# Free compression norms <br> and applications to QIT 

Ion Nechita

TU Munich and CNRS, LPT Toulouse

Bristol, March 17th 2017

## Outline of the talk

(1) Free compression norms
(2) The minimum output entropy of quantum channels
(3) Random positive maps and free additive convolution powers of probability measures

Free compression norms

Invented by Voiculescu in the 80 s to solve problems in operator algebras.

- A non-commutative probability space $(\mathcal{A}, \tau)$ is an algebra $\mathcal{A}$ with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples:
- classical probability spaces $\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right)$;
- group algebras ( $\mathbb{C} G, \delta_{e}$ );
- matrices ( $\left.\mathcal{M}_{n}, n^{-1} \mathrm{Tr}\right)$;
- random matrices $\left(\mathcal{M}_{n}\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})\right), \mathbb{E} \circ n^{-1} \operatorname{Tr}\right)$.
- Several notions of independence:
- classical independence, implies commutativity of the radom variables;
- free independence.
- If $a, b$ are freely independent random variables, the law of $(a, b)$ can be computed in terms of the laws of $a$ and $b$. Freeness provides an algorithm for computing joint moments in terms of marginals.
- Example: if $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$ are free, then

$$
\begin{aligned}
\tau\left(a_{1} b_{1} a_{2} b_{2}\right)= & \tau\left(a_{1} a_{2}\right) \tau\left(b_{1}\right) \tau\left(b_{2}\right)+\tau\left(a_{1}\right) \tau\left(a_{2}\right) \tau\left(b_{1} b_{2}\right) \\
& -\tau\left(a_{1}\right) \tau\left(b_{1}\right) \tau\left(a_{2}\right) \tau\left(b_{2}\right) .
\end{aligned}
$$

## Asymptotic freeness of random matrices

## Theorem (Voiculescu '98)

Let $\left(A_{n}\right)$ and $\left(B_{n}\right)$ be sequences of $n \times n$ matrices such that $A_{n}$ and $B_{n}$ converge in distribution (with respect to $n^{-1} \mathrm{Tr}$ ) for $n \rightarrow \infty$.
Furthermore, let $\left(U_{n}\right)$ be a sequence of Haar unitary $n \times n$ random matrices. Then, $A_{n}$ and $U_{n} B_{n} U_{n}^{*}$ are asymptotically free for $n \rightarrow \infty$.

If $A_{n}, B_{n}$ are matrices of size $n$, whose spectra converge towards $\mu_{a}, \mu_{b}$, the spectrum of $A_{n}+U_{n} B_{n} U_{n}^{*}$ converges to $\mu_{a} \boxplus \mu_{b}$; here, $\mu_{a} \boxplus \mu_{b}$ is the distribution of $a+b$, where $a, b \in(\mathcal{A}, \tau)$ are free random variables having distributions resp. $\mu_{a}, \mu_{b}$.

If $A_{n}, B_{n}$ are matrices of size $n$ such that $A_{n} \geq 0$, whose spectra converge towards $\mu_{a}, \mu_{b}$, the spectrum of $A_{n}^{1 / 2} U_{n} B_{n} U_{n}^{*} A_{n}^{1 / 2}$ converges to $\mu_{\mathrm{a}} \boxtimes \mu_{b}$.

## Example: truncation of random matrices

Let $P_{n} \in \mathcal{M}_{n}$ a projection of rank $n / 2$; its eigenvalues are 0 and 1 , with multiplicity $n / 2$. Hence, the distribution of $P_{n}$ converges, when $n \rightarrow \infty$, to the Bernoulli probability measure $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.
Let $C_{n} \in \mathcal{M}_{n / 2}$ be the top $n / 2 \times n / 2$ corner of $U_{n} P_{n} U_{n}^{*}$, with $U_{n}$ a Haar random unitary matrix. What is the distribution of $C_{n}$ ?

Up to zero blocks, $C_{n}=Q_{n}\left(U_{n} P_{n} U_{n}^{*}\right) Q_{n}$, where $Q_{n}$ is the diagonal orthogonal projection on the first $n / 2$ coordinates of $\mathbb{C}^{n}$. The distribution of $Q_{n}$ converges to $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.
Free probability theory tells us that the distribution of $C_{n}$ will converge to

$$
\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right) \boxtimes\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right)=\frac{1}{\pi \sqrt{x(1-x)}} \mathbf{1}_{[0,1]}(x) d x,
$$

which is the arcsine distribution.

## Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of relative rank $1 / 2$ and size $n=4000$; in red, the density of the arcsine distribution.


## Definition

For a positive integer $k$, embed $\mathbb{R}^{k}$ as a self-adjoint real subalgebra $\mathcal{R}$ of a $C^{*}$-ncps $(\mathcal{A}, \tau)$, so that $\tau(x)=\left(x_{1}+\cdots+x_{k}\right) / k$. Let $p_{t}$ be a projection of rank $t \in(0,1]$ in $\mathcal{A}$, free from $\mathcal{R}$. On the real vector space $\mathbb{R}^{k}$, we introduce the following norm, called the $(t)$-norm:

$$
\|x\|_{(t)}:=\left\|p_{t} x p_{t}\right\|_{\infty},
$$

where the vector $x \in \mathbb{R}^{k}$ is identified with its image in $\mathcal{R}$.

- One can show that $\|\cdot\|_{(t)}$ is indeed a norm, which is permutation invariant.
- When $t>1-1 / k,\|\cdot\|_{(t)}=\|\cdot\|_{\infty}$ on $\mathbb{R}^{k}$.
- $\lim _{t \rightarrow 0^{+}}\|x\|_{(t)}=k^{-1}\left|\sum_{i} x_{i}\right|$.


## Computing the $t$-norm

## Proposition

For a compactly supported probability measure $\mu$,

$$
\mu \boxtimes b_{t}=D_{t} \mu^{\boxplus 1 / t},
$$

where $b_{t}$ is the Bernoulli distribution $b_{t}=(1-t) \delta_{0}+t \delta_{1}$ and $D_{t}$ is the dilation operator.

Let $G_{\mu}(z)=\int \frac{d \mu(a)}{z-a}$ be the Cauchy-Stieltjes transform of the measure $\mu$ and by $F_{\mu}=1 / G_{\mu}$.

## Proposition

For any $x \in \mathbb{R}^{k}$,

$$
\|x\|_{(t)}=w_{x}-(1-t) F_{\mu_{x}}\left(w_{x}\right),
$$

where $w_{x}$ is the largest in absolute value solution to the equation

$$
F_{\mu_{x}}(w)\left(F_{\mu_{x}}^{\prime}(w)-\frac{1}{1-t}\right)=0
$$

## Corners of randomly rotated projections

## Theorem (Collins '05)

In $\mathbb{C}^{n}$, choose at random according to the Haar measure two independent subspaces $V_{n}$ and $V_{n}^{\prime}$ of respective dimensions $q_{n} \sim$ sn and $q_{n}^{\prime} \sim t n$ where $s, t \in(0,1]$. Let $P_{n}$ (resp. $\left.P_{n}^{\prime}\right)$ be the orthogonal projection onto $V_{n}\left(\right.$ resp. $\left.V_{n}^{\prime}\right)$. Then, almost surely,
$\lim _{n}\left\|P_{n} P_{n}^{\prime} P_{n}\right\|_{\infty}=\varphi(s, t)=\sup \operatorname{supp}\left((1-s) \delta_{0}+s \delta_{1}\right) \boxtimes\left((1-t) \delta_{0}+t \delta_{1}\right)$,
with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

Hence, we can compute

$$
\|\underbrace{1, \cdots, 1}_{j \text { times }} \underbrace{0, \cdots, 0}_{k-j \text { times }}\|_{(t)}=\varphi\left(\frac{j}{k}, t\right) .
$$

The minimum output entropy of quantum channels

## Quantum states and entropies

- Quantum states (or density matrices)

$$
\mathcal{M}_{d}^{1,+}(\mathbb{C})=\left\{\rho \in \mathcal{M}_{d}(\mathbb{C}): \rho \geq 0 \text { and } \operatorname{Tr} \rho=1\right\}
$$

- Extremal states (i.e. rank one projectors) are called pure states.
- von Neumann and Rényi entropies

$$
H(\rho)=H^{1}(\rho)=-\operatorname{Tr}(\rho \log \rho) \quad H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad p>0 .
$$

- Two quantum systems: tensor product of Hilbert spaces

$$
\rho_{12} \in\left[\mathcal{M}_{d_{1}}(\mathbb{C}) \otimes \mathcal{M}_{d_{2}}(\mathbb{C})\right]^{1,+}
$$

- Entropies are additive

$$
H^{p}\left(\rho_{1} \otimes \rho_{2}\right)=H^{p}\left(\rho_{1}\right)+H^{p}\left(\rho_{2}\right)
$$

- A bipartite quantum state $\rho_{12} \in \mathcal{M}_{d_{1} d_{2}}^{1,+}(\mathbb{C})$ is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)
$$

where $t_{i} \geq 0, \sum_{i} t_{i}=1, \rho_{1}(i) \in \mathcal{M}_{d_{1}}^{1,+}, \rho_{2}(i) \in \mathcal{M}_{d_{2}}^{1,+}$

- Non-separable states are called entangled


## Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$
- CP - complete positivity: $\Phi \otimes \mathrm{id}_{r}$ is a positive map, $\forall r \geq 1$
- TP - trace preservation: $\operatorname{Tr} \circ \Phi=\operatorname{Tr}$.
- p-Minimal Output Entropy of a quantum channel

$$
\begin{aligned}
H_{\min }^{p}(\Phi) & =\min _{\rho \in \mathcal{M}_{\mathrm{in}}^{1,+}(\mathbb{C})} H^{p}(\Phi(\rho)) \\
& =\min _{x \in \mathbb{C}_{\text {in }}} H^{p}\left(\Phi\left(P_{x}\right)\right)
\end{aligned}
$$

- Is the p-MOE additive ?

$$
H_{\min }^{p}(\Phi \otimes \Psi)=H_{\min }^{p}(\Phi)+H_{\min }^{p}(\Psi) \quad \forall \Phi, \Psi
$$

- NO !!!
- $p>1$ : Hayden + Winter '08;
- $p=1$ : Hastings '08
- Why care? Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of $\Phi$.


## Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random isometries

$$
\Phi(\rho)=\left[\mathrm{id}_{\mathrm{out}} \otimes \operatorname{Tr}_{\mathrm{anc}}\right]\left(V \rho V^{*}\right),
$$

where $V$ is a Haar random partial isometry

$$
V: \mathbb{C}^{\text {in }} \rightarrow \mathbb{C}^{\text {out }} \otimes \mathbb{C}^{\text {anc }}
$$

Equivalently, via the Stinespring dilation theorem

$$
\Phi(\rho)=\left[\mathrm{id}_{\mathrm{out}} \otimes \operatorname{Tr}_{\mathrm{anc}}\right]\left(U\left(\rho \otimes P_{y}\right) U^{*}\right),
$$

where $y \in \mathbb{C} \frac{\text { out anc }}{\text { in }}$ and $U \in \mathcal{M}_{\text {out }}$ anc $(\mathbb{C})$ is a Haar random unitary matrix.

- Random quantum channels from i.i.d. random unitary matrices

$$
\Phi(\rho)=\sum_{i=1}^{k} p_{i} U_{i} \rho U_{i}^{*}
$$

for (random) probabilities $p_{i}$ and i.i.d. Haar distributed unitary operators $U_{i}$.

## Model of interest

Here, we focus on random quantum channels coming from random isometries, with the following parameters.

- in = tnk,
- out $=k$,
- anc $=n$,
where $n, k \in \mathbb{N}$ and $t \in(0,1)$. In general, we shall assume that
- $n \rightarrow \infty$
- $k$ is fixed
- $t$ is fixed.

In other words, we are interested in $\Phi: \mathcal{M}_{t n k}(\mathbb{C}) \rightarrow \mathcal{M}_{k}(\mathbb{C})$,

$$
\Phi(\rho)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right]\left(V \rho V^{*}\right),
$$

where $V$ is a random isometry obtained by keeping the first tnk columns of a $n k \times n k$ Haar random unitary.

## How to get counterexamples ?

- Choose $\Phi$ to be random and $\Psi=\bar{\Phi}$; this way, $H_{\text {min }}^{p}(\Psi)=H_{\text {min }}^{p}(\Phi)$.
- Bound

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\min }^{p}(\Phi) .
$$

- Use $B_{2}:=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$, where $E_{d}=\Omega_{d} \Omega_{d}^{*}$ is the projection on the maximally entangled state

$$
\mathbb{C}^{d} \otimes \mathbb{C}^{d} \ni \Omega_{d}=\frac{1}{\sqrt{d}} \sum_{i=1}^{d} e_{i} \otimes e_{i}
$$

## Theorem (Collins + N. '09)

For all $k, t$, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z_{n}=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) \in \Delta_{k^{2}} .
$$

Computing $H^{\min }(\Phi)$

## Strategy for $B_{1}$

- Remember: we want

$$
H_{\text {min }}^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\text {min }}^{p}(\Phi) .
$$

- We shall do more: we compute the exact limit (as $n \rightarrow \infty$ ) of $H_{\text {min }}^{p}(\Phi)$.


## Theorem (Belinschi, Collins, N. '13)

For all $p \geq 1$,

$$
\lim _{n \rightarrow \infty} H_{p}^{m i n}(\Phi)=H_{p}(a, \underbrace{b, b, \ldots, b}_{k-1})
$$

where $a, b$ do not depend on $p, b=(1-a) /(k-1)$ and $a=\varphi(1 / k, t)$ with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

## Entanglement of a vector

For a vector

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

define $H(x)=H(\lambda(x))=-\sum_{i} \lambda_{i}(x) \log \lambda_{i}(x)$, the entropy of entanglement of the bipartite pure state $x$.

Note that
(1) The state $x$ is separable, $x=e \otimes f$, iff $H(x)=0$.
(2) The state $x$ is maximally entangled, $x=k^{-1 / 2} \sum_{i} e_{i} \otimes f_{i}$, iff $H(x)=\log k$.

Recall that we are interested in computing

$$
\begin{aligned}
H^{\min }(\Phi) & =\min _{x \in \mathbb{C}^{d},\|x\|=1} H\left(\Phi\left(P_{x}\right)\right)=\min _{y \in \operatorname{Im} V,\|y\|=1} H\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{y}\right) \\
& =\min _{y \in \operatorname{Im} V,\|y\|=1} H(y) .
\end{aligned}
$$

## Entanglement of a subspace

For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$, define

$$
H_{p}^{\min }(V)=\min _{y \in V,\|y\|=1} H_{p}(y),
$$

the minimal entanglement of vectors in $V$.
Here, we abuse notation: recall that we are interested in random isometries $V: \mathbb{C}^{\text {tnk }} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$. Since the quantities $H_{p}^{\text {min }}$ only depend on the range of $V$, also write $V=\operatorname{ran} V$.

A subspace $V$ is called entangled if $H^{\min }(V)>0$, i.e. if it does not contain separable vectors $x \otimes y$.

## Singular values of vectors from a subspace

$\rightsquigarrow$ Entropy is just a statistic, look at the set of all singular values directly! For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension $\operatorname{dim} V=d$, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}=\{\lambda(x): x \in V,\|x\|=1\} .
$$

$\rightsquigarrow$ Our goal is to understand $K_{V}$.

- The set $K_{V}$ is a compact subset of the ordered probability simplex $\Delta_{k}^{\downarrow}$.
- Local invariance: $K_{\left(U_{1} \otimes U_{2}\right) V}=K_{V}$, for unitary matrices $U_{1} \in \mathcal{U}(k)$ and $U_{2} \in \mathcal{U}(n)$.
- Monotonicity: if $V_{1} \subset V_{2}$, then $K_{V_{1}} \subset K_{V_{2}}$.
- Recovering minimum entropies:

$$
H_{p}^{\min }(\Phi)=H_{p}^{\min }(V)=\min _{\lambda \in K_{V}} H_{p}(\lambda) .
$$

## Examples

The anti-symmetric subspace: non-random counter-example for additivity, when $p>2$ [Grudka, Horodecki, Pankowski '09].

- Let $k=n$ and put $V=\Lambda^{2}\left(\mathbb{C}^{n}\right)$
- The subspace $V$ is almost half of the total space: $\operatorname{dim} V=n(n-1) / 2$.
- Example of a vector in $V$ :

$$
V \ni x=\frac{1}{\sqrt{2}}(e \otimes f-f \otimes e) .
$$

- Fact: singular values of vectors in $V$ come in pairs.
- Hence, the least entropy vector in $V$ is as above, with $e \perp f$ and $H(x)=\log 2$.
- Thus, $H^{\text {min }}(V)=\log 2$ and one can show that

$$
K_{V}=\left\{\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots\right) \in \Delta_{n}: \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1 / 2\right\} .
$$

## Examples - $K_{V}$

$V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are $3 \times 3$ independent Ginibre random matrices.


## Examples - $K_{V}$

$V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are $3 \times 3$ independent Ginibre random matrices.


## Examples - $K_{V}$

$V=\operatorname{span}\left\{I_{3}, G\right\}$, where $G$ is a $3 \times 3$ Ginibre random matrix.


## Examples - $K_{V}$

$V=\operatorname{span}\left\{I_{3}, G\right\}$, where $G$ is a $3 \times 3$ Ginibre random matrix.


## An open problem

Find explicit (i.e. non-random) examples of subspaces $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ with
(1) large $\operatorname{dim} V$;
(2) large $H^{\text {min }}(V)$.

Give quantitative bounds on the trade-off between $\operatorname{dim} V$ and $H^{\text {min }}(V)$ for arbitrary subspaces $V$.

## Main result

Recall that we are interested in random isometries/subspaces in the following asymptotic regime: $k$ fixed, $n \rightarrow \infty$, and $d \sim t k n$, for a fixed parameter $t \in(0,1)$.

## Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces $V_{n}$, the set $K_{V_{n}}$ of singular values of unit vectors from $V_{n}$ converges (almost surely, in the Hausdorff distance) to a deterministic, convex subset $K_{k, t}$ of the probability simplex $\Delta_{k}$

$$
K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\} .
$$

## Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime $t, k$ fixed, $n \rightarrow \infty, d \sim t k n$, we have the following a.s. convergence result for random quantum channels $\Phi$ (defined via random isometries $\left.V: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}\right)$ :

$$
\lim _{n \rightarrow \infty} H_{p}^{\min }(\Phi)=\min _{\lambda \in K_{k, t}} H_{p}(\lambda)
$$

It is not just a bound, the exact limit value is obtained.

## Theorem (Belinschi, Collins, N. '16)

For all $p \geq 1$,

$$
\lim _{n \rightarrow \infty} H_{p}^{\min }(\Phi)=\min _{\lambda \in K_{k, t}} H_{p}(\lambda)=H_{p}(a, b, b, \ldots, b)
$$

where $a, b$ do not depend on $p, b=(1-a) /(k-1)$ and $a=\varphi(1 / k, t)$ with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

## $K_{V_{n}} \rightarrow K_{k, t}$ : idea of the proof

A simpler question: what is the largest maximal singular value $\max _{x \in V,\|x\|=1} \lambda_{1}(x)$ of vectors from the subspace $V$ ?

$$
\begin{aligned}
\max _{x \in V,\|x\|=1} \lambda_{1}(x) & =\max _{x \in V,\|x\|=1} \lambda_{1}\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \\
& =\max _{x \in V,\|x\|=1}\left\|\left[\operatorname{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right\| \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \cdot P_{y}\right] \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1} \max _{x \in V,\|x\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n} \cdot P_{V}\right\|_{\infty}
\end{aligned}
$$

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.
- Recall that

$$
\max _{x \in V,\|x\|=1} \lambda_{1}(x)=\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} P_{y} \otimes \mathrm{I}_{n} P_{V}\right\|_{\infty} .
$$

- For fixed $y, P_{V}$ and $P_{y} \otimes \mathrm{I}_{n}$ are independent projectors of relative ranks $t$ and $1 / k$ respectively.
- Thus,

$$
\begin{aligned}
\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n} \cdot P_{V}\right\|_{\infty} & \rightarrow\left\|\left((1-t) \delta_{0}+t \delta_{1}\right) \boxtimes\left((1-1 / k) \delta_{0}+1 / k \delta_{1}\right)\right\| \\
& =\varphi(t, 1 / k)=\|(1,0, \ldots, 0)\|_{(t)} .
\end{aligned}
$$

- We can take the max over $y$ at no cost, by considering a finite net of $y$ 's, since $k$ is fixed; remember that we are using almost sure convergence.
- To get the full result $\lim \sup _{n \rightarrow \infty} K_{V_{n}} \subset K_{k, t}$, use $\langle\lambda, x\rangle$ (for all directions $x$ ) instead of $\lambda_{1}$.
- The inclusion $\lim \inf _{n \rightarrow \infty} K_{V_{n}} \supset K_{k, t}$, is much easier, and follows from the convergence in distribution.


## Recall

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leq B_{2}<2 B_{1} \leq 2 H_{\min }^{p}(\Phi)
$$

## Theorem (Collins + N. '09)

For all $k, t$, almost surely as $n \rightarrow \infty$, if $Z_{n}=(\Phi \otimes \bar{\Phi})\left(E_{t n k}\right)$

$$
\operatorname{spec}\left(Z_{n}\right) \rightarrow(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) \in \Delta_{k^{2}}
$$

## Theorem (Belinschi, Collins, N. '16)

For all $p \geq 1$,

$$
\lim _{n \rightarrow \infty} H_{p}^{\min }(\Phi)=H_{p}(a, b, b, \ldots, b)
$$

where $b=(1-a) /(k-1)$ and $a=\varphi(1 / k, t)$ with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

## Putting things together

## Theorem (Belinschi, Collins, N. '16)

Using the limit for $H^{\text {min }}(\Phi)$ and the upper bound for $H^{\text {min }}(\Phi)$, the lowest dimension for which a violation of the additivity can be observed is $k=183$. For large $k$, violations of size $1-\varepsilon$ bits can be obtained.

How to improve this?
(1) Other asymptotic regimes
(2) Use $\psi \neq \bar{\Phi}$
(3) For $\Phi \otimes \bar{\Phi}$, compute the actual limit of $H^{\text {min }}(\Phi \otimes \bar{\Phi})$, and not just an upper bound.

Random positive maps and free additive convolution powers of probability measures

## Separability criteria

- Recall: $\mathcal{S E P}=\left\{\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i): \rho_{1,2}(i) \geq 0\right\}$.
- Let $\mathcal{A}$ be a $C^{*}$ algebra. A map $f: \mathcal{M}_{d} \rightarrow \mathcal{A}$ is called
- positive if $A \geq 0 \Longrightarrow f(A) \geq 0$;
- completely positive (CP) if $\operatorname{id}_{r} \otimes f$ is positive for all $r \geq 1(r=d$ is enough).
- Let $f: \mathcal{M}_{d} \rightarrow \mathcal{A}$ be a completely positive map. Then, for every state $\rho_{12} \in \mathcal{M}_{d k}^{1,+}$, one has $\left[f \otimes \operatorname{id}_{k}\right]\left(\rho_{12}\right) \geq 0$.
- Let $f: \mathcal{M}_{d} \rightarrow \mathcal{A}$ be a positive map. Then, for every separable state $\rho_{12} \in \mathcal{M}_{d k}^{1,+}$, one has $\left[f \otimes \mathrm{id}_{k} \otimes f\right]\left(\rho_{12}\right) \geq 0$.
- $\rho_{12}$ separable $\Longrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)$.
- $\left[f \otimes \mathrm{id}_{m}\right]\left(\rho_{12}\right)=\sum_{i} t_{i} f\left(\rho_{1}(i)\right) \otimes \rho_{2}(i)$.
- For all $i, f\left(\rho_{1}(i)\right) \geq 0$, so $\left[f \otimes \operatorname{id}_{k}\right]\left(\rho_{12}\right) \geq 0$.
- Hence, positive, but not CP maps $f$ provide sufficient entanglement criteria: if $\left[f \otimes \operatorname{id}_{m}\right]\left(\rho_{12}\right) \nsupseteq 0$, then $\rho_{12}$ is entangled.
- The transposition map t: $A \mapsto A^{t}$ is positive, but not CP. Define the convex set

$$
\mathcal{P P} \mathcal{T}=\left\{\rho_{12} \in \mathcal{M}_{d k}^{1,+} \mid\left[\mathrm{t}_{d} \otimes \mathrm{id}_{k}\right]\left(\rho_{12}\right) \geq 0\right\} \supseteq \mathcal{S E P} .
$$

- For $(m, n) \in\{(2,2),(2,3)\}$ we have $\mathcal{S E P}=\mathcal{P} \mathcal{P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P P \mathcal { T }}$ is strict.


## The Choi matrix of a map

- For any $d$, recall that the maximally entangled state is the orthogonal projection onto

$$
\mathbb{C}^{d} \otimes \mathbb{C}^{d} \ni \Omega_{d}=\frac{1}{\sqrt{d}} \sum_{i=1}^{d} e_{i} \otimes e_{i}
$$

- To any map $f: \mathcal{M}_{d} \rightarrow \mathcal{A}$, associate its Choi matrix

$$
C_{f}=\left[\mathrm{id}_{d} \otimes f\right]\left(P_{\mathrm{Bell}}\right) \in \mathcal{M}_{d} \otimes \mathcal{A} .
$$

- Equivalently, if $E_{i j}$ are the matrix units in $\mathcal{M}_{d}$, then

$$
C_{f}=\sum_{i, j=1}^{d} E_{i j} \otimes f\left(E_{i j}\right)
$$

## Theorem (Choi '72)

A map $f: \mathcal{M}_{d} \rightarrow \mathcal{A}$ is $C P$ iff its Choi matrix $C_{f}$ is positive.

- Recall (from now on $\mathcal{A}=\mathcal{M}_{k}$ )

$$
C_{f}=\left[\mathrm{id}_{d} \otimes f\right]\left(E_{d}\right)=\sum_{i, j=1}^{d} E_{i j} \otimes f\left(E_{i j}\right) \in \mathcal{M}_{d} \otimes \mathcal{M}_{k}
$$

- The map $f \mapsto C_{f}$ is called the Choi-Jamiołkowski isomorphism.
- It sends:
(1) All linear maps to all operators;
(2) Hermicity preserving maps to hermitian operators;
(3) Entanglement breaking maps to separable quantum states;
(3) Unital maps to operators with unit left partial trace $\left([\operatorname{Tr} \otimes \mathrm{id}] C_{f}=\mathrm{I}_{k}\right)$;
(5) Trace preserving maps to operators with unit left partial trace $\left([\mathrm{id} \otimes \operatorname{Tr}] C_{f}=\mathrm{I}_{d}\right)$.


## Random Choi matrices

- Let $\mu$ be a compactly supported probability measure on $\mathbb{R}$. For each $d$ we introduce a real valued diagonal matrix $X_{d}$ of $\mathbb{M}_{d} \otimes \mathbb{M}_{k}$ whose eigenvalue counting distribution converges to $\mu$ and whose extremal eigenvalues converge to the respective extrema of the support of $\mu$.
- Let $U_{d}$ be a random Haar unitary matrix in the unitary group $\mathcal{U}_{d k}$, and $f_{\mu}^{(d)}: \mathbb{M}_{d} \rightarrow \mathbb{M}_{k}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.


## Theorem

Under the above assumptions, if $\operatorname{supp}\left(\mu^{\boxplus k}\right) \subset(0, \infty)$ then, almost surely as $d \rightarrow \infty$, the map $f_{\mu}^{(d)}$ is positive. On the other hand, if
$\operatorname{supp}\left(\mu^{\boxplus k}\right) \cap(-\infty, 0) \neq \emptyset$ then, almost surely as $d \rightarrow \infty, f_{\mu}^{(d)}$ is not positive.

## Proof ingredients

Let $f_{\mu}^{(d)}: \mathbb{M}_{d} \rightarrow \mathbb{M}_{k}$ be the map whose Choi matrix is $U_{d} X_{d} U_{d}^{*}$.

## Theorem

If $\operatorname{supp}\left(\mu^{\boxplus k}\right) \subset(0, \infty)$ then, almost surely as $d \rightarrow \infty$, the map $f_{\mu}^{(d)}$ is positive. If $\operatorname{supp}\left(\mu^{\boxplus k}\right) \cap(-\infty, 0) \neq \emptyset$ then, almost surely as $d \rightarrow \infty$, $f_{\mu}^{(d)}$ is not positive.

## Proposition

A map $f$ is positive iff for any self-adjoint projection $P \in \mathcal{M}_{k}$ of rank 1 , the operator $\left(I_{d} \otimes P\right) C_{f}\left(I_{d} \otimes P\right)$ is positive semidefinite.

## Proposition (Nica and Speicher)

Let $x, p$ be free elements in a ncps $(\mathcal{M}, \tau)$ and assume that $p$ is a selfadjoint projection such that $\tau(p)=t(t \in(0,1))$ and that $x$ has distribution $\mu$. Then, the distribution of tpxp inside the contracted ncps ( $p \mathcal{M} p, \tau(p \cdot p)$ ) is $\mu^{\boxplus 1 / t}$

## Example: semicircular measures

- Let $s_{a, \sigma}$ be the semi-circle distribution of mean $a$ and variance $\sigma^{2}$, having support [ $a-2 \sigma, a+2 \sigma$ ].
- In free probability theory, $s_{0,1}$ plays the role of the standard Gaussian in classical probability, cf Free Central Limit Theorem.
- We have $\operatorname{supp}\left(s_{a, \sigma}^{\boxplus k}\right)=\operatorname{supp}\left(s_{a k, \sigma \sqrt{k}}\right)=[a k-2 \sigma \sqrt{k}, a k+2 \sigma \sqrt{k}]$.


## Lemma

Let $k$ be an integer and a, $\sigma$ positive parameters. The map $f_{a, \sigma}^{(d)}: \mathbb{M}_{d} \rightarrow \mathcal{M}_{k}$ associated to a semi-circular distribution $s_{a, \sigma}$ is asymptotically positive as soon as $a^{2}<4 k \sigma^{2}$.

## Theorem

Let $X_{d} \in \mathcal{M}_{d k}^{s a}(\mathbb{C})$ a sequence of (normalized) GUE matrices, and set $Y_{d}:=a l_{d k}+\sigma X_{d}$, for some constants a and $\sigma \geq 0$. If

$$
\frac{1}{2}<\frac{\sigma}{a}<\frac{2}{\sqrt{k}}
$$

then $Y_{d}$ is asymptotically positive semidefinite, PPT, and entangled.

# Semester "Analysis in Quantum Information Theory" Institut Henri Poincaré, Paris, September - December 2017 

- Summer school: Sep 4-8, Cargèse (Corsica)
- Workshop 1: Sep 11-15
"Operator Algebras and QIT"
- Workshop 2: Oct 23-25
"Probabilistic techniques and QIT"
- Workshop 3: Dec 11-15
"Quantum Information Theory"
- Doctoral courses
- Weekly seminars
- Etc...

Financial support available for attending the summer school and the workshops. Deadline: 15/03/2017

More information at
https://sites.google.com/site/analysisqit2017/

## Please register at

http://www.ihp.fr/en/CEB/T3-2017


## The End

thank you for your attention

- S. Belinschi, B. Collins, I.N. - Eigenvectors and eigenvalues in a random subspace of a tensor product - Inv. Math. 2012, arXiv:1008. 3099
- S. Belinschi, B. Collins, I.N. - Almost one bit violation for the additivity of the minimum output entropy - CMP 2016, arXiv:1305.1567
- B. Collins, P. Hayden, I.N. - Random and free positive maps with applications to entanglement detection - IMRN 2016, arXiv:1505. 08042
- B. Collins, I.N. - Random matrix techniques in quantum information theory - JMP 2016, arXiv:1509.04689

