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Free compression norms



Free Probability Theory

Invented by Voiculescu in the 80s to solve problems in operator algebras.

A non-commutative probability space (A, τ) is an algebra A with a
unital state τ : A → C. Elements a ∈ A are called random variables.

Examples:

classical probability spaces (L∞(Ω,F ,P),E);
group algebras (CG , δe);
matrices (Mn, n

−1 Tr);
random matrices (Mn(L∞(Ω,F ,P)),E ◦ n−1 Tr).

Several notions of independence:

classical independence, implies commutativity of the radom variables;
free independence.

If a, b are freely independent random variables, the law of (a, b) can
be computed in terms of the laws of a and b. Freeness provides an
algorithm for computing joint moments in terms of marginals.

Example: if {a1, a2} and {b1, b2} are free, then

τ(a1b1a2b2) = τ(a1a2)τ(b1)τ(b2) + τ(a1)τ(a2)τ(b1b2)

− τ(a1)τ(b1)τ(a2)τ(b2).

4 / 41



Asymptotic freeness of random matrices

Theorem (Voiculescu ’98)

Let (An) and (Bn) be sequences of n × n matrices such that An and Bn

converge in distribution (with respect to n−1 Tr) for n→∞.
Furthermore, let (Un) be a sequence of Haar unitary n × n random
matrices. Then, An and UnBnU

∗
n are asymptotically free for n→∞.

If An,Bn are matrices of size n, whose spectra converge towards µa, µb,
the spectrum of An + UnBnU

∗
n converges to µa � µb; here, µa�µb is the

distribution of a + b, where a, b ∈ (A, τ) are free random variables
having distributions resp. µa, µb.

If An,Bn are matrices of size n such that An ≥ 0, whose spectra converge

towards µa, µb, the spectrum of A
1/2
n UnBnU

∗
nA

1/2
n converges to µa � µb.
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Example: truncation of random matrices

Let Pn ∈Mn a projection of rank n/2; its eigenvalues are 0 and 1, with
multiplicity n/2. Hence, the distribution of Pn converges, when n→∞,
to the Bernoulli probability measure 1

2δ0 + 1
2δ1.

Let Cn ∈Mn/2 be the top n/2× n/2 corner of UnPnU
∗
n , with Un a Haar

random unitary matrix. What is the distribution of Cn ?

Up to zero blocks, Cn = Qn(UnPnU
∗
n )Qn, where Qn is the diagonal

orthogonal projection on the first n/2 coordinates of Cn. The distribution
of Qn converges to 1

2δ0 + 1
2δ1.

Free probability theory tells us that the distribution of Cn will converge to

(
1

2
δ0 +

1

2
δ1)� (

1

2
δ0 +

1

2
δ1) =

1

π
√
x(1− x)

1[0,1](x)dx ,

which is the arcsine distribution.

6 / 41



Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of
relative rank 1/2 and size n = 4000; in red, the density of the arcsine
distribution.
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The t-norm

Definition

For a positive integer k , embed Rk as a self-adjoint real subalgebra R of
a C∗-ncps (A, τ), so that τ(x) = (x1 + · · ·+ xk)/k . Let pt be a
projection of rank t ∈ (0, 1] in A, free from R. On the real vector space
Rk , we introduce the following norm, called the (t)-norm:

‖x‖(t) := ‖ptxpt‖∞,

where the vector x ∈ Rk is identified with its image in R.

One can show that ‖ · ‖(t) is indeed a norm, which is permutation
invariant.

When t > 1− 1/k , ‖ · ‖(t) = ‖ · ‖∞ on Rk .

limt→0+ ‖x‖(t) = k−1|
∑

i xi |.
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Computing the t-norm

Proposition

For a compactly supported probability measure µ,

µ� bt = Dtµ
�1/t ,

where bt is the Bernoulli distribution bt = (1− t)δ0 + tδ1 and Dt is the
dilation operator.

Let Gµ(z) =
∫ dµ(a)

z−a be the Cauchy-Stieltjes transform of the measure µ
and by Fµ = 1/Gµ.

Proposition

For any x ∈ Rk ,
‖x‖(t) = wx − (1− t)Fµx (wx),

where wx is the largest in absolute value solution to the equation

Fµx (w)

(
F ′µx

(w)− 1

1− t

)
= 0.

9 / 41



Corners of randomly rotated projections

Theorem (Collins ’05)

In Cn, choose at random according to the Haar measure two independent
subspaces Vn and V ′n of respective dimensions qn ∼ sn and q′n ∼ tn
where s, t ∈ (0, 1]. Let Pn (resp. P ′n) be the orthogonal projection onto
Vn (resp. V ′n). Then, almost surely,

lim
n
‖PnP

′
nPn‖∞ = ϕ(s, t) = sup supp((1− s)δ0 + sδ1)� ((1− t)δ0 + tδ1),

with

ϕ(s, t) =

{
s + t − 2st + 2

√
st(1− s)(1− t) if s + t < 1;

1 if s + t ≥ 1.

Hence, we can compute

‖ 1, · · · , 1︸ ︷︷ ︸
j times

, 0, · · · , 0︸ ︷︷ ︸
k−j times

‖(t) = ϕ(
j

k
, t).
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The minimum output entropy of quantum channels



Quantum states and entropies

Quantum states (or density matrices)

M1,+
d (C) = {ρ ∈Md(C) : ρ ≥ 0 and Tr ρ = 1}.

Extremal states (i.e. rank one projectors) are called pure states.
von Neumann and Rényi entropies

H(ρ) = H1(ρ) = −Tr(ρ log ρ) Hp(ρ) =
log Tr ρp

1− p
, p > 0.

Two quantum systems: tensor product of Hilbert spaces

ρ12 ∈ [Md1(C)⊗Md2(C)]1,+ .

Entropies are additive

Hp(ρ1 ⊗ ρ2) = Hp(ρ1) + Hp(ρ2).

A bipartite quantum state ρ12 ∈M1,+
d1d2

(C) is called separable if it
can be written as a convex combination of product states

ρ12 ∈ SEP ⇐⇒ ρ12 =
∑
i

tiρ1(i)⊗ ρ2(i),

where ti ≥ 0,
∑

i ti = 1, ρ1(i) ∈M1,+
d1

, ρ2(i) ∈M1,+
d2

Non-separable states are called entangled
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Additivity for MOE of quantum channels

Quantum channels: CPTP maps Φ :Min(C)→Mout(C)

CP - complete positivity: Φ⊗ idr is a positive map, ∀r ≥ 1
TP - trace preservation: Tr ◦ Φ = Tr.

p-Minimal Output Entropy of a quantum channel

Hp
min(Φ) = min

ρ∈M1,+
in (C)

Hp(Φ(ρ))

= min
x∈Cin

Hp(Φ(Px)).

Is the p-MOE additive ?

Hp
min(Φ⊗Ψ) = Hp

min(Φ) + Hp
min(Ψ) ∀Φ,Ψ.

NO !!!

p > 1: Hayden + Winter ’08;
p = 1: Hastings ’08

Why care? Simple formula for the (classical) capacity of quantum
channels: if additivity holds, then there is no need to use inputs
entangled over multiple uses of Φ.
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Random quantum channels

Counterexamples to additivity conjectures are random.

Random quantum channels from random isometries

Φ(ρ) = [idout⊗Tranc](V ρV
∗),

where V is a Haar random partial isometry

V : Cin → Cout ⊗ Canc.

Equivalently, via the Stinespring dilation theorem

Φ(ρ) = [idout⊗Tranc](U(ρ⊗ Py )U∗),

where y ∈ C out·anc
in and U ∈Mout·anc(C) is a Haar random unitary

matrix.

Random quantum channels from i.i.d. random unitary matrices

Φ(ρ) =
k∑

i=1

piUiρU
∗
i ,

for (random) probabilities pi and i.i.d. Haar distributed unitary
operators Ui .
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Model of interest

Here, we focus on random quantum channels coming from random
isometries, with the following parameters.

in = tnk ,

out = k ,

anc = n,

where n, k ∈ N and t ∈ (0, 1). In general, we shall assume that

n→∞
k is fixed
t is fixed.

In other words, we are interested in Φ :Mtnk(C)→Mk(C),

Φ(ρ) = [idk ⊗ Trn](V ρV ∗),

where V is a random isometry obtained by keeping the first tnk columns
of a nk × nk Haar random unitary.
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How to get counterexamples ?

Choose Φ to be random and Ψ = Φ̄; this way, Hp
min(Ψ) = Hp

min(Φ).

Bound
Hp

min(Φ⊗ Φ̄) ≤ B2 < 2B1 ≤ 2Hp
min(Φ).

Use B2 := [Φ⊗ Φ̄](Etnk), where Ed = ΩdΩ∗d is the projection on the
maximally entangled state

Cd ⊗ Cd 3 Ωd =
1√
d

d∑
i=1

ei ⊗ ei .

Theorem (Collins + N. ’09)

For all k, t, almost surely as n→∞, the eigenvalues of
Zn = [Φ⊗ Φ̄](Etnk) converge tot +

1− t

k2
,

1− t

k2
, . . . ,

1− t

k2︸ ︷︷ ︸
k2−1 times

 ∈ ∆k2 .
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Computing Hmin(Φ)



Strategy for B1

Remember: we want

Hp
min(Φ⊗ Φ̄)≤B2 < 2B1 ≤ 2Hp

min(Φ).

We shall do more: we compute the exact limit (as n→∞) of
Hp

min(Φ).

Theorem (Belinschi, Collins, N. ’13)

For all p ≥ 1,
lim

n→∞
Hmin

p (Φ) = Hp(a, b, b, . . . , b︸ ︷︷ ︸
k−1

),

where a, b do not depend on p, b = (1− a)/(k − 1) and a = ϕ(1/k , t)
with

ϕ(s, t) =

{
s + t − 2st + 2

√
st(1− s)(1− t) if s + t < 1;

1 if s + t ≥ 1.
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Entanglement of a vector

For a vector

x =
k∑

i=1

√
λi (x)ei ⊗ fi ,

define H(x) = H(λ(x)) = −
∑

i λi (x) log λi (x), the entropy of
entanglement of the bipartite pure state x .

Note that

1 The state x is separable, x = e ⊗ f , iff H(x) = 0.

2 The state x is maximally entangled, x = k−1/2
∑

i ei ⊗ fi , iff
H(x) = log k .

Recall that we are interested in computing

Hmin(Φ) = min
x∈Cd , ‖x‖=1

H(Φ(Px)) = min
y∈ImV , ‖y‖=1

H([idk ⊗ Trn]Py )

= min
y∈ImV , ‖y‖=1

H(y).
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Entanglement of a subspace

For a subspace V ⊂ Ck ⊗ Cn, define

Hmin
p (V ) = min

y∈V , ‖y‖=1
Hp(y),

the minimal entanglement of vectors in V .

Here, we abuse notation: recall that we are interested in random
isometries V : Ctnk → Ck ⊗ Cn. Since the quantities Hmin

p only depend
on the range of V , also write V = ranV .

A subspace V is called entangled if Hmin(V ) > 0, i.e. if it does not
contain separable vectors x ⊗ y .
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Singular values of vectors from a subspace

 Entropy is just a statistic, look at the set of all singular values directly!

For a subspace V ⊂ Ck ⊗ Cn of dimension dimV = d , define the set
eigen-/singular values or Schmidt coefficients

KV = {λ(x) : x ∈ V , ‖x‖ = 1}.

 Our goal is to understand KV .

The set KV is a compact subset of the ordered probability simplex
∆↓k .

Local invariance: K(U1⊗U2)V = KV , for unitary matrices U1 ∈ U(k)
and U2 ∈ U(n).

Monotonicity: if V1 ⊂ V2, then KV1 ⊂ KV2 .

Recovering minimum entropies:

Hmin
p (Φ) = Hmin

p (V ) = min
λ∈KV

Hp(λ).
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Examples

The anti-symmetric subspace: non-random counter-example for
additivity, when p > 2 [Grudka, Horodecki, Pankowski ’09].

Let k = n and put V = Λ2(Cn)

The subspace V is almost half of the total space:
dimV = n(n − 1)/2.

Example of a vector in V :

V 3 x =
1√
2

(e ⊗ f − f ⊗ e).

Fact: singular values of vectors in V come in pairs.

Hence, the least entropy vector in V is as above, with e ⊥ f and
H(x) = log 2.

Thus, Hmin(V ) = log 2 and one can show that

KV = {(λ1, λ1, λ2, λ2, . . .) ∈ ∆n : λi ≥ 0,
∑
i

λi = 1/2}.
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Examples - KV

V = span{G1,G2}, where G1,2 are 3× 3 independent Ginibre random
matrices.
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Examples - KV

V = span{G1,G2}, where G1,2 are 3× 3 independent Ginibre random
matrices.
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Examples - KV

V = span{I3,G}, where G is a 3× 3 Ginibre random matrix.
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Examples - KV

V = span{I3,G}, where G is a 3× 3 Ginibre random matrix.
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An open problem

Find explicit (i.e. non-random) examples of subspaces V ⊂ Ck ⊗Cn with

1 large dimV ;

2 large Hmin(V ).

Give quantitative bounds on the trade-off between dimV and Hmin(V )
for arbitrary subspaces V .
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Main result

Recall that we are interested in random isometries/subspaces in the
following asymptotic regime: k fixed, n→∞, and d ∼ tkn, for a fixed
parameter t ∈ (0, 1).

Theorem (Belinschi, Collins, N. ’10)

For a sequence of uniformly distributed random subspaces Vn, the set
KVn of singular values of unit vectors from Vn converges (almost surely,
in the Hausdorff distance) to a deterministic, convex subset Kk,t of the
probability simplex ∆k

Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.
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Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed,
n→∞, d ∼ tkn, we have the following a.s. convergence result for
random quantum channels Φ (defined via random isometries
V : Cd → Ck ⊗ Cn):

lim
n→∞

Hmin
p (Φ) = min

λ∈Kk,t

Hp(λ).

It is not just a bound, the exact limit value is obtained.

Theorem (Belinschi, Collins, N. ’16)

For all p ≥ 1,

lim
n→∞

Hmin
p (Φ) = min

λ∈Kk,t

Hp(λ) = Hp(a, b, b, . . . , b),

where a, b do not depend on p, b = (1− a)/(k − 1) and a = ϕ(1/k, t)
with

ϕ(s, t) =

{
s + t − 2st + 2

√
st(1− s)(1− t) if s + t < 1;

1 if s + t ≥ 1.
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KVn
→ Kk,t : idea of the proof

A simpler question: what is the largest maximal singular value
maxx∈V ,‖x‖=1 λ1(x) of vectors from the subspace V ?

max
x∈V ,‖x‖=1

λ1(x) = max
x∈V ,‖x‖=1

λ1([idk ⊗ Trn]Px)

= max
x∈V ,‖x‖=1

‖[idk ⊗ Trn]Px‖

= max
x∈V ,‖x‖=1

max
y∈Ck ,‖y‖=1

Tr [([idk ⊗ Trn]Px) · Py ]

= max
x∈V ,‖x‖=1

max
y∈Ck ,‖y‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck ,‖y‖=1

max
x∈V ,‖x‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck ,‖y‖=1

‖PV · Py ⊗ In · PV ‖∞.
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The set Kk,t and t-norms

Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.
Recall that

max
x∈V ,‖x‖=1

λ1(x) = max
y∈Ck ,‖y‖=1

‖PVPy ⊗ InPV ‖∞.

For fixed y , PV and Py ⊗ In are independent projectors of relative
ranks t and 1/k respectively.

Thus,

‖PV · Py ⊗ In · PV ‖∞ → ‖ ((1− t)δ0 + tδ1)� ((1− 1/k)δ0 + 1/kδ1) ‖
= ϕ(t, 1/k) = ‖(1, 0, . . . , 0)‖(t).

We can take the max over y at no cost, by considering a finite net
of y ’s, since k is fixed; remember that we are using almost sure
convergence.

To get the full result lim supn→∞ KVn ⊂ Kk,t , use 〈λ, x〉 (for all
directions x) instead of λ1.

The inclusion lim infn→∞ KVn ⊃ Kk,t , is much easier, and follows
from the convergence in distribution.
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Recall

Hp
min(Φ⊗ Φ̄) ≤ B2 < 2B1 ≤ 2Hp

min(Φ).

Theorem (Collins + N. ’09)

For all k, t, almost surely as n→∞, if Zn = (Φ⊗ Φ̄)(Etnk)

spec(Zn)→

t +
1− t

k2
,

1− t

k2
, . . . ,

1− t

k2︸ ︷︷ ︸
k2−1 times

 ∈ ∆k2 .

Theorem (Belinschi, Collins, N. ’16)

For all p ≥ 1,
lim

n→∞
Hmin

p (Φ) = Hp(a, b, b, . . . , b),

where b = (1− a)/(k − 1) and a = ϕ(1/k , t) with

ϕ(s, t) =

{
s + t − 2st + 2

√
st(1− s)(1− t) if s + t < 1;

1 if s + t ≥ 1.
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Putting things together

Theorem (Belinschi, Collins, N. ’16)

Using the limit for Hmin(Φ) and the upper bound for Hmin(Φ), the lowest
dimension for which a violation of the additivity can be observed is
k = 183. For large k, violations of size 1− ε bits can be obtained.

How to improve this ?

1 Other asymptotic regimes

2 Use Ψ 6= Φ̄

3 For Φ⊗ Φ̄, compute the actual limit of Hmin(Φ⊗ Φ̄), and not just
an upper bound.
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Random positive maps and free additive convolution
powers of probability measures



Separability criteria

Recall: SEP = {
∑

i tiρ1(i)⊗ ρ2(i) : ρ1,2(i) ≥ 0}.
Let A be a C∗ algebra. A map f :Md → A is called

positive if A ≥ 0 =⇒ f (A) ≥ 0;
completely positive (CP) if idr ⊗ f is positive for all r ≥ 1 (r = d is
enough).

Let f :Md → A be a completely positive map. Then, for every
state ρ12 ∈M1,+

dk , one has [f ⊗ idk ](ρ12) ≥ 0.
Let f :Md → A be a positive map. Then, for every separable state
ρ12 ∈M1,+

dk , one has [f ⊗ idk ⊗ f ](ρ12) ≥ 0.
ρ12 separable =⇒ ρ12 =

∑
i tiρ1(i)⊗ ρ2(i).

[f ⊗ idm](ρ12) =
∑

i ti f (ρ1(i))⊗ ρ2(i).
For all i , f (ρ1(i)) ≥ 0, so [f ⊗ idk ](ρ12) ≥ 0.

Hence, positive, but not CP maps f provide sufficient entanglement
criteria: if [f ⊗ idm](ρ12) � 0, then ρ12 is entangled.
The transposition map t : A 7→ At is positive, but not CP. Define the
convex set

PPT = {ρ12 ∈M1,+
dk | [td ⊗ idk ](ρ12) ≥ 0} ⊇ SEP.

For (m, n) ∈ {(2, 2), (2, 3)} we have SEP = PPT . In other
dimensions, the inclusion SEP ⊂ PPT is strict.

35 / 41



The Choi matrix of a map

For any d , recall that the maximally entangled state is the
orthogonal projection onto

Cd ⊗ Cd 3 Ωd =
1√
d

d∑
i=1

ei ⊗ ei .

To any map f :Md → A, associate its Choi matrix

Cf = [idd ⊗ f ](PBell) ∈Md ⊗A.

Equivalently, if Eij are the matrix units in Md , then

Cf =
d∑

i,j=1

Eij ⊗ f (Eij).

Theorem (Choi ’72)

A map f :Md → A is CP iff its Choi matrix Cf is positive.
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The Choi-Jamio lkowski isomorphism

Recall (from now on A =Mk)

Cf = [idd ⊗ f ](Ed) =
d∑

i,j=1

Eij ⊗ f (Eij) ∈Md ⊗Mk .

The map f 7→ Cf is called the Choi-Jamio lkowski isomorphism.

It sends:
1 All linear maps to all operators;
2 Hermicity preserving maps to hermitian operators;
3 Entanglement breaking maps to separable quantum states;
4 Unital maps to operators with unit left partial trace

([Tr⊗ id]Cf = Ik);
5 Trace preserving maps to operators with unit left partial trace

([id⊗ Tr]Cf = Id).
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Random Choi matrices

Let µ be a compactly supported probability measure on R. For each
d we introduce a real valued diagonal matrix Xd of Md ⊗Mk whose
eigenvalue counting distribution converges to µ and whose extremal
eigenvalues converge to the respective extrema of the support of µ.

Let Ud be a random Haar unitary matrix in the unitary group Udk ,

and f
(d)
µ : Md →Mk be the map whose Choi matrix is UdXdU

∗
d .

Theorem

Under the above assumptions, if supp(µ�k) ⊂ (0,∞) then, almost surely

as d →∞, the map f
(d)
µ is positive. On the other hand, if

supp(µ�k) ∩ (−∞, 0) 6= ∅ then, almost surely as d →∞, f
(d)
µ is not

positive.
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Proof ingredients

Let f
(d)
µ : Md →Mk be the map whose Choi matrix is UdXdU

∗
d .

Theorem

If supp(µ�k) ⊂ (0,∞) then, almost surely as d →∞, the map f
(d)
µ is

positive. If supp(µ�k) ∩ (−∞, 0) 6= ∅ then, almost surely as d →∞,

f
(d)
µ is not positive.

Proposition

A map f is positive iff for any self-adjoint projection P ∈Mk of rank 1,
the operator (Id ⊗ P)Cf (Id ⊗ P) is positive semidefinite.

Proposition (Nica and Speicher)

Let x , p be free elements in a ncps (M, τ) and assume that p is a
selfadjoint projection such that τ(p) = t (t ∈ (0, 1)) and that x has
distribution µ. Then, the distribution of tpxp inside the contracted ncps
(pMp, τ(p · p)) is µ�1/t
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Example: semicircular measures

Let sa,σ be the semi-circle distribution of mean a and variance σ2,
having support [a− 2σ, a + 2σ].
In free probability theory, s0,1 plays the role of the standard Gaussian
in classical probability, cf Free Central Limit Theorem.
We have supp(s�k

a,σ) = supp(sak,σ
√
k) = [ak − 2σ

√
k, ak + 2σ

√
k].

Lemma

Let k be an integer and a, σ positive parameters. The map

f
(d)
a,σ : Md →Mk associated to a semi-circular distribution sa,σ is

asymptotically positive as soon as a2 < 4kσ2.

Theorem

Let Xd ∈Msa
dk(C) a sequence of (normalized) GUE matrices, and set

Yd := aIdk + σXd , for some constants a and σ ≥ 0. If

1

2
<
σ

a
<

2√
k
,

then Yd is asymptotically positive semidefinite, PPT, and entangled.
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