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Stinespring dilation for quantum channels

Theorem

Any quantum channel L :Mn(C)→Mn(C) (i.e. completely positive,
trace preserving linear map) can be written as

L(ρ) = [id⊗ Tr] (U(ρ⊗ β)U∗)

for some environment of size k (k = n2 suffices), a quantum state
β ∈M1,+

n (C) and a global unitary operator U ∈ Unk .

What if we do not know / have access to β, the state of the
environment ?

ρ

β
U U∗L(ρ) =
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The main problem

LU,β(ρ) := [id⊗ Tr] (U(ρ⊗ β)U∗)

Our mantra

Given a family L of quantum channels, characterize the set

UL := {U ∈ Unk : ∀β ∈M1,+
k (C), LU,β ∈ L}.

If the set L is unitarily invariant, i.e.

L ∈ L ⇐⇒ ∀V1,2 ∈ Un, V1L(V2 · V ∗2 )V ∗1 ∈ L,

then the set UL is invariant by local unitary multiplication:

U ∈ UL ⇐⇒ ∀V1,2 ∈ Un, ∀W1,2 ∈ Uk , (V1⊗W2)U(V2⊗W2) ∈ UL.

1 Laut = {V · V ∗}V∈Un
2 Lconst = {constant channels}
3 Lunital = {L : L(I ) = I}

4 Lmixed = conv{V · V ∗}V∈Un
5 Ldiag = {L : L(diag) ⊆ diag}
6 Ltens = {L : L(Md(C)⊗ Ir ) ⊆Md(C)⊗ Ir}
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Processor / program point of view

Bužek, Ziman and collaborators study the same problem, under a
different name

Processor

U ∈ Unk

Input

ρ

Output

LU,β(ρ)

Program

β

Lemma (Equivalent processors)

Two processors U,V ∈ Unk are equivalent, i.e. for all programs
β ∈M1,+

k (C), LU,β = LV ,β , iff there exists W ∈ Uk s.t. U = (In ⊗W )V .
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Unitary conjugations

Uaut := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(ρ) = VβρV

∗
β }

Theorem

We have Uaut = {V ⊗W : V ∈ Un, W ∈ Uk}.
For U = V ⊗W, LU,β(ρ) = V ρV ∗.

Usingle := {U ∈ Unk | the set {LU,β : β ∈M1,+
k (C)} has 1 element}.

In other words, U ∈ Usingle iff the channel LU,β does not depend on β,
the state of the environment.

Proposition

We have Usingle = Uaut = {V ⊗W }.
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Unitary conjugations

ρ

β
U U∗LU ,β(ρ) =
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Unitary conjugations

ρ
LV⊗W,β(ρ) =

V V ∗
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Constant channels

Uconst := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β is a constant channel}.

Theorem

If k 6= rn for r = 1, 2, . . ., then Uconst is empty. If k = r · n for some
positive r , then

Uconst = {(In ⊗ V )(Fn ⊗ Ir )(In ⊗W ) : V ,W ∈ Uk},

where Fn ∈ Un2 denotes the flip operator.
For U ∈ Uconst as above, LU,β(ρ) = [idn ⊗ Trr ](WβW ∗).

Corollary

If n = k, then Uconst = Fn · Uaut = Fn · {V ⊗W : V ,W ∈ Un}.
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Constant channels

WV V ∗W ∗

ρ

β
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Constant channels

WV V ∗W ∗

ρ

β

8 / 21



Constant channels

W W ∗

ρ

β
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Constant channels

W W ∗β
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Constant channels

W W ∗β
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Unital channels

Uunital := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(I ) = I}

Theorem

One has
Uunital = Unk ∩ UΓ

nk

where AΓ = [id⊗ transp](A) denotes the partial transposition of A. In
other words, U ∈ Uunital iff both U and UΓ are unitary operators.

Uaut = {V ⊗W : V ,W ∈ Un} ⊆ Uunital .
If n > 1, then Uconst ∩ Uunital = ∅.
Uunital is a non-smooth algebraic variety. The dimension of the
enveloping tangent space of Uunital is generically nk(n + k − 1).
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Sampling from Uunital

Although it is easy to check whether a given U is an element of
Uunital , we do not know how to parametrize or to sample from Uunital .
We conjecture that the following algorithm produces (random)
elements from Uunital

Sampling from Uunital
1 Input: Integers n, k and an error parameter ε > 0.

2 Start with a Haar distributed unitary random unitary operator
U ∈ Unk .

3 While ‖UΓ(UΓ)∗ − Ink‖2 > ε, repeat the next step:

4 U ← Pol(UΓ), where Pol(X ) is the unitary operator V appearing in
the polar decomposition of X : X = VP with P ≥ 0.

5 Output: U, an operator at distance at most ε from Uunital .
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Block diagonal unitary matrices

Block-diagonal (or control) unitary operators wrt the system A (resp. B)

UA
block−diag = {U ∈ Unk |U =

k∑
i=1

Ui ⊗ ei f
∗
i ,

with Ui ∈ Un and {ei}, {fi} orthonormal bases in Ck}

UB
block−diag = {U ∈ Unk |U =

n∑
i=1

ei f
∗
i ⊗ Ui ,

with Ui ∈ Uk and {ei}, {fi} orthonormal bases in Cn}
More generally, U ∈ UA

block−diag iff

U =
r∑

i=1

Ui ⊗ Ri ,

where Ui are unitary operators acting on Cn and Ri are partial isometries
Ri : Ck → Ck such that

∑r
i=1 RiR

∗
i =

∑r
i=1 R

∗
i Ri = Ik . Moreover, the

decomposition is unique, up to the permutation of the terms in the sum
and CUi 6= CUj for i 6= j .

11 / 21



Block diagonal unitary matrices

Block-diagonal (or control) unitary operators wrt the system A (resp. B)

UA
block−diag = {U ∈ Unk |U =

k∑
i=1

Ui ⊗ ei f
∗
i ,

with Ui ∈ Un and {ei}, {fi} orthonormal bases in Ck}

UB
block−diag = {U ∈ Unk |U =

n∑
i=1

ei f
∗
i ⊗ Ui ,

with Ui ∈ Uk and {ei}, {fi} orthonormal bases in Cn}

More generally, U ∈ UA
block−diag iff

U =
r∑

i=1

Ui ⊗ Ri ,

where Ui are unitary operators acting on Cn and Ri are partial isometries
Ri : Ck → Ck such that

∑r
i=1 RiR

∗
i =

∑r
i=1 R

∗
i Ri = Ik . Moreover, the

decomposition is unique, up to the permutation of the terms in the sum
and CUi 6= CUj for i 6= j .

11 / 21



Block diagonal unitary matrices

Block-diagonal (or control) unitary operators wrt the system A (resp. B)

UA
block−diag = {U ∈ Unk |U =

k∑
i=1

Ui ⊗ ei f
∗
i ,

with Ui ∈ Un and {ei}, {fi} orthonormal bases in Ck}

UB
block−diag = {U ∈ Unk |U =

n∑
i=1

ei f
∗
i ⊗ Ui ,

with Ui ∈ Uk and {ei}, {fi} orthonormal bases in Cn}
More generally, U ∈ UA

block−diag iff

U =
r∑

i=1

Ui ⊗ Ri ,

where Ui are unitary operators acting on Cn and Ri are partial isometries
Ri : Ck → Ck such that

∑r
i=1 RiR

∗
i =

∑r
i=1 R

∗
i Ri = Ik . Moreover, the

decomposition is unique, up to the permutation of the terms in the sum
and CUi 6= CUj for i 6= j .

11 / 21



Block diagonal unitary matrices

Proposition

If n = 2, then
UB
block−diag ⊆ UA

block−diag .

In particular, when n = k = 2, we have

UA
block−diag = UB

block−diag .

UB
block−diag 3 U = e1f

∗
1 ⊗ U1 + e2f

∗
2 ⊗ U2

= (I ⊗ U1) [e1f
∗

1 ⊗ I + e2f
∗

2 ⊗ (U∗1U2)]

= (I ⊗ U1)

[
e1f
∗

1 ⊗
(

k∑
i=1

gig
∗
i

)
+ e2f

∗
2 ⊗

(
k∑

i=1

λigig
∗
i

)]

= (I ⊗ U1)
k∑

i=1

(e1f
∗

1 + λie2f
∗

2 )⊗ gig
∗
i

= (I ⊗ U1)
k∑

i=1

Wi ⊗ gig
∗
i =

k∑
i=1

Wi ⊗ hig
∗
i ∈ UA

block−diag .
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Mixed quantum channels

Umixed := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β ∈ conv{V · V ∗}V∈Un}

= {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(X ) =

r(β)∑
i=1

pi (β)Ui (β)XUi (β)∗}

Uprob := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(X ) =

r∑
i=1

pi (β)UiXU
∗
i

with pi (β) ≥ 0 and
∑
i

pi (β) = 1}

Uprob−lin := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β(X ) =

r∑
i=1

pi (β)UiXU
∗
i

with linear pi (β) ≥ 0 and
∑
i

pi (β) = 1}

We have the following chain of inclusions

UA
block−diag ⊆ Uprob−lin ⊆ Uprob ⊆ Umixed ⊆ Uunital .
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Mixed quantum channels

Theorem

For all n, k, we have Uprob−lin = UA
block−diag .

Since β 7→ pi (β) are linear, there exists a POVM (Mi ) such that
pi (β) = Tr(Miβ).

Prove the Mi ’s have orthogonal supports.

Construct a candidate unitary operator Ũ.

Use the lemma on equivalence of processors.

Proposition

When n = 2, UA
block−diag = Uunital , so we have

UA
block−diag = Uprob−lin = Uprob = Umixed = Uunital .
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Non-invariant structures

We focus next on some classes of channels which depend on some
particular choice of basis

Ldiag = {L : L(diag) ⊆ diag}
Ltens = {L : L(Md(C)⊗ Ir ) ⊆Md(C)⊗ Ir}

We shall study both Schrödinger (quantum channels) and
Heisenberg (unital CP maps) pictures

LU,β(ρ) = [id⊗ Tr] (U(ρ⊗ β)U∗)

TU,β(ρ) = [id⊗ Tr] (U∗(ρ⊗ Ik)U(In ⊗ β))

We write

US,diag := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β ∈ Ldiag}

UH,diag := {U ∈ Unk | ∀β ∈M1,+
k (C), TU,β ∈ Ldiag}

US,tens := {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β ∈ Ltens}

UH,tens := {U ∈ Unk | ∀β ∈M1,+
k (C), TU,β ∈ Ltens}

15 / 21



Matrices of partial isometries

Definition

An operator R ∈ Mnk(C) ∼= Mn(Mk(C)) is called a matrix of partial
isometries if its blocks Rij defined by R =

∑n
i,j=1 eie

∗
j ⊗ Rij are partial

isometries. Let Eij (resp. Fij) be the initial (resp. final) spaces of the
partial isometries Rij . R is said to be of type (1,2,3,4) respectively if

1 For all i ∈ [n], the subspaces {Eij}j∈[n] form a partition of Ck ;

2 For all i ∈ [n], the subspaces {Fij}j∈[n] form a partition of Ck ;

3 For all j ∈ [n], the subspaces {Eij}i∈[n] form a partition of Ck ;

4 For all j ∈ [n], the subspaces {Fij}i∈[n] form a partition of Ck .

Lemma

A matrix of partial isometries is unitary iff it is of type (2,3).
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Strucutre preserving maps

Theorem

Let {e1, . . . , en} be some fixed basis of Cn and let diag be the diagonal
sub-algebra of Mn(C). We have

UH,diag = {matrices of partial isometries of type (2,3)}
= {unitary matrices of partial isometries}

US,diag = {matrices of partial isometries of type (2,3,4)}

Theorem

In the case of the tensor product algebra, we have (here, n = dr)

UH,tens = {(Id ⊗ V ) · (W ⊗ Ir ), : V ∈ Urk , W ∈ Udk}
US,tens = {(Id ⊗ V Γ) · (W ⊗ Ir ), : V ∈ Urk ∩ UΓ

rk , W ∈ Udk}
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Quantum latin squares

A matrix of partial isometries of type (1,2,3,4), with n = k and
dimEij = dimFij = 1 for all i , j , is called a quantum Latin square.

Definition

A quantum Latin square (QLS) of order n is a matrix X = (xij)
n
i,j=1,

where xij ∈ Cn are such that the vectors on each row (resp. column) of X
form an orthonormal basis of Cn.

Each classical latin square Lij and each orthonormal basis {ei} of Cn

induces a QLS by setting xij = eLij .

There exist non-classical QLS [Musto, Vicary]:

X =


|0〉 |1〉 |2〉 |3〉

1√
2

(|1〉 − |2〉) 1√
5

(i |0〉+ 2|3〉) 1√
5

(2|0〉+ i |3〉) 1√
2

(|1〉+ |2〉)
1√
2

(|1〉+ |2〉) 1√
5

(2|0〉+ i |3〉) 1√
5

(i |0〉+ 2|3〉) 1√
2

(|1〉 − |2〉)
|3〉 |2〉 |1〉 |0〉


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Sampling quantum Latin squares

We conjecture that the following algorithm, which generalizes
Sinkhorn’s classical procedure, produces (random) quantum Latin
squares

Non-commutative Sinkhorn algorithm for sampling QLS
1 Input: The dimension n and an error parameter ε > 0
2 Start with xij independent uniform points on the unit sphere of Cn.
3 While X is not an ε-QLS, do the steps (4-6)

4 Define the matrix Y by making the rows of X unitary:

∀i ∈ [n], yij = Pol

(
n∑

s=1

xise
∗
s

)
· ej .

5 Define the matrix Z by making the columns of Y unitary:

∀j ∈ [n], zij = Pol

(
n∑

s=1

ysje
∗
s

)
· ei .

6 X ← Z .
7 Output: X , an ε-QLS.
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Open questions / work in progress

Question (Mixed channels)

For all values of n, k, we conjecture that UA
block−diag = Umixed .

Question (Other sets of channels)

Characterize the unitarily invariant sets

UPPT = {U ∈ Unk | ∀β ∈M1,+
k (C), LU,β is a PPT channel }

UEB = {U ∈ Unk | ∀β ∈M1,+
k (C),

LU,β is an entanglement breaking channel }.

Obviously, Uconst ⊆ UEB ⊆ UPPT , and, if n = k,
UA
block−diag · Fn ⊆ UEB ⊆ UPPT . Is there equality ?

Question (Generating random bipartite unitary operators)

Show that the iterative algorithms for sampling from Uunital and US,diag
(or QLS) converge, and study the distribution of the limit.
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