Entanglement of generic quantum states

Ion Nechita

CNRS, LPT Toulouse

Turku, March 6th, 2018

Talk outline

- 1. Entanglement in QIT
- 2. Random quantum states
- 3. Thresholds for entanglement criteria
- 4. Random matrices and free probability

Entanglement in QIT

Quantum states and entanglement

 Quantum systems with d degrees of freedom are described by density matrices or mixed states

$$\rho \in \mathcal{M}^{1,+}(\mathbb{C}^d); \qquad \operatorname{Tr} \rho = 1 \text{ and } \rho \geq 0.$$

▶ Pure states are the particular case of rank one projectors, and correspond to unit vectors $\psi \in \mathbb{C}^d$

$$|\psi\rangle\langle\psi|\in\mathcal{M}^{1,+}(\mathbb{C}^d).$$

They are the extreme points of the convex body $\mathcal{M}^{1,+}(\mathbb{C}^d)$.

- ▶ Two quantum systems: $\rho_{AB} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B})$.
- A mixed state ρ_{AB} is called separable if it can be written as a convex combination of product states

$$\rho_{AB} \in \mathcal{SEP} \iff \rho_{AB} = \sum_{i} t_{i} \sigma_{i}^{(A)} \otimes \sigma_{i}^{(B)},$$

with
$$t_i \geq 0$$
, $\sum_i t_i = 1$, $\sigma_i^{(A,B)} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_{A,B}})$.

▶ Non-separable states are called entangled.

Pure state entanglement is easy

► For pure quantum states, entanglement can be detected and measured. The standard measure of the entanglement of a pure state $x = |x\rangle_{AB}$ is the entropy of entanglement

$$E(x) = -\sum_{i} s_i(x) \log s_i(x),$$

where $s_i(x)$ are the Schmidt coefficients of x:

$$|x\rangle_{AB} = \sum_{i} \sqrt{s_i(x)} |e_i\rangle_A \otimes |f_i\rangle_B.$$

- $E(x) = 0 \iff x = y \otimes z.$
- All bi-partite quantum pure states have dimension d_Ad_B-1 , whereas product states have dimension d_A+d_B-2 , which is strictly smaller \implies a generic pure state is entangled!

Mixed state entanglement is hard, but...

- ▶ Deciding if a given ρ_{AB} is separable is NP-hard. Detecting entanglement for general states is a difficult, central problem in QIT.
- ▶ A map $f: \mathcal{M}(\mathbb{C}^d) \to \mathcal{M}(\mathbb{C}^{d'})$ is called
 - positive if $A \ge 0 \implies f(A) \ge 0$;
 - ▶ completely positive if $id_k \otimes f$ is positive for all $k \geq 1$.
- ▶ If $f: \mathcal{M}(\mathbb{C}^{d_B}) \to \mathcal{M}(\mathbb{C}^{d_B})$ is CP, then for every state ρ_{AB} one has $[\mathrm{id}_{d_A} \otimes f](\rho_{AB}) \geq 0$.
- ▶ If $f: \mathcal{M}(\mathbb{C}^{d_B}) \to \mathcal{M}(\mathbb{C}^{d_B})$ is only positive, then for every separable state ρ_{AB} , one has $[\mathrm{id}_{d_A} \otimes f](\rho_{AB}) \geq 0$.

Entanglement detection via positive, but not CP maps

- ▶ Positive, but not CP maps f yield entanglement criteria: given ρ_{AB} , if $[\mathrm{id}_{d_A} \otimes f](\rho_{AB}) \ngeq 0$, then ρ_{AB} is entangled.
- ▶ The following converse holds: if, for all positive, but not CP maps f, $[id_{d_A} \otimes f](\rho_{AB}) \geq 0$, then ρ_{AB} is separable.
- ► The transposition map $\Theta(X) = X^{\top}$ is positive, but not CP. Put $\mathcal{PPT} := \{\rho_{AB} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}) \mid [\mathrm{id}_{d_A} \otimes \Theta_{d_B}](\rho_{AB}) \geq 0\}.$
- ► The reduction map $R(X) = \text{Tr}(X) \cdot I X$ is positive, but not CP. $\mathcal{RED} := \{ \rho_{AB} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}) \mid [\text{id}_{d_A} \otimes R_{d_B}](\rho_{AB}) \geq 0 \}.$
- ▶ Both criteria above detect pure entanglement: for $f = \Theta, R$, $[\mathrm{id}_{d_A} \otimes f](|\psi\rangle_{AB}\langle\psi|) \geq 0 \iff |\psi\rangle_{AB} \text{ is entangled}.$

The PPT criterion at work

▶ Recall the Bell state $\rho_{12} = |\psi\rangle\langle\psi|$, where

$$\mathbb{C}^2\otimes\mathbb{C}^2\ni|\psi
angle=rac{1}{\sqrt{2}}(|0
angle_A\otimes|0
angle_B+|1
angle_A\otimes|1
angle_B).$$

• Written as a matrix in $\mathcal{M}^{1,+}_{2,2}(\mathbb{C})$

$$\rho_{AB} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

Partial transposition: transpose each block B_{ij} :

$$[\mathrm{id}_2\otimes\Theta](
ho_{AB})=rac{1}{2}egin{pmatrix}1&0&0&0\0&0&1&0\0&1&0&0\0&0&0&1\end{pmatrix}.$$

 \cdot This matrix is no longer positive \implies the state is entangled.

The problem we consider

$$\mathcal{M}^{1,+} = \{
ho : \operatorname{Tr}
ho = 1 \text{ and }
ho \geq 0 \}$$
 $\mathcal{SEP} = \left\{ \sum_i t_i
ho_i^{(A)} \otimes
ho_i^{(B)}
ight\}$

$$\mathcal{PPT} = \{ \rho_{AB} : [\mathrm{id}_{d_A} \otimes \Theta_{d_B}](\rho_{AB}) \geq 0 \}$$

$$\mathcal{RED} = \{ \rho_{AB} : [\mathrm{id}_{d_A} \otimes R_{d_B}](\rho_{AB}) \ge 0 \}$$

Problem

Compare the convex sets

$$\mathcal{SEP} \subseteq \mathcal{PPT} \subseteq \mathcal{RED} \subseteq \mathcal{M}^{1,+}(\mathbb{C}^{d_A d_B}).$$

- ▶ For $(d_A, d_B) \in \{(2, 2), (2, 3), (3, 2)\}$ we have $\mathcal{SEP} = \mathcal{PPT}$. In other dimensions, the inclusion $\mathcal{SEP} \subset \mathcal{PPT}$ is strict.
- ▶ For $d_B = 2$ we have $\mathcal{PPT} = \mathcal{RED}$. In other dimensions, the inclusion $\mathcal{PPT} \subset \mathcal{RED}$ is strict.

Random quantum states

Probability measures on $\mathcal{M}_d^{1,+}(\mathbb{C})$

- We want to measure volumes of subsets of $\mathcal{M}_d^{1,+}(\mathbb{C})$, with $d=d_Ad_B$.
- A natural choice is to use the Lebesgue measure (see $\mathcal{M}_d^{1,+}(\mathbb{C})$ as a compact subset of $\mathcal{M}_d^{sa}(\mathbb{C})$). The set of separable states \mathcal{SEP} has positive volume, since \mathcal{SEP} contains an open ball around I/d.
- Another choice open quantum systems point of view: assume your system Hilbert space $\mathbb{C}^d = \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B}$ is coupled to an environment \mathbb{C}^{d_C} .
- ▶ On the tri-partite system $\mathcal{H}_{ABC} = \mathbb{C}^{d_A} \otimes \mathbb{C}^{d_B} \otimes \mathbb{C}^{d_C}$, consider a random pure state $|\psi\rangle_{ABC}$, i.e. a uniform random point on the unit sphere of the total Hilbert space \mathcal{H}_{ABC} .
- ▶ Trace out the environment \mathbb{C}^{d_C} to get a random density matrix

$$\rho_{AB} = \text{Tr}_{C} |\psi\rangle_{ABC} \langle\psi|.$$

- ► These probability measures have been introduced by \dot{Z} yczkowski and Sommers and they are called the induced measures of parameters $d = d_A d_B$ and $s = d_C$; we denote them by $\mu_{d,s}$.
- ▶ Remarkably, the Lebesgue measure is obtained for s = d.

Probability measures on $\mathcal{M}_d^{1,+}(\mathbb{C})$

- ▶ Here's an equivalent way of defining the measures $\mu_{d,s}$, in the spirit of Random Matrix Theory.
- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ be a $d \times s$ matrix with i.i.d. complex standard Gaussian entries (i.e. a Ginibre random matrix). Define

$$W_{d,s} = XX^* \text{ and } \mathcal{M}^{1,+}(\mathbb{C}^d) \ni \rho_{d,s} = \frac{XX^*}{\operatorname{Tr}(XX^*)} = \frac{W_{d,s}}{\operatorname{Tr}W_{d,s}}.$$

- ► The random matrix $W_{d,s}$ is called a Wishart matrix and the distribution of $\rho_{d,s}$ is precisely $\mu_{d,s}$.
- ▶ The measure $\mu_{d,s}$ is unitarily invariant: if $\rho \sim \mu_{d,s}$ and U is a fixed unitary matrix, then $U\rho U^* \sim \mu_{d,s}$.
- ▶ Density of $\mu_{d,s}$: $d\mathbb{P}(\rho) = C_{d,s} \frac{\det(\rho)^{s-d} \mathbf{1}_{\rho > 0, \operatorname{Tr} \rho = 1} d\rho}{1}$.
- ► Integrating out the eigenvectors, we obtain the eigenvalue density formula for random quantum states:

$$\mathrm{d}\mathbb{P}(\lambda_1,\ldots,\lambda_d) = C'_{d,s} \left[\prod_i \lambda_i^{s-d} \right] \left| \prod_{i \leq i} (\lambda_i - \lambda_j)^2 \right| \mathbf{1}_{\lambda_i \geq 0, \sum_i \lambda_i = 1} \, \mathrm{d}\lambda.$$

Eigenvalues for induced measures

Figure: Induced measures for d = 3 and s = 3, 5, 7, 10.

Eigenvalues for induced measures

Figure: Induced measures for d = 3 and s = 3, 5, 7, 10.

Thresholds for

entanglement criteria

Volume of convex sets under the induced measures

▶ Fix d, and let $C \subset \mathcal{M}^{1,+}(\mathbb{C}^d)$ a convex body, with $I_d/d \in \operatorname{int}(C)$. Then

$$\lim_{s\to\infty}\mu_{d,s}(C)=1.$$

In other words, the eigenvalues of a random density matrix $ho_{AB}\sim \mu_{d,s}$ with d fixed and $s\to\infty$ converge to 1/d.

Definition

A pair of functions $(s_0(d), s_1(d))$ are called a threshold for a family of convex sets $(K_d)_d$ if both conditions below hold

▶ If $s(d) \lesssim s_0(d)$, then

$$\lim_{d\to\infty}\mu_{d,s(d)}(K_d)=0;$$

▶ If $s(d) \gtrsim s_1(d)$, then

$$\lim_{d\to\infty}\mu_{d,s(d)}(K_d)=1.$$

Thresholds for entanglement criteria

▶ Below, the threshold functions $s_{0,1}(d)$ are of the form

$$s_0(d) = s_1(d) = {\color{red} c} d;$$
 we put $r := \min(d_A, d_B).$

Crit. \ Reg.	$d_A=d_B\to\infty$	$d_B o \infty$	$d_A o \infty$
SEP	$\infty \ (r \lesssim c \lesssim r \log^2 r)$?	?
PPT	4	$2+2\sqrt{1-\frac{1}{r^2}}$	$2+2\sqrt{1-\frac{1}{r^2}}$
\mathcal{RED}	0	0	$\frac{(1+\sqrt{r+1})^2}{r(r-1)}$

- ► The results in the table above can be interpreted in the following way: for a convex set K having a threshold c, a random density matrix $\rho_{AB} \sim \mu_{d,s}$ with large s,d will satisfy
 - ▶ If s/d > c, $\mathbb{P}[\rho_{AB} \in K] \approx 1$
 - ▶ If s/d < c, $\mathbb{P}[\rho_{AB} \in K] \approx 0$.

Proof elements

- The main task is to compute the probability that some random matrices are positive semidefinite or not.
- ▶ This is a very difficult computation to perform at fixed Hilbert space dimension; the asymptotic theory is much easier (one or both $d_{AB} \rightarrow \infty$).
- ▶ To a selfadjoint matrix $X \in \mathcal{M}_d(\mathbb{C})$, with spectrum $x = (x_1, \dots, x_d)$, associate its empirical spectral distribution

$$\mu_X = \frac{1}{d} \sum_{i=1}^d \delta_{x_i}.$$

- ▶ The probability measure μ_X contains all the information about the spectrum of X.
- A sequence of matrices X_d converges in moments towards a probability measure μ if, for all integer $p \ge 1$,

$$\lim_{d\to\infty}\frac{1}{d}\mathrm{Tr}(X_d^p)=\lim_{d\to\infty}\int x^pd\mu_{X_d}(x)=\int x^pd\mu(x).$$

Wishart matrices

Theorem (Marcenko-Pastur)

Let W be a complex Wishart matrix of parameters (d,cd). Then, almost surely with $d \to \infty$, the empirical spectral distribution of W/d converges in moments to a free Poisson distribution (a.k.a. Marčenko-Pastur distribution) π_c of parameter c.

Figure: Eigenvalue distribution for Wishart matrices. In blue, the density of theoretical limiting distribution, π_c . In the two pictures, d=1000, and c=1,5.

Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn). Then, almost surely with $d \to \infty$, the empirical spectral distribution of $[id \otimes \Theta](W_{AB}/d)$ converges in moments to a free difference of free Poisson distributions of respective parameters $cn(n\pm 1)/2$.

Corollary

The limiting measure above has positive support iff

$$c > c_{PPT} := 2 + 2\sqrt{1 - \frac{1}{n^2}}.$$

Partial transposition criterion - numerics

Figure: Wishart matrices before (left) and after (right) the application of the partial transposition. Here, $d=d_A=200$, $n=d_B=3$, and c=5 (top), c=3 (bottom). Note that $5>c_{PPT}=3.88562>3$.

Reduction of a Wishart matrix

Theorem (Jivulescu, Lupa, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn). Then, almost surely with $d \to \infty$, the empirical spectral distribution of $[id \otimes R](W_{AB}/d)$ converges in moments to a compound free Poisson distribution $\pi_{\nu_{n,c}}$ of parameter $\nu_{n,c} = c\delta_{1-n} + c(n^2 - 1)\delta_1$.

Corollary

The limiting measure above has positive support iff

$$c > c_{RED} := \frac{(1 + \sqrt{n+1})^2}{n(n-1)}.$$

Remark

We have, for n=2, $c_{PPT}=c_{RED}=2+\sqrt{3}$: the two criteria are know to be equivalent for qubit-qudit systems. For $n\geq 3$, we have $c_{PPT}>c_{RED}$: the reduction criterion is, in general, weaker than the PPT criterion.

Reduction criterion - numerics

Figure: Wishart matrices before (left) and after (right) the application of the partial reduction map. Here, $d=d_A=200$, $n=d_B=3$, and c=2 (top), c=1 (bottom). Note that $2>c_{RED}=1.5>1$.

Random matrices and free probability

The free additive convolution of probability measures

- ▶ Given two self-adjoint matrices X, Y with spectra x, y, what is the spectrum of X + Y?
- ▶ In general, a very difficult problem, the answer depends on the relative position of the eigenspaces of *X* and *Y* (Horn problem).
- ▶ When the size of *X*, *Y* is large, and the eigenvectors are in general position, free probability theory gives the answer.
- Free additive convolution of two compactly supported probability distributions μ, ν : sample $x, y \in \mathbb{R}^d$ from μ, ν and consider

$$Z := \operatorname{diag}(x) + U \operatorname{diag}(y) U^*,$$

where U is a $d \times d$ Haar unitary random matrix. Then, as $d \to \infty$, the empirical eigenvalue distribution of Z converges to a probability measure denoted by $\mu \boxplus \nu$.

► The operation ⊞ is called free additive convolution, and it can be computed via the R-transform (a kind of Fourier transform in the free world)

Free additive convolution - an example

We have

$$\left[\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1\right] \boxplus \left[\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1\right] = \frac{1}{\pi\sqrt{x(2-x)}}\mathbf{1}_{(0,2)}(x) dx.$$

Eigenvalues of P + U Q U*

► Compare to the classical situation, where * denotes the (additive) classical convolution

$$\left[\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1\right] * \left[\frac{1}{2}\delta_0 + \frac{1}{2}\delta_1\right] = \frac{1}{4}\delta_0 + \frac{1}{2}\delta_1 + \frac{1}{4}\delta_2.$$

The free Poisson distribution

▶ The limiting distribution of Wishart matrices (and of random density matrices from $\mu_{d,cd}$) is the free Poisson distribution

$$\pi_{\mathbf{c}} := \max(1-c,0)\delta_0 + \frac{\sqrt{4c - (x-1-c)^2}}{2\pi x} \mathbf{1}_{[(1-\sqrt{c})^2,(1+\sqrt{c})^2]}(x) dx.$$

▶ One can show a free Poisson Central Limit Theorem:

$$\lim_{n\to\infty} \left[\left(1 - \frac{c}{n} \right) \delta_0 + \frac{c}{n} \delta_1 \right]^{\boxplus n} = \pi_c.$$

▶ The limit measure for $[id \otimes \Theta](W_{AB}/d)$ is

$$\pi_c^{PPT} := \pi_{cn(n+1)/2} \boxplus D_{-1}\pi_{cn(n-1)/2}.$$

The free compound Poisson measure of parameter ν is defined via a generalized free Poisson central limit theorem

$$\lim_{n\to\infty}\left[\left(1-\frac{\nu(\mathbb{R})}{n}\right)\delta_0+\frac{1}{n}\nu\right]^{\boxplus n}=:\pi_{\nu}.$$

▶ The limit measure for $[id \otimes R](W_{AB}/d)$ is

$$\pi_c^{RED} := \pi_{c\delta_{1-n}+c(n^2-1)\delta_1}.$$

Thank you!

- T. Banica, I.N. Asymptotic eigenvalue distributions of block-transposed Wishart matrices - J. Theoret. Probab. 26, 855-869 (2013).
- 2. M. Jivulescu, N. Lupa, I.N. Thresholds for reduction-related entanglement criteria in quantum information theory QIC, Vol. 15, No. 13-14, 11651184 (2015).
- 3. B. Collins, I.N. Random matrix techniques in quantum information theory JMP 57, 015215 (2016).
- 4. O. Arizmendi, I.N., C. Vargas On the asymptotic distribution of block-modified random matrices JMP 57, 015216 (2016).
- 5. I.N. On the separability of unitarily invariant random quantum states the unbalanced regime arXiv:1802.00067.