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Free compression norms



Free Probability Theory

Invented by Voiculescu in the 80s to solve problems in operator algebras.

@ A non-commutative probability space (A, 7) is an algebra A with a
unital state 7 : A — C. Elements a € A are called random variables.
Examples:

o classical probability spaces (L*°(Q2, F,P),E);

e group algebras (CG,d.);

o matrices (M, n~! Tr);

o random matrices (M,(L>(Q,F,P)),Eon~!Tr).
@ Several notions of independence:

o classical independence, implies commutativity of the radom variables;
o free independence.

If a, b are freely independent random variables, the law of (a, b) can
be computed in terms of the laws of a and b. Freeness provides an
algorithm for computing joint moments in terms of marginals.

Example: if {a1,a,} and {by, by} are free, then

T(abiazbz) = 7(a122)7(b1)7(b2) + 7(a1)7(a2)7(b1b2)
— T(al)T(bl)T(az)T(bg).
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Asymptotic freeness of random matrices

Theorem (Voiculescu '98)

Let (A,) and (B,) be sequences of n x n matrices such that A, and B,
converge in distribution (with respect to n=! Tr) for n — oco.
Furthermore, let (U,) be a sequence of Haar unitary n X n random
matrices. Then, A, and U,B,U} are asymptotically free for n — oc.

If A,, B, are matrices of size n, whose spectra converge towards fia, fip,
the spectrum of A, + U,B,U; converges to u, B up; here, u,Hup is the
distribution of a + b, where a, b € (A, T) are free random variables
having distributions resp. ., ttp-

If A, B, are matrices of size n such that A, > 0, whose spectra converge
towards pi, itp, the spectrum of A},/2 U,,B,,U,’jA},/2 converges to iy X pp.
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Example: truncation of random matrices

Let P, € M, a projection of rank n/2; its eigenvalues are 0 and 1, with
multiplicity n/2. Hence, the distribution of P, converges, when n — o,
to the Bernoulli probability measure %50 + %51.

Let G, € M, » be the top n/2 x n/2 corner of U,P,U;;, with U, a Haar
random unitary matrix. What is the distribution of C, ?

Up to zero blocks, C, = Qn(U,P,U})Q,, where Q, is the diagonal
orthogonal projection on the first n/2 coordinates of C". The distribution
of @, converges to %50 + %61.

Free probability theory tells us that the distribution of C, will converge to
1 1 1 1 1
—0o+ =01) X (Zbg+ =61) = ————=1 x)dx,
(2 o+ 3 1) (2 ot 5 1) e fpl 0,1(x)

which is the arcsine distribution.
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Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of
relative rank 1/2 and size n = 4000; in red, the density of the arcsine
distribution.
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The t-norm

Definition

For a positive integer k, embed R¥ as a self-adjoint real subalgebra R of
a C*-ncps (A, 7), so that 7(x) = (x1 + - - - + xk)/k. Let p; be a
projection of rank t € (0,1] in A, free from R. On the real vector space
R* we introduce the following norm, called the (t)-norm:

IX[ley = [lpexpel oo,

where the vector x € R¥ is identified with its image in R.

@ One can show that || - || is indeed a norm, which is permutation
invariant.
@ Whent >1—1/k, || [l = || - lloc on R,

) |imtﬁo+ ||X||(t) = k_1| Zl-X,'|.
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Computing the t-norm

For a compactly supported probability measure p,

b by = Doy,

where by is the Bernoulli distribution by = (1 — t)d¢ + td1 and D; is the
dilation operator.

Let Gu(2) = [ dz“f(‘:) be the Cauchy-Stieltjes transform of the measure p
and by F, =1/G,.

Proposition

For any x € Rk,
”X”(t) = Wx — (1 - t)F X(WX)v

where wy is the largest in absolute value solution to the equation

Fu ) (£ - 1) 0.
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Corners of randomly rotated projections

Theorem (Collins '05)

In C", choose at random according to the Haar measure two independent
subspaces V), and V] of respective dimensions q, ~ sn and q/, ~ tn
where s, t € (0,1]. Let P, (resp. P!) be the orthogonal projection onto
V,, (resp. V!). Then, almost surely,

lim || P, P Pylloe = (s, t) = supsupp((1 — s)do + s61) X ((1 — £)do + td1),
with

S+t—2st+2+/st(l—5s)(1—t ifs+t<1;
w(s,t)_{ T—s)(T—1)

1 ifs+t>1.

Hence, we can compute

J
”]-a 1,0, 7O||(t):‘p(ﬁvt)'
—— ——

Jj times  k—j times
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The minimum output entropy of quantum channels



Quantum states and entropies

@ Quantum states (or density matrices)
MYT(C) ={pe My(C) : p>0and Trp=1}.

Extremal states (i.e. rank one projectors) are called pure states.
@ von Neumann and Rényi entropies
_ log TrpP

H(p) = H'(p) = = Tr(plogp)  H"(p) = —— .
@ Two quantum systems: tensor product of Hilbert spaces
p12 € [Mg,(C) & Mg, (C)]"F .
Entropies are additive
HP(p1 @ p2) = HP(p1) + HP(p2).

A bipartite quantum state pj» € M},;ZZ(C) is called separable if it
can be written as a convex combination of product states

p12 € SEP = p1a = Z tip1(i) @ pa(i),

p>0.

where t; >0, 3, t; =1, p1(i) € MY, pali) € MY"
Non-separable states are called entangled

(]
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Additivity for MOE of quantum channels

@ Quantum channels: CPTP maps ¢ : M;,(C) — Mu(C)
o CP - complete positivity: ¢ ® id, is a positive map, Vr > 1
o TP - trace preservation: Tro ® = Tr.
@ p-Minimal Output Entropy of a quantum channel
Ho(®) =  min  HP(0(p))
pEM; (O]
= min HP(®(Py)).
x€gCin

o Is the p-MOE additive ?

HP

min(q) ® \U) = Hrfun(q)) + Hrfun(“”) Vq), v.
o NO Il
e p > 1: Hayden + Winter '08;
o p =1: Hastings '08
@ Why care? Simple formula for the (classical) capacity of quantum
channels: if additivity holds, then there is no need to use inputs
entangled over multiple uses of ®.
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Random quantum channels

e Counterexamples to additivity conjectures are random.
@ Random quantum channels from random isometries

®(p) = [idout ® Tranc](Vp V™),
where V is a Haar random partial isometry
VvV (Cin N (Cout ® Qane,
Equivalently, via the Stinespring dilation theorem

®(p) = [idout @ Tranc](U(p & Py)U"),

out-anc

where y € C™n and U € Mout.anc(C) is a Haar random unitary
matrix.

@ Random quantum channels from i.i.d. random unitary matrices
k
d(p) = ZPiUiPU;*,
i=1
for (random) probabilities p; and i.i.d. Haar distributed unitary

operators U;.
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Model of interest

Here, we focus on random quantum channels coming from random
isometries, with the following parameters.

@ in = tnk,
e out = k,
@ anc = n,

where n,k € Nand t € (0,1). In general, we shall assume that

e n— oo
@ k is fixed
@ tis fixed.

In other words, we are interested in ® : M (C) — M (C),
(p) = [ide ® Trl(VpV*),
where V is a random isometry obtained by keeping the first tnk columns

of a nk x nk Haar random unitary.
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How to get counterexamples 7

@ Choose ® to be random and W = ®; this way, H”

min

(V) = Hiin(®).

@ Bound
HP

min

(¢ ® ) < By < 2By < 2HP. ().

o Use By := [® @ ®](Eumx), where Ey = Q49 is the projection on the
maximally entangled state

d
1
<cd®<cd9§2d=—§ e ® e
\/gifl

Theorem (Collins + N. '09)

For all k,t, almost surely as n — oo, the eigenvalues of
Z, = [® ® ®](Eink) converge to

1—t 11t 1t

2 K2 T2
—_— —

k2—1 times

t+

€ Apa.
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Computing H™"(d)



Strategy for B;

@ Remember: we want
HP. (® ® $)<B, < 2By < 2HP, ().

@ We shall do more: we compute the exact limit (as n — oo) of
Hrf\ln(q))

Theorem (Belinschi, Collins, N. '13)
For all p > 1,

lim HY"(®) = Hy(a, b, b, ..., b),
N———

n— 00
k—1

where a, b do not depend on p, b= (1—a)/(k — 1) and a = ¢(1/k, t)
with

s+t —2st+2¢/st(l —s)(1—t) ifs+t<1;
(s, t) = :
1 ifs+t>1.
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Entanglement of a vector

For a vector .
X = Z VAi(x)e @ fi,
i=1

define H(x) = H(A(x)) = — >_; Ai(x) log \i(x), the entropy of
entanglement of the bipartite pure state x.
Note that

@ The state x is separable, x = e ® f, iff H(x) = 0.

@ The state x is maximally entangled, x = k—1/2 Yo e @ f, iff

H(x) = log k.
Recall that we are interested in computing
H™r(®) = min  H(®(P,))= min  H([idx @ Tr,]P
(®) x€Cd, ||x||=1 (®(P) yelmV, [ly|=1 (lid 1Py)

= min H(y
y€ImV, ||y[|=1 ¥
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Entanglement of a subspace

For a subspace V C Ck @ C", define

HEn (V)= min  Hy(y),

yeV,lyll=1

the minimal entanglement of vectors in V.

Here, we abuse notation: recall that we are interested in random
isometries V : Ct"% — Ck ® C". Since the quantities HZ'™ only depend
on the range of V, also write V =ranV.

A subspace V is called entangled if H™"(V) > 0, i.e. if it does not
contain separable vectors x ® y.
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Singular values of vectors from a subspace

~ Entropy is just a statistic, look at the set of all singular values directly!

For a subspace V C Ck ® C" of dimension dim V = d, define the set
eigen- /singular values or Schmidt coefficients

[Kv={\(x) : x €V, ||x| =1}

~> Our goal is to understand Ky .

@ The set Ky is a compact subset of the ordered probability simplex
NG
k

o Local invariance: Ky,gu,)v = Kv, for unitary matrices U; € U(k)
and U, € U(n).

@ Monotonicity: if Vi C Vs, then Ky, C Ky,.

@ Recovering minimum entropies:

HE™(®) = HI"(V) = min Hy(\).
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The anti-symmetric subspace: non-random counter-example for
additivity, when p > 2 [Grudka, Horodecki, Pankowski '09].

o

Let k = n and put V = A?(C")

The subspace V is almost half of the total space:
dimV =n(n—1)/2.

Example of a vector in V:

1
Vox=—(e®f—-f®e).
5 )

Fact: singular values of vectors in V come in pairs.

Hence, the least entropy vector in V is as above, with e L f and
H(x) = log 2.

Thus, H™"(V/) = log 2 and one can show that

KV = {()\1,)\1,/\2,)\2,...) S A,, : )\,’ > 07 Z/\, = 1/2}
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Examples - Ky

V = span{ G, G,}, where Gy, are 3 x 3 independent Ginibre random
matrices.

(1,000

(0,0,1) (0,1,00
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Examples - Ky

V = span{ G, G,}, where Gy, are 3 x 3 independent Ginibre random
matrices.

(1,000

(0,0,1) (0,1,00
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Examples - Ky

V = span{l3, G}, where G is a 3 x 3 Ginibre random matrix.

(10,09

(0,0,1) (0,1,0)
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Examples - Ky

V = span{l3, G}, where G is a 3 x 3 Ginibre random matrix.

(10,09

(0,0,1) (0,1,0)
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An open problem

Find explicit (i.e. non-random) examples of subspaces V C Ck ® C" with
Q large dim V;
Q large H™"(V).

Give quantitative bounds on the trade-off between dim V and H™"(V)
for arbitrary subspaces V.
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Main result

Recall that we are interested in random isometries/subspaces in the
following asymptotic regime: k fixed, n — oo, and d ~ tkn, for a fixed
parameter t € (0,1).

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V,,, the set
Ky, of singular values of unit vectors from V,, converges (almost surely,
in the Hausdorff distance) to a deterministic, convex subset Kkt of the
probability simplex A

] Kit :={\ € Ag | Yx € Dy, (A, x) < ||xu(t)}.\
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Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed,
n — oo, d ~ tkn, we have the following a.s. convergence result for
random quantum channels ® (defined via random isometries

V:C¢— CkeCn):

lim H'M(®) = min H,(A).

n—00 Yo
It is not just a bound, the exact limit value is obtained.
Theorem (Belinschi, Collins, N. '16)
For all p > 1,

lim H"™(®) = min Hp(\) = Hy(a, b, b, ..., b),

n—o00 AEK,

where a, b do not depend on p, b= (1—a)/(k — 1) and a = ©(1/k,t)
with

s+t —2st+24/st(l —s)(1—t) ifs+t<l;
90(57 t) =

1 ifs+t>1.
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Ky, — Kk idea of the proof

A simpler question: what is the largest maximal singular value
Maxyev,|x||=1 A1(x) of vectors from the subspace V' ?

M(x) = A (lidi ® Tra] Py
e M= e Mllide® Tral P

idk @ Trp] Py
e e 0 TP

= _max  max  Tr[(fide @Tr,]Py)- P
x€V,|x||=1yeCk,||ly||=1 [([id ) Py) - Pyl

=  max max  Tr[Py- P, ®1,]
XEV:HXH:]' }’Eﬁckv”yuzl

= max Tr[P.-P, ®I
yeCh =1 xeViixl=1 [ y @ L

= 1Py - P, @1, Pyloo.

yem HyH 1
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The set K and t-norms

] Kk,t = {)\ ISPV | Vx € Ak, </\,X> < ||XH(t)}
@ Recall that

max  Ai(x) = max PyP, 01, P .
XEV,HXH:] 1( ) y€C",HyH:1” vily n V||OO

@ For fixed y, Py and P, ® I, are independent projectors of relative
ranks t and 1/k respectively.

@ Thus,

1Py - Py @1 Pylloc = || (1 = t)do + td1) X ((1 — 1/k)do +1/kb1) ||
= @(tv 1/k) = ”(1707 e 70)||(t)~

@ We can take the max over y at no cost, by considering a finite net
of y's, since k is fixed; remember that we are using almost sure
convergence.

@ To get the full result limsup,_, o Ky, C Ki,+, use (A, x) (for all
directions x) instead of A;.

@ The inclusion liminf,_, Ky, D Kk, is much easier, and follows
from the convergence in distribution.
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Recall

HP

min

(®®®) < By < 2B; < 2HP. ().

Theorem (Collins + N. '09)

For all k, t, almost surely as n — oo, if Z, = (¢ @ ®)(Ewnk)

1—t 1-—t 1—t

20 k2 g2
—_ —————

k2—1 times

spec(Z,) — € Ape.

Theorem (Belinschi, Collins, N. '16)
For all p > 1,

lim HJ"™(®) = Hy(a, b, b, ..., b),

n—oo

where b= (1 —a)/(k — 1) and a = o(1/k, t) with

1 ifs+t>1.

s+t—2st+2+/st(l—5s)(1—t ifs+t<1;
=] T
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Putting things together

Theorem (Belinschi, Collins, N. '16)

Using the limit for H™"(®) and the upper bound for H™"(®), the lowest
dimension for which a violation of the additivity can be observed is
k = 183. For large k, violations of size 1 — ¢ bits can be obtained.

How to improve this ?
© Other asymptotic regimes
Q Use V£0

© For ® ® ®, compute the actual limit of H™"(¢ ® ®), and not just
an upper bound.
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Random positive maps and free additive convolution
powers of probability measures



Separability criteria

o Recall: SEP = {>"; tip1(i) ® pa(i) = p1,2(i) > 0}.
o Let A bea C* algebra. Amap f: My — Ais called
e positive if A>0 = f(A) > 0;
o completely positive (CP) if id, ® f is positive for all r > 1 (r=d is
enough).
o Let f: My — A be a completely positive map. Then, for every
state p1p € ./\/l(lj;f, one has [f ® idk](p12) > 0.
o Let f: My — A be a positive map. Then, for every separable state
P12 € M:,;f, one has [f ® idx ® f](p12) > 0.
o p12 separable = p1 =), tip1(i) ® p2(i).
o [f @ idnl(pr2) = 3, tF(pr(1)) @ pa().
e Forall i, f(p1(i)) > 0, so [f ® idk](p12) > 0.

@ Hence, positive, but not CP maps f provide sufficient entanglement
criteria: if [f ® idm](p12) Z 0, then py is entangled.

@ The transposition map t : A — A? is positive, but not CP. Define the
convex set

PPT = {p12 € M5 |[td @ idi](p12) > 0} D SEP.

e For (m,n) € {(2,2),(2,3)} we have SEP = PPT. In other
dimensions, the inclusion SEP C PPT is strict.
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The Choi matrix of a map

e For any d, recall that the maximally entangled state is the
orthogonal projection onto

d
C'eC!I>0,= \}diz;e;@)e;.
e To any map f : My — A, associate its Choi matrix
Cr = [idg @ f](Pgen) € Mg ® A.
@ Equivalently, if Ej; are the matrix units in Mgy, then

d
Cr= > Ejof(E).

ij=1

Theorem (Choi '72)

Amap f: My — A is CP iff its Choi matrix Cs is positive.
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The Choi-Jamiotkowski isomorphism

e Recall (from now on A = Mj)

Cr = [idg @ f](Eq) = ZE,,@f Ej) € My © M.

ij=1

@ The map f +— (s is called the Choi-Jamiotkowski isomorphism.
@ It sends:

@ All linear maps to all operators;

@ Hermicity preserving maps to hermitian operators;

© Entanglement breaking maps to separable quantum states;

© Unital maps to operators with unit left partial trace
([Tr ® id] Cr = 1k);

© Trace preserving maps to operators with unit left partial trace
([id [ TI‘]Cf = Id).
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Random Choi matrices

@ Let p be a compactly supported probability measure on R. For each
d we introduce a real valued diagonal matrix Xy of My ® M, whose
eigenvalue counting distribution converges to © and whose extremal
eigenvalues converge to the respective extrema of the support of .

@ Let Uy be a random Haar unitary matrix in the unitary group Uy,
and ﬂfd) : My — My be the map whose Choi matrix is Uy X4U}.

Under the above assumptions, if supp(™%) C (0,00) then, almost surely
as d — oo, the map f,Ed) is positive. On the other hand, if

supp(1) N (—o0,0) # () then, almost surely as d — oo, f,gd) is not
positive.
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Proof ingredients

Let £% : My — My be the map whose Choi matrix is Uy Xy U3

Theorem

If supp(u®¥) C (0, 00) then, almost surely as d — oo, the map f,fd) is
positive. If supp(u®¥) N (—00,0) # () then, almost surely as d — oo,

flﬁd) is not positive.

Proposition

A map f is positive iff for any self-adjoint projection P € My of rank 1,
the operator (lg ® P)C¢(lg @ P) is positive semidefinite.

Proposition (Nica and Speicher)

Let x, p be free elements in a ncps (M, 1) and assume that p is a
selfadjoint projection such that 7(p) =t (t € (0,1)) and that x has
distribution . Then, the distribution of tpxp inside the contracted ncps

(pMp,(p- p)) is =1/t
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Example: semicircular measures

@ Let s, , be the semi-circle distribution of mean a and variance o2,

having support [a — 20, a + 20].

@ In free probability theory, sp1 plays the role of the standard Gaussian
in classical probability, cf Free Central Limit Theorem.

o We have supp(si’;) = supp(s,, ,vz) = [ak — 20k, ak + 20\/k].

Lemma

Let k be an integer and a, o positive parameters. The map
fa(f(j,) : Mg — M associated to a semi-circular distribution s, , is
asymptotically positive as soon as a*> < 4ka?.

Theorem

Let Xq4 € M3 (C) a sequence of (normalized) GUE matrices, and set
Yy := aly + 0 Xy, for some constants a and o > 0. If

1.9 .2
a  k’

2
then Yy is asymptotically positive semidefinite, PPT, and entangled.
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The End
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