Entanglement of generic quantum states

Ion Nechita

CNRS, LPT Toulouse
Turku, March 6th, 2018

Talk outline

1. Entanglement in QIT
2. Random quantum states
3. Thresholds for entanglement criteria
4. Random matrices and free probability

Entanglement in QIT

Quantum states and entanglement

- Quantum systems with d degrees of freedom are described by density matrices or mixed states

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0
$$

- Pure states are the particular case of rank one projectors, and correspond to unit vectors $\psi \in \mathbb{C}^{d}$

$$
|\psi\rangle\langle\psi| \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) .
$$

They are the extreme points of the convex body $\mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$.

- Two quantum systems: $\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right)$.
- A mixed state $\rho_{A B}$ is called separable if it can be written as a convex combination of product states

$$
\rho_{A B} \in \mathcal{S E P} \Longleftrightarrow \rho_{A B}=\sum_{i} t_{i} \sigma_{i}^{(A)} \otimes \sigma_{i}^{(B)}
$$

with $t_{i} \geq 0, \sum_{i} t_{i}=1, \sigma_{i}^{(A, B)} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A, B}}\right)$.

- Non-separable states are called entangled.

Pure state entanglement is easy

- For pure quantum states, entanglement can be detected and measured. The standard measure of the entanglement of a pure state $x=|x\rangle_{A B}$ is the entropy of entanglement

$$
E(x)=-\sum_{i} s_{i}(x) \log s_{i}(x)
$$

where $s_{i}(x)$ are the Schmidt coefficients of x :

$$
|x\rangle_{A B}=\sum_{i} \sqrt{s_{i}(x)}\left|e_{i}\right\rangle_{A} \otimes\left|f_{i}\right\rangle_{B}
$$

- $E(x)=0 \Longleftrightarrow x=y \otimes z$.
- All bi-partite quantum pure states have dimension $d_{A} d_{B}-1$, whereas product states have dimension $d_{A}+d_{B}-2$, which is strictly smaller \Longrightarrow a generic

Ball surface all states pure state is entangled!

Mixed state entanglement is hard, but...

- Deciding if a given $\rho_{A B}$ is separable is NP-hard. Detecting entanglement for general states is a difficult, central problem in QIT.
- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d^{\prime}}\right)$ is called
- positive if $A \geq 0 \Longrightarrow f(A) \geq 0$;
- completely positive if $\mathrm{id}_{k} \otimes f$ is positive for all $k \geq 1$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{B}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{B}}\right)$ is $C P$, then for every state $\rho_{A B}$ one has $\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \geq 0$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{B}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{B}}\right)$ is only positive, then for every separable state $\rho_{A B}$, one has $\left[\operatorname{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \geq 0$.

Entanglement detection via positive, but not CP maps

- Positive, but not CP maps f yield entanglement criteria: given $\rho_{A B}$, if $\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \nsupseteq 0$, then $\rho_{A B}$ is entangled.
- The following converse holds: if, for all positive, but not CP maps $f,\left[\operatorname{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \geq 0$, then $\rho_{A B}$ is separable.
- The transposition map $\Theta(X)=X^{\top}$ is positive, but not CP. Put

$$
\mathcal{P} \mathcal{P} \mathcal{T}:=\left\{\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right) \mid\left[\mathrm{id}_{d_{A}} \otimes \Theta_{d_{B}}\right]\left(\rho_{A B}\right) \geq 0\right\}
$$

- The reduction map $R(X)=\operatorname{Tr}(X) \cdot I-X$ is positive, but not CP.

$$
\mathcal{R E D}:=\left\{\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right) \mid\left[\mathrm{id}_{d_{A}} \otimes R_{d_{B}}\right]\left(\rho_{A B}\right) \geq 0\right\}
$$

- Both criteria above detect pure entanglement: for $f=\Theta, R$,

$$
\left[\operatorname{id}_{d_{A}} \otimes f\right]\left(|\psi\rangle_{A B}\langle\psi|\right) \geq 0 \Longleftrightarrow|\psi\rangle_{A B} \text { is entangled. }
$$

The PPT criterion at work

- Recall the Bell state $\rho_{12}=|\psi\rangle\langle\psi|$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

- Written as a matrix in $\mathcal{M}_{2 \cdot 2}^{1,+}(\mathbb{C})$

$$
\rho_{A B}=\frac{1}{2}\left(\begin{array}{ll|ll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

- Partial transposition: transpose each block $B_{i j}$:

$$
\left[\mathrm{id}_{2} \otimes \Theta\right]\left(\rho_{A B}\right)=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- This matrix is no longer positive \Longrightarrow the state is entangled.

The problem we consider

$\mathcal{M}^{1,+}=\{\rho: \operatorname{Tr} \rho=1$ and $\rho \geq 0\}$
$\mathcal{S E P}=\left\{\sum_{i} t_{i} \rho_{i}^{(A)} \otimes \rho_{i}^{(B)}\right\}$
$\mathcal{P} \mathcal{P} \mathcal{T}=\left\{\rho_{A B}:\left[\operatorname{id}_{d_{A}} \otimes \Theta_{d_{B}}\right]\left(\rho_{A B}\right) \geq 0\right\}$

$\mathcal{R E D}=\left\{\rho_{A B}:\left[\mathrm{id}_{d_{A}} \otimes R_{d_{B}}\right]\left(\rho_{A B}\right) \geq 0\right\}$

Problem

Compare the convex sets

$$
\mathcal{S E P} \subseteq \mathcal{P P} \mathcal{T} \subseteq \mathcal{R E D} \subseteq \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A} d_{B}}\right)
$$

- For $\left(d_{A}, d_{B}\right) \in\{(2,2),(2,3),(3,2)\}$ we have $\mathcal{S E P}=\mathcal{P} \mathcal{P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P} \mathcal{P} \mathcal{T}$ is strict.
- For $d_{B}=2$ we have $\mathcal{P P} \mathcal{T}=\mathcal{R E D}$. In other dimensions, the inclusion $\mathcal{P P} \mathcal{T} \subset \mathcal{R E D}$ is strict.

Random quantum states

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- We want to measure volumes of subsets of $\mathcal{M}_{d}^{1,+}(\mathbb{C})$, with $d=d_{A} d_{B}$.
- A natural choice is to use the Lebesgue measure (see $\mathcal{M}_{d}^{1,+}(\mathbb{C})$ as a compact subset of $\mathcal{M}_{d}^{s a}(\mathbb{C})$). The set of separable states $\mathcal{S E P}$ has positive volume, since $\mathcal{S E P}$ contains an open ball around I / d.
- Another choice - open quantum systems point of view: assume your system Hilbert space $\mathbb{C}^{d}=\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}$ is coupled to an environment \mathbb{C}^{d}.
- On the tri-partite system $\mathcal{H}_{A B C}=\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}} \otimes \mathbb{C}^{d_{C}}$, consider a random pure state $|\psi\rangle_{A B C}$, i.e. a uniform random point on the unit sphere of the total Hilbert space $\mathcal{H}_{A B C}$.
- Trace out the environment $\mathbb{C}^{d_{c}}$ to get a random density matrix

$$
\rho_{A B}=\operatorname{Tr}_{C}|\psi\rangle_{A B C}\langle\psi| .
$$

- These probability measures have been introduced by Życzkowski and Sommers and they are called the induced measures of parameters $d=d_{A} d_{B}$ and $s=d_{C}$; we denote them by $\mu_{d, s}$.
- Remarkably, the Lebesgue measure is obtained for $s=d$.

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- Here's an equivalent way of defining the measures $\mu_{d, s}$, in the spirit of Random Matrix Theory.
- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ be a $d \times s$ matrix with i.i.d. complex standard Gaussian entries (i.e. a Ginibre random matrix). Define

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}}
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is precisely $\mu_{d, s}$.
- The measure $\mu_{d, s}$ is unitarily invariant: if $\rho \sim \mu_{d, s}$ and U is a fixed unitary matrix, then $U_{\rho} U^{*} \sim \mu_{d, s}$.
- Density of $\mu_{d, s}: ~ d \mathbb{P}(\rho)=C_{d, s} \operatorname{det}(\rho)^{s-d} \mathbf{1}_{\rho \geq 0, \operatorname{Tr} \rho=1} \mathrm{~d} \rho$.
- Integrating out the eigenvectors, we obtain the eigenvalue density formula for random quantum states:

$$
\mathrm{d} \mathbb{P}\left(\lambda_{1}, \ldots, \lambda_{d}\right)=C_{d, s}^{\prime}\left[\prod_{i} \lambda_{i}^{s-d}\right]\left[\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\right] \mathbf{1}_{\lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1} \mathrm{~d} \lambda
$$

Eigenvalues for induced measures

Figure: Induced measures for $d=3$ and $s=3,5,7,10$.

Eigenvalues for induced measures

Figure: Induced measures for $d=3$ and $s=3,5,7,10$.

Thresholds for entanglement criteria

Volume of convex sets under the induced measures

- Fix d, and let $C \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ a convex body, with $\mathrm{I}_{d} / d \in \operatorname{int}(C)$. Then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}(C)=1
$$

In other words, the eigenvalues of a random density matrix $\rho_{A B} \sim \mu_{d, s}$ with d fixed and $s \rightarrow \infty$ converge to $1 / d$.

Definition

A pair of functions $\left(s_{0}(d), s_{1}(d)\right)$ are called a threshold for a family of convex sets $\left(K_{d}\right)_{d}$ if both conditions below hold

- If $s(d) \lesssim s_{0}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(K_{d}\right)=0
$$

- If $s(d) \gtrsim s_{1}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(K_{d}\right)=1
$$

Thresholds for entanglement criteria

- Below, the threshold functions $s_{0,1}(d)$ are of the form

$$
s_{0}(d)=s_{1}(d)=c d ; \quad \text { we put } r:=\min \left(d_{A}, d_{B}\right)
$$

Crit. \backslash Reg.	$d_{A}=d_{B} \rightarrow \infty$	$d_{B} \rightarrow \infty$	$d_{A} \rightarrow \infty$
$\mathcal{S E P}$	$\infty\left(r \lesssim c \lesssim r \log ^{2} r\right)$	$?$	$?$
$\mathcal{P P \mathcal { T }}$	4	$2+2 \sqrt{1-\frac{1}{r^{2}}}$	$2+2 \sqrt{1-\frac{1}{r^{2}}}$
$\mathcal{R E D}$	0	0	$\frac{(1+\sqrt{r+1})^{2}}{r(r-1)}$

- The results in the table above can be interpreted in the following way: for a convex set K having a threshold c, a random density matrix $\rho_{A B} \sim \mu_{d, s}$ with large s, d will satisfy
- If $s / d>c, \mathbb{P}\left[\rho_{A B} \in K\right] \approx 1$
- If $s / d<c, \mathbb{P}\left[\rho_{A B} \in K\right] \approx 0$.

Proof elements

- The main task is to compute the probability that some random matrices are positive semidefinite or not.
- This is a very difficult computation to perform at fixed Hilbert space dimension; the asymptotic theory is much easier (one or both $\left.d_{A, B} \rightarrow \infty\right)$.
- To a selfadjoint matrix $X \in \mathcal{M}_{d}(\mathbb{C})$, with spectrum $x=\left(x_{1}, \ldots, x_{d}\right)$, associate its empirical spectral distribution

$$
\mu_{X}=\frac{1}{d} \sum_{i=1}^{d} \delta_{x_{i}}
$$

- The probability measure μ_{X} contains all the information about the spectrum of X.
- A sequence of matrices X_{d} converges in moments towards a probability measure μ if, for all integer $p \geq 1$,

$$
\lim _{d \rightarrow \infty} \frac{1}{d} \operatorname{Tr}\left(X_{d}^{p}\right)=\lim _{d \rightarrow \infty} \int x^{p} d \mu_{X_{d}}(x)=\int x^{p} d \mu(x)
$$

Wishart matrices

Theorem (Marcenko-Pastur)
Let W be a complex Wishart matrix of parameters $(d, c d)$. Then, almost surely with $d \rightarrow \infty$, the empirical spectral distribution of W / d converges in moments to a free Poisson distribution (a.k.a. Marčenko-Pastur distribution) π_{c} of parameter c.

Figure: Eigenvalue distribution for Wishart matrices. In blue, the density of theoretical limiting distribution, π_{c}. In the two pictures, $d=1000$, and $c=1,5$.

Partial transposition of a Wishart matrix

Theorem (Banica, N.)
Let W be a complex Wishart matrix of parameters (dn, cdn). Then, almost surely with $d \rightarrow \infty$, the empirical spectral distribution of $[\mathrm{id} \otimes \Theta]\left(W_{A B} / d\right)$ converges in moments to a free difference of free Poisson distributions of respective parameters $c n(n \pm 1) / 2$.

Corollary
The limiting measure above has positive support iff

$$
c>c_{P P T}:=2+2 \sqrt{1-\frac{1}{n^{2}}} .
$$

Partial transposition criterion - numerics

Figure: Wishart matrices before (left) and after (right) the application of the partial transposition. Here, $d=d_{A}=200, n=d_{B}=3$, and $c=5$ (top), $c=3$ (bottom). Note that $5>c_{P P T}=3.88562>3$.

Reduction of a Wishart matrix

Theorem (Jivulescu, Lupa, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn).
Then, almost surely with $d \rightarrow \infty$, the empirical spectral distribution of $[\mathrm{id} \otimes R]\left(W_{A B} / d\right)$ converges in moments to a compound free Poisson distribution $\pi_{\nu_{n, c}}$ of parameter $\nu_{n, c}=c \delta_{1-n}+c\left(n^{2}-1\right) \delta_{1}$.

Corollary

The limiting measure above has positive support iff

$$
c>c_{R E D}:=\frac{(1+\sqrt{n+1})^{2}}{n(n-1)}
$$

Remark
We have, for $n=2, c_{P P T}=c_{R E D}=2+\sqrt{3}$: the two criteria are know to be equivalent for qubit-qudit systems. For $n \geq 3$, we have $c_{P P T}>c_{R E D}$: the reduction criterion is, in general, weaker than the PPT criterion.

Reduction criterion - numerics

Figure: Wishart matrices before (left) and after (right) the application of the partial reduction map. Here, $d=d_{A}=200, n=d_{B}=3$, and $c=2$ (top), $c=1$ (bottom). Note that $2>c_{R E D}=1.5>1$.

Random matrices and free probability

The free additive convolution of probability measures

- Given two self-adjoint matrices X, Y with spectra x, y, what is the spectrum of $X+Y$?
- In general, a very difficult problem, the answer depends on the relative position of the eigenspaces of X and Y (Horn problem).
- When the size of X, Y is large, and the eigenvectors are in general position, free probability theory gives the answer.
- Free additive convolution of two compactly supported probability distributions μ, ν : sample $x, y \in \mathbb{R}^{d}$ from μ, ν and consider

$$
Z:=\operatorname{diag}(x)+U \operatorname{diag}(y) U^{*}
$$

where U is a $d \times d$ Haar unitary random matrix. Then, as $d \rightarrow \infty$, the empirical eigenvalue distribution of Z converges to a probability measure denoted by $\mu \boxplus \nu$.

- The operation \boxplus is called free additive convolution, and it can be computed via the \mathcal{R}-transform (a kind of Fourier transform in the free world)

Free additive convolution - an example

- We have

$$
\left[\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right] \boxplus\left[\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right]=\frac{1}{\pi \sqrt{x(2-x)}} \mathbf{1}_{(0,2)}(x) \mathrm{d} x .
$$

Eigenvalues of $P+U Q U^{\star}$

- Compare to the classical situation, where $*$ denotes the (additive) classical convolution

$$
\left[\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right] *\left[\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right]=\frac{1}{4} \delta_{0}+\frac{1}{2} \delta_{1}+\frac{1}{4} \delta_{2}
$$

The free Poisson distribution

- The limiting distribution of Wishart matrices (and of random density matrices from $\mu_{d, c d}$) is the free Poisson distribution

$$
\pi_{c}:=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}(x) \mathrm{d} x
$$

- One can show a free Poisson Central Limit Theorem:

$$
\lim _{n \rightarrow \infty}\left[\left(1-\frac{c}{n}\right) \delta_{0}+\frac{c}{n} \delta_{1}\right]^{\boxplus n}=\pi_{c} .
$$

- The limit measure for $[\mathrm{id} \otimes \Theta]\left(W_{A B} / d\right)$ is

$$
\pi_{c}^{P P T}:=\pi_{c n(n+1) / 2} \boxplus D_{-1} \pi_{c n(n-1) / 2} .
$$

- The free compound Poisson measure of parameter ν is defined via a generalized free Poisson central limit theorem

$$
\lim _{n \rightarrow \infty}\left[\left(1-\frac{\nu(\mathbb{R})}{n}\right) \delta_{0}+\frac{1}{n} \nu\right]^{\boxplus n}=: \pi_{\nu}
$$

- The limit measure for $[\mathrm{id} \otimes R]\left(W_{A B} / d\right)$ is

$$
\pi_{c}^{R E D}:=\pi_{c \delta_{1-n}+c\left(n^{2}-1\right) \delta_{1}}
$$

Thank you!

1. T. Banica, I.N. - Asymptotic eigenvalue distributions of block-transposed Wishart matrices - J. Theoret. Probab. 26, 855-869 (2013).
2. M. Jivulescu, N. Lupa, I.N. - Thresholds for reduction-related entanglement criteria in quantum information theory - QIC, Vol. 15, No. 13-14, 11651184 (2015).
3. B. Collins, I.N. - Random matrix techniques in quantum information theory - JMP 57, 015215 (2016).
4. O. Arizmendi, I.N., C. Vargas - On the asymptotic distribution of block-modified random matrices - JMP 57, 015216 (2016).
5. I.N. - On the separability of unitarily invariant random quantum states - the unbalanced regime - arXiv:1802.00067.
