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Talk outline

1. (Quantum) de Finetti theorems

2. Sums of squares and Reznick’s PSS

3. The proof: inverting the Chiribella formula



(Quantum) de Finetti theorems



The classical de Finetti theorem
I Let V be a finite alphabet, |V | = d . A probability P on V n is

called excheangeable if it is symmetric under permutations:

∀σ ∈ Sn, P[x1, x2, . . . , xn] = P[xσ(1), xσ(2), . . . , xσ(n)].

I In particular, i.i.d. distributions are exchangeable

P = π⊗n i.e. P[x1, x2, . . . , xn] =
n∏

i=1

π(xi ) =
∏
a∈V

π(a)|x
−1(a)|.

Theorem. Let P be an exchangeable
probability distribution on V n. Then,
for k � n, its k-marginal Pk is close to
a convex mixture of i.i.d. distributions.
More precisely, for any k ≤ n, there
exists a probability measure µ on P(V )
such that∥∥Pk −

∫
π⊗kdµ(π)

∥∥
TV
≤ 2kd

n
. [00] [11]

[01,10]

Figure: k = 2; n = 3, 4, 5, 10.



Quantum de Finetti theorems - the setup

I Finite alphabet [d ]  vector space Cd

I Probability distribution on [d ]  quantum state (density matrix)
ρ ∈Md(C), ρ ≥ 0, Tr ρ = 1

I i.i.d. probability distribution π⊗n on [d ]×n  multipartite product
quantum state ρ⊗n ∈Md(C)⊗n

I Exchangeable distribution P[x1, . . . , xn] = P[xσ(1), . . . , xσ(n)]  
two different notions of symmetry for quantum states:

1. Permutation symmetry: πρnπ
∗ = ρn, for all π ∈ Sn

2. Bose symmetry: ρn supported on ∨nCd , i.e. P
(d,n)
sym ρnP

(d,n)
sym = ρn

I Any permutationally symmetric state can be purified to a Bose
symmetric pure state in ∨n(Cd ⊗ Cd)



The finite quantum de Finetti theorem

Theorem. Let ρ ∈ B(∨nCd) be a (Bose symmetric) quantum
state. Then, there exist a probability distribution µ on the unit
sphere of Cd such that, for all k ≤ n, there exists a measure µρ on
the unit sphere of Cd such that

‖Trn→k ρ−
∫
|ϕ〉〈ϕ|⊗kdµρ(ϕ)‖1 ≤

2k(d + k)

n + d
.

Among the many applications of the quantum de Finetti theorem:
I The convex body of separable quantum states

SEP = conv{|x〉〈x | ⊗ |y〉〈y | : x ∈ CdA , y ∈ CdB}
is hard to approximate

I A quantum state ρAB is said to be k-extendible if ∃σAB1···Bk
such

that σB1···Bk
∈ B(∨kCdB ) and σAB1 = ρAB

Theorem. A state ρAB is separable iff it is k-extendible for all
k ≥ 1.



The measure-and-prepare map

I Let d [n] := dimP
(d ,n)
sym =

(n+d−1
d−1

)
the dimension of the symmetric

subspace

I Define MPn→k : B(∨nCd)→ B(∨kCd) by

MPn→k(X ) = d [n]

∫
〈ϕ⊗n|X |ϕ⊗n〉|ϕ〉〈ϕ|⊗kdϕ,

where dϕ is the Lebesgue measure on the unit sphere of Cd , or
even a n + k spherical design

I The linear map MPn→k is completely positive, and it is
normalized to be trace preserving (i.e. it is a quantum channel):∫

|ϕ〉〈ϕ|⊗ndϕ =
P
(d ,n)
sym

d [n]



Spherical designs

Definition. For N, d , n ∈ N a complex spherical n-design of order
N on Cd is a set of vectors {γi}Ni=1 ⊂ Cd and a set of probability
weights {pi}Ni=1 ⊂ R+ such that

P
(d ,n)
sym =

N∑
i=1

pi |γi 〉〈γi |⊗n.

Equivalently, the following polynomial identity holds

(|z1|2 + . . .+ |zd |2)n =
N∑
i=1

pi |〈z , γi 〉|2n

Theorem. There exists a complex spherical n-design in Cd of
order N = (n + 1)2d



Chiribella’s formula
I Assuming k ≤ n, let Trn→k : B(∨nCd)→ B(∨kCd) be the partial

trace map and Tr∗k→n : B(∨kCd)→ B(∨nCd) be its dual
w.r.t. the Hilbert-Schmidt scalar product

Tr∗k→n(X ) = P
(d ,n)
sym

[
X ⊗ I

⊗(n−k)
d

]
P
(d ,n)
sym

I Clonek→n := d [k]
d [n] Tr∗k→n is the optimal Keyl-Werner cloning

quantum channel

Theorem. For any k ≤ n, we have

MPn→k =
k∑

s=0

c(n, k, s) Clones→k ◦Trn→s ,

where

c(n, k , s) =

(n
s

)(k+d−1
k−s

)(n+k+d−1
k

)
Fact: c(n, k, ·) is a probability distribution,

∑k
s=0 c(n, k, s) = 1



Proof of the quantum de Finetti theorem
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Proof of the quantum de Finetti theorem
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Proof of the quantum de Finetti theorem

I Let ‖ · ‖� be the S1 → S1 CB norm, aka the diamond norm

‖Φ‖� = sup
k

sup
‖X‖1≤1

‖[idk ⊗ Φ](X )‖1

I We have

‖Trn→k −MPn→k ‖�

= ‖(1− c(n, k, k)) Trn→k −
k−1∑
s=0

c(n, k , s) Clones→k ◦Trn→s ‖�

≤ 2(1− c(n, k, k))

≤ 2k(d + k)

n + d



Exponential de Finetti theorem

I We want to approximate marginals of symmetric states not by
states which are exactly tensor powers of pure states (as in the
usual de Finetti theorem), but with states from the set

Wr :=
⋃
|ϕ〉∈Cd

span
{
P
(d ,k)
sym |ϕ〉⊗k−r ⊗ |ψ〉 : |ψ〉 ∈ (Cd)⊗r

}
I These sets interpolate between W0 = ∨kCd and Wk = (Cd)⊗k

I Such states are called (k , r , d)-almost product states, and they lie
in the ranges of the maps Clonek−s→k ◦MPn→k−s , 0 ≤ s ≤ r

Theorem. For any 0 ≤ r ≤ k ≤ n, we have∥∥∥∥∥Trn→k −
r∑

s=0

q(n, k , k − s) Clonek−s→k ◦MPn→k−s

∥∥∥∥∥
�

≤ δr+1

1− 3δ
,

with δ := k(k+d−1)
n+k+d−1



Sums of squares and

Reznick’s Positivstellensatz



Hilbert’s 17th problem

I R[x ] 3 P(x) ≥ 0 ⇐⇒ P = Q1(x)2 + Q2(x)2, for Q1,2 ∈ R[x ]

I Pos(d , n) := {P ∈ R[x1, . . . , xd ] hom. of deg. 2n, P(x) ≥ 0, ∀x}
I SOS(d , n) := {

∑
i Q

2
i with Qi ∈ R[x1, . . . , xd ] hom. of deg. n}

I Hilbert 1888:

SOS(d , n) ⊆ Pos(d , n), eq. iff (d , n) ∈ {(d , 1), (2, n), (3, 2)}

I The Motzkin polynomial

M(x , y , z) = x4y2 + y4z2 + z4x2 − 3x2y2z2

is positive but not SOS

I Membership in SOS can be decided with a SDP: P ∈ SOS(d , n)
iff ∃A ≥ 0 such that P = 〈vd ,n|A|vd ,n〉, where vd ,n is the vector
containing all the hom. monomials in d variables of degree n



Reznick’s Positivstellensatz

I Hilbert 1900, Artin 1927:

P ≥ 0 ⇐⇒ P =
∑
i

Q2
i

R2
i

In particular, if P ≥ 0, there exists R such that R2P is SOS

I Polya 1928: P even, P ≥ 0 =⇒ ∃r such that (
∑

i x
2
i )rP has

non-negative coefficients (and thus is SOS)

Theorem. [Reznick 1995] Let P ∈ Pos(d , k) such that
m(P) := min‖x‖=1 P(x) > 0. Then, for all

n ≥ dk(2k − 1)

2 ln 2

M(P)

m(P)
− d

2

we have

‖x‖2(n−k)P(x) =
r∑

j=1

tj〈x , aj〉2n,

where tj > 0 and aj ∈ Rd



A complex version of Reznick’s PSS

I In the complex case, we are interested in bi-homogeneous
polynomials of degree n in d complex variables: P(z1, . . . , zd) is
hom. in the variables zi and also in z̄i .

I Bi-hom. polynomials are in one-to-one correspondence with
operators on ∨nCd :

P(z1, . . . , zd) = 〈z⊗n|W |z⊗n〉
I Self-adjoint W are associated to real, bi-hom. polynomials

I Non-negative polynomials P are associated to block-positive
matrices W :

〈z⊗n|W |z⊗n〉 ≥ 0, ∀z ∈ Cd

I W PSD =⇒ P SOS: if W =
∑

j tj |aj〉〈aj |, then

P(z) =
∑
j

tj |〈z⊗n, aj〉|2

I ‖z‖2n = 〈z⊗n|P(d ,n)
sym |z⊗n〉



A complex version of Reznick’s PSS
Theorem. Consider W = W ∗ ∈ B(∨kCd ⊗ CD) with m(W ) > 0
and k ≥ 1. Then, for any

n ≥ dk(2k − 1)

ln
(

1 + m(W )
M(W )

) − d − k + 1 (1)

with n ≥ k , we have

‖x‖2(n−k)pW (x , y) =

∫
pW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ

with pW̃ (ϕ, y) ≥ 0 for all ϕ ∈ Cd and y ∈ CD , where pW̃ (ϕ, y) is
a bihermitian form of degree k in ϕ and ϕ and degree 1 in y and
y , explicitly computable in terms of W , and dϕ is any (n + k)
spherical design. In the case k = 1, the bound (1) can be improved

n ≥ d
M(W )

m(W )
− d .

I Similar result obtained by [To and Yeung] with worse bounds and
in a less general setting, by “complexifying” Reznick’s proof



The proof:

inverting the Chiribella formula



Proof strategy
I The equality

‖x‖2(n−k)pW (x , y) =

∫
pW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ

reads, in terms of linear maps over symmetric spaces

Clonek→n⊗ idD =
[
MPk→n ◦Ψ̃

]
⊗ idD

I The fact that the polynomial pW̃ is non-negative reads

W̃ := Ψ̃(W ) is block-positive ⇐⇒ 〈z⊗n|W̃ |z⊗n〉 ≥ 0

I Re-write the Chiribella identity as

MPn→k =
k∑

s=0

c(n, k, s) Clones→k ◦Trn→s

=
k∑

s=0

c(n, k, s) Clones→k ◦Trk→s ◦Trn→k

= Φ
(n)
k→k ◦ Trn→k



Proof strategy

I MPn→k = Φ
(n)
k→k ◦ Trn→k

Key fact. The linear map Φ
(n)
k→k : ∨kCd → ∨kCd is invertible,

with inverse

Ψ
(n)
k→k :=

k∑
s=0

q(n, k , s) Clones→k ◦Trk→s

with

q(n, k , s) := (−1)s+k (n + t + d − 1)s
(k
s

)
(k + d − 1)k−s

(n)k

I Hence, up to some constants, Clonek→n = MPk→n ◦Ψ
(n)
k→k

I Final step: use hypotheses on n, k,m(W ) to ensure Ψ
(n)
k→k(W ) is

block-positive



Proof strategy

I Note: pTr∗k→n(W )(x) = ‖x‖2(n−k)pW (x)

Lemma. For any W ∈ B(∨kCd), we have

pTrk→k−s(W ) = ((k)s)−2∆s
CpW ,

where ∆C is the Laplacian

∆C =
d∑

i=1

∂2

∂z̄i∂zi

Lemma. For any W = W ∗ ∈ B(∨kCd) we have

∀‖z‖ = 1,
∣∣∣(∆s

CpW )(z)
∣∣∣ ≤ 4−s(2d)s(2k)2sM(W )



Proof strategy

I Assume, wlog, D = 1, i.e. there is no y

pW̃ (ϕ) =
k∑

s=0

q(n, k , s)〈ϕ⊗k |Clones→k ◦Trk→s(W )|ϕ⊗k〉

=
k∑

s=0

q(n, k , s)‖ϕ‖2(k−s)〈ϕ⊗s |Trk→s(W )|ϕ⊗s〉

=
k∑

s=0

q(n, k , s)‖ϕ‖2(k−s)pTrk→s(W )(ϕ)

=
k∑

s=0

q̂(n, k , s)‖ϕ‖2(k−s)(∆k−s
C pW )(ϕ)

I Use the complex version of the Bernstein inequality

pW̃ (ϕ) ≥

[
m(W )q̃(n, k, k)−M(W )

k−1∑
s=0

|q̃(n, k , s)|

]



The real case

I For real operators/polynomials, the correspondence

B(∨kRd) 3W 7→ pW (x) = 〈x⊗k |W |x⊗k〉
is not injective

I Instead, use pw (x) = 〈x⊗2k |a〉 for a ∈ ∨2kRd

I The partial trace

Trn→k : ∨2nRd → ∨2kRd

a 7→ 〈Ω⊗(n−k), a〉

I Dual of the partial trace Tr∗k→n p(x) = ‖x‖2(n−k)p(x)

Theorem. Consider w ∈ B(∨2kRd ⊗ R2D) with m(pw ) > 0. If

n ≥ dk(2k − 1)

2 ln
(

1 + m(W )
M(W )

) − d

2
− k + 1

then ‖x‖2(n−k)pw (x , y) =
∫
pw̃ (ϕ, y)|〈ϕ, x〉|2ndϕ with pw̃ ≥ 0



How good are the bounds?
I Consider the modified Motzkin polynomial

pε(x , y , z) = x4y2 + y4z2 + z4x2 − 3x2y2z2 + ε(x2 + y2 + z2)

I We have m(pε) = ε; M(pε) = ε+ 4/27
I Let pn,ε(x , y , z) := (x2 + y2 + z2)n−3pε(x , y , z). If a PSS

decomposition holds, then the [2p, 2q, 2r ] coefficient of pn,ε must
be positive  lower bound on optimal n
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Thank you!
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