$$

Mixed quantum channels

$$
\begin{aligned}
\begin{aligned}
\mathcal{U}_{\text {mixed }}:= & \left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \operatorname{conv}\left\{V \cdot V^{*}\right\} \mathcal{V} \in \mathcal{U}_{n}\right\} \\
= & \left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*}\right\} \\
\mathcal{U}_{\text {prob }}:= & \left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
& \text { with } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\} \\
\mathcal{U}_{\text {prob-lin }}:= & \left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
& \text { with linear } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\}
\end{aligned}
\end{aligned}
$$

Mixed quantum channels

$$
\begin{aligned}
& \mathcal{U}_{\text {mixed }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \operatorname{conv}\left\{V \cdot V^{*}\right\} V \in \mathcal{U}_{n}\right\} \\
&=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r(\beta)} p_{i}(\beta) U_{i}(\beta) X U_{i}(\beta)^{*}\right\} \\
& \mathcal{U}_{\text {prob }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
&\text { with } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\} \\
& \mathcal{U}_{\text {prob-lin }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta}(X)=\sum_{i=1}^{r} p_{i}(\beta) U_{i} X U_{i}^{*}\right. \\
&\text { with linear } \left.p_{i}(\beta) \geq 0 \text { and } \sum_{i} p_{i}(\beta)=1\right\}
\end{aligned}
$$

We have the following chain of inclusions

$$
\mathcal{U}_{\text {block-diag }}^{A} \subseteq \mathcal{U}_{\text {prob-lin }} \subseteq \mathcal{U}_{\text {prob }} \subseteq \mathcal{U}_{\text {mixed }} \subseteq \mathcal{U}_{\text {unital }} .
$$

Mixed quantum channels

Theorem
For all n, k, we have $\mathcal{U}_{\text {prob-lin }}=\mathcal{U}_{\text {block-diag }}^{A}$.

Mixed quantum channels

Theorem

For all n, k, we have $\mathcal{U}_{\text {prob-lin }}=\mathcal{U}_{\text {block-diag }}^{A}$.

- Since $\beta \mapsto p_{i}(\beta)$ are linear, there exists a POVM $\left(M_{i}\right)$ such that $p_{i}(\beta)=\operatorname{Tr}\left(M_{i} \beta\right)$.
- Prove the M_{i} 's have orthogonal supports.
- Construct a candidate unitary operator U.
- Use the lemma on equivalence of processors.

Mixed quantum channels

Theorem

For all n, k, we have $\mathcal{U}_{\text {prob-lin }}=\mathcal{U}_{\text {block-diag }}^{A}$.

- Since $\beta \mapsto p_{i}(\beta)$ are linear, there exists a POVM $\left(M_{i}\right)$ such that $p_{i}(\beta)=\operatorname{Tr}\left(M_{i} \beta\right)$.
- Prove the M_{i} 's have orthogonal supports.
- Construct a candidate unitary operator \tilde{U}.
- Use the lemma on equivalence of processors.

Proposition

When $n=2, \mathcal{U}_{\text {block-diag }}^{A}=\mathcal{U}_{\text {unital }}$, so we have

$$
\mathcal{U}_{\text {block-diag }}^{A}=\mathcal{U}_{\text {prob-lin }}=\mathcal{U}_{\text {prob }}=\mathcal{U}_{\text {mixed }}=\mathcal{U}_{\text {unital }} .
$$

Non-invariant structures

- We focus next on some classes of channels which depend on some particular choice of basis

$$
\begin{aligned}
& \mathcal{L}_{\text {diag }}=\{L: L(\operatorname{diag}) \subseteq \operatorname{diag}\} \\
& \mathcal{L}_{\text {tens }}=\left\{L: L\left(\mathcal{M}_{d}(\mathbb{C}) \otimes I_{r}\right) \subseteq \mathcal{M}_{d}(\mathbb{C}) \otimes I_{r}\right\}
\end{aligned}
$$

- We shall study both Schrödinger (quantum channels) and Heisenberg (unital CP maps) pictures

$$
\begin{aligned}
& L_{U, \beta}(\rho)=[\mathrm{id} \otimes \operatorname{Tr}]\left(U(\rho \otimes \beta) U^{*}\right) \\
& T_{U, \beta}(\rho)=[\operatorname{id} \otimes \operatorname{Tr}]\left(U^{*}\left(\rho \otimes I_{k}\right) U\left(I_{n} \otimes \beta\right)\right)
\end{aligned}
$$

- We write

$$
\begin{aligned}
& \mathcal{U}_{S, \text { diag }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \mathcal{L}_{\text {diag }}\right\} \\
& \mathcal{U}_{H, \text { diag }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), T_{U, \beta} \in \mathcal{L}_{\text {diag }}\right\} \\
& \mathcal{U}_{S, \text { tens }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \in \mathcal{L}_{\text {tens }}\right\} \\
& \mathcal{U}_{H, \text { tens }}:=\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), T_{U, \beta} \in \mathcal{L}_{\text {tens }}\right\}
\end{aligned}
$$

Matrices of partial isometries

Definition

An operator $R \in M_{n k}(\mathbb{C}) \cong M_{n}\left(M_{k}(\mathbb{C})\right)$ is called a matrix of partial isometries if its blocks $R_{i j}$ defined by $R=\sum_{i, j=1}^{n} e_{i} e_{j}^{*} \otimes R_{i j}$ are partial isometries. Let $E_{i j}$ (resp. $F_{i j}$) be the initial (resp. final) spaces of the partial isometries $R_{i j}$. R is said to be of type $(1,2,3,4)$ respectively if
(1) For all $i \in[n]$, the subspaces $\left\{E_{i j}\right\}_{j \in[n]}$ form a partition of \mathbb{C}^{k};
(2) For all $i \in[n]$, the subspaces $\left\{F_{i j}\right\}_{j \in[n]}$ form a partition of \mathbb{C}^{k};
(3) For all $j \in[n]$, the subspaces $\left\{E_{i j}\right\}_{i \in[n]}$ form a partition of \mathbb{C}^{k};
(1. For all $j \in[n]$, the subspaces $\left\{F_{i j}\right\}_{i \in[n]}$ form a partition of \mathbb{C}^{k}.

Lemma

A matrix of partial isometries is unitary iff it is of type $(2,3)$.

Strucutre preserving maps

Theorem

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be some fixed basis of \mathbb{C}^{n} and let diag be the diagonal sub-algebra of $\mathcal{M}_{n}(\mathbb{C})$. We have

$$
\begin{aligned}
\mathcal{U}_{H, \text { diag }} & =\{\text { matrices of partial isometries of type }(2,3)\} \\
& =\{\text { unitary matrices of partial isometries }\} \\
\mathcal{U}_{s, \text { diag }} & =\{\text { matrices of partial isometries of type }(2,3,4)\}
\end{aligned}
$$

Theorem

In the case of the tensor product algebra, we have (here, $n=d r$)

$$
\begin{aligned}
& \mathcal{U}_{H, \text { tens }}=\left\{\left(I_{d} \otimes V\right) \cdot\left(W \otimes I_{r}\right),: V \in \mathcal{U}_{r k}, W \in \mathcal{U}_{d k}\right\} \\
& \mathcal{U}_{s, \text { tens }}=\left\{\left(I_{d} \otimes V^{\ulcorner }\right) \cdot\left(W \otimes I_{r}\right),: V \in \mathcal{U}_{r k} \cap \mathcal{U}_{r k}^{\ulcorner }, W \in \mathcal{U}_{d k}\right\}
\end{aligned}
$$

Quantum latin squares

- A matrix of partial isometries of type ($1,2,3,4$), with $n=k$ and $\operatorname{dim} E_{i j}=\operatorname{dim} F_{i j}=1$ for all i, j, is called a quantum Latin square.

Definition

A quantum Latin square (QLS) of order n is a matrix $X=\left(x_{i j}\right)_{i, j=1}^{n}$, where $x_{i j} \in \mathbb{C}^{n}$ are such that the vectors on each row (resp. column) of X form an orthonormal basis of \mathbb{C}^{n}.

- Each classical latin square $L_{i j}$ and each orthonormal basis $\left\{e_{i}\right\}$ of \mathbb{C}^{n} induces a QLS by setting $x_{i j}=e_{L i j}$.
- There exist non-classical QLS [Musto, Vicary]:

$$
X=\left[\begin{array}{cccc}
|0\rangle & |1\rangle & |2\rangle & |3\rangle \\
\frac{1}{\sqrt{2}}(|1\rangle-|2\rangle) & \frac{1}{\sqrt{5}}(i|0\rangle+2|3\rangle) & \frac{1}{\sqrt{5}}(2|0\rangle+i|3\rangle) & \frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) \\
\frac{1}{\sqrt{2}}(|1\rangle+|2\rangle) & \frac{1}{\sqrt{5}}(2|0\rangle+i|3\rangle) & \frac{1}{\sqrt{5}}(i|0\rangle+2|3\rangle) & \frac{1}{\sqrt{2}}(|1\rangle-|2\rangle) \\
|3\rangle & |2\rangle & |1\rangle & |0\rangle
\end{array}\right]
$$

Sampling quantum Latin squares

- We conjecture that the following algorithm, which generalizes Sinkhorn's classical procedure, produces (random) quantum Latin squares

Non-commutative Sinkhorn algorithm for sampling QLS
(1) Input: The dimension n and an error parameter $\varepsilon>0$
(2) Start with $x_{i j}$ independent uniform points on the unit sphere of \mathbb{C}^{n}.
(3) While X is not an ε-QLS, do the steps (4-6)

- Define the matrix Y by making the rows of X unitary:

$$
\forall i \in[n], \quad y_{i j}=\operatorname{Pol}\left(\sum_{s=1}^{n} x_{i s} e_{s}^{*}\right) \cdot e_{j}
$$

(- Define the matrix Z by making the columns of Y unitary:

$$
\forall j \in[n], \quad z_{i j}=\operatorname{Pol}\left(\sum_{s=1}^{n} y_{s j} e_{s}^{*}\right) \cdot e_{i} .
$$

(0) $X \leftarrow Z$.
(1) Output: X, an ε-QLS.

Open questions / work in progress

Question (Mixed channels)

For all values of n, k, we conjecture that $\mathcal{U}_{\text {block-diag }}^{A}=\mathcal{U}_{\text {mixed }}$.

Question (Other sets of channels)

Characterize the unitarily invariant sets

$$
\begin{aligned}
\mathcal{U}_{P P T} & =\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}), L_{U, \beta} \text { is a PPT channel }\right\} \\
\mathcal{U}_{E B} & =\left\{U \in \mathcal{U}_{n k} \mid \forall \beta \in \mathcal{M}_{k}^{1,+}(\mathbb{C}),\right.
\end{aligned}
$$

$$
\left.L_{U, \beta} \text { is an entanglement breaking channel }\right\} \text {. }
$$

Obviously, $\mathcal{U}_{\text {const }} \subseteq \mathcal{U}_{E B} \subseteq \mathcal{U}_{P P T}$, and, if $n=k$, $\mathcal{U}_{\text {block-diag }}^{A} \cdot F_{n} \subseteq \mathcal{U}_{E B} \subseteq \mathcal{U}_{\text {PPT }}$. Is there equality ?

Question (Generating random bipartite unitary operators)

Show that the iterative algorithms for sampling from $\mathcal{U}_{\text {unital }}$ and $\mathcal{U}_{s \text {, diag }}$ (or $\mathcal{Q L S}$) converge, and study the distribution of the limit.

The End

thank you for your attention

- Deschamps, J., N.I., Pellegrini, C. On some classes of bipartite unitary operators. Preprint arXiv:1509.06543.
- Benoist, T., N.I. Unitary operators generating structure-preserving quantum dynamics. Soon ${ }^{\mathrm{TM}}$ on the arXiv.
- Hillery, M., Ziman, M., Bužek, V. Implementation of quantum maps by programmable quantum processors. Physical Review A, 66(4), 042302 (2002).
- Musto, B., Vicary, J. Quantum Latin squares and unitary error bases. Preprint arXiv:1504.02715.

