Weingarten calculus and applications to Quantum Information Theory

Ion Nechita
CNRS, LPT Toulouse

joint work with Benoit Collins, Motohisa Fukuda and Robert König

Tübingen, September 26th, 2018

Talk outline

1. The Weingarten formula
2. Graphical Weingarten calculus
3. An application to QIT

The Weingarten formula

Computing expectation values

- Gaussian integrals: if $X \in \mathbb{C}^{d}$ is a centered random complex Gaussian vector, i.e. $\mathrm{dP} / \mathrm{dLeb} \sim \exp (\langle x, A x\rangle / 2)$, then [lss18]

$$
\mathbb{E}\left[X_{i_{1}} \cdots X_{i_{p}} \bar{X}_{i_{1}^{\prime}} \cdots \bar{X}_{i_{p}^{\prime}}\right]=\prod_{\alpha \in \mathcal{S}_{p}} \prod_{k=1}^{p} \mathbb{E}\left[X_{i_{k}} \bar{X}_{i_{\alpha(k)}^{\prime}}\right]
$$

Computing expectation values

- Gaussian integrals: if $X \in \mathbb{C}^{d}$ is a centered random complex Gaussian vector, i.e. $\mathrm{dP} / \mathrm{dLeb} \sim \exp (\langle x, A x\rangle / 2)$, then [Iss18]

$$
\mathbb{E}\left[X_{i_{1}} \cdots X_{i_{p}} \bar{X}_{i_{1}^{\prime}} \cdots \bar{X}_{i_{p}}\right]=\prod_{\alpha \in \mathcal{S}_{\rho}} \prod_{k=1}^{p} \mathbb{E}\left[X_{i_{k}} \bar{X}_{i_{\alpha(k)}^{\prime}}\right]
$$

- Spherical integrals: if Y is a uniform random point on the unit sphere of \mathbb{C}^{d}, then $Y N$ is a standard complex Gaussian in \mathbb{C}^{d}, where N is an independent χ^{2} random variable. Thus one can use the Gaussian formula to compute the spherical integrals.

Computing expectation values

- Gaussian integrals: if $X \in \mathbb{C}^{d}$ is a centered random complex Gaussian vector, i.e. $\mathrm{dP} / \mathrm{dLeb} \sim \exp (\langle x, A x\rangle / 2)$, then [Iss18]

$$
\mathbb{E}\left[X_{i_{1}} \cdots X_{i_{p}} \bar{X}_{i_{1}^{\prime}} \cdots \bar{X}_{i_{p}}\right]=\prod_{\alpha \in \mathcal{S}_{\rho}} \prod_{k=1}^{p} \mathbb{E}\left[X_{i_{k}} \bar{X}_{i_{\alpha(k)}^{\prime}}\right]
$$

- Spherical integrals: if Y is a uniform random point on the unit sphere of \mathbb{C}^{d}, then $Y N$ is a standard complex Gaussian in \mathbb{C}^{d}, where N is an independent χ^{2} random variable. Thus one can use the Gaussian formula to compute the spherical integrals.
- Unitary integrals?

The Weingarten formula

Theorem. [Wei78, Col03, CŚ06] Let d be a positive integer and $\mathbf{i}=\left(i_{1}, \ldots, i_{p}\right), \mathbf{i}^{\prime}=\left(i_{1}^{\prime}, \ldots, i_{p^{\prime}}^{\prime}\right), \mathbf{j}=\left(j_{1}, \ldots, j_{p}\right), \mathbf{j}^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{p^{\prime}}^{\prime}\right)$ be tuples of positive integers from $\{1,2, \ldots, d\}$. Then, if $p \neq p^{\prime}$

$$
\int_{\mathcal{U}_{d}} U_{i, 1 j_{1}} \cdots U_{i_{p} j_{p}} \bar{U}_{i_{1}^{\prime}, j_{1}} \cdots \bar{U}_{i_{p^{\prime}, j_{p}^{\prime}}^{\prime}} \mathrm{d} U=0 .
$$

If $p=p^{\prime}$,

$$
\begin{aligned}
\int_{\mathcal{U}_{d}} U_{i 1 j_{1}} \cdots U_{i_{p} j_{p}} & \bar{U}_{i_{1}^{\prime} j_{1}^{\prime}} \cdots \bar{U}_{i i_{p}^{\prime} j_{p}^{\prime}} \mathrm{d} U= \\
& \sum_{\alpha, \beta \in \mathcal{S}_{p}} \delta_{i i_{1} i_{\alpha(1)}^{\prime}} \ldots \delta_{i_{p} i_{\alpha(p)}^{\prime}} \delta_{j i_{\beta(1)}^{\prime}} \ldots \delta_{j_{p} j_{\beta(p)}^{\prime}} \operatorname{Wg}\left(d, \alpha^{-1} \beta\right)
\end{aligned}
$$

where Wg is a combinatorial weight, taking as parameters the dimension of the unitary group and a permutation.

The Weingarten formula

Theorem. [Wei78, Col03, CŚ06] Let d be a positive integer and $\mathbf{i}=\left(i_{1}, \ldots, i_{p}\right), \mathbf{i}^{\prime}=\left(i_{1}^{\prime}, \ldots, i_{p^{\prime}}^{\prime}\right), \mathbf{j}=\left(j_{1}, \ldots, j_{p}\right), \mathbf{j}^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{p^{\prime}}^{\prime}\right)$ be tuples of positive integers from $\{1,2, \ldots, d\}$. Then, if $p \neq p^{\prime}$

$$
\int_{\mathcal{U}_{d}} U_{i, j 1} \cdots U_{i_{p} j_{p}} \bar{U}_{i_{1}^{\prime} j_{1}^{\prime}} \cdots \bar{U}_{i_{p^{\prime}, j_{p}^{\prime}}^{\prime}} \mathrm{d} U=0 .
$$

If $p=p^{\prime}$,

$$
\begin{aligned}
& \int_{\mathcal{U}_{d}} U_{i j_{1}} \cdots U_{i_{p} j_{p}} \bar{U}_{i_{1}^{\prime} j_{1}} \cdots \bar{U}_{i_{p}^{\prime} j_{p}^{\prime}} \mathrm{d} U= \\
& \sum_{\alpha, \beta \in \mathcal{S}_{p}} \delta_{i_{1} i_{\alpha(1)}^{\prime}} \ldots \delta_{i p i_{\alpha(p)}^{\prime}} \delta_{j 1 i_{\beta(1)}^{\prime}} \ldots \delta_{j j_{\beta(p)}^{\prime}} \operatorname{Wg}\left(d, \alpha^{-1} \beta\right),
\end{aligned}
$$

where Wg is a combinatorial weight, taking as parameters the dimension of the unitary group and a permutation.

- Has found many applications (especially in RMT, e.g. [Col03]) and extensions (e.g. quantum groups [BC07])

The Weingarten function

- It is a combinatorial function, in general very difficult to compute

The Weingarten function

- It is a combinatorial function, in general very difficult to compute
- It can be obtained, for small p, as $\mathrm{Wg}\left(d, \alpha^{-1} \beta\right)=\left(C^{-1}\right)_{\alpha, \beta}$, where C is the $p!\times p!$ matrix having entries $C_{\alpha, \beta}=d^{\#\left(\alpha^{-1} \beta\right)}$, where $\#(\cdot)$ is the number of cycles function.

The Weingarten function

- It is a combinatorial function, in general very difficult to compute
- It can be obtained, for small p, as $\mathrm{Wg}\left(d, \alpha^{-1} \beta\right)=\left(C^{-1}\right)_{\alpha, \beta}$, where C is the $p!\times p!$ matrix having entries $C_{\alpha, \beta}=d^{\#\left(\alpha^{-1} \beta\right)}$, where $\#(\cdot)$ is the number of cycles function.
- Representation-theoretical formula used in practice:

$$
\mathrm{Wg}(d, \sigma)=\frac{1}{p!^{2}} \sum_{\lambda \vdash p, \ell(\lambda) \leqslant d} \frac{\chi^{\lambda}(e)^{2}}{s_{\lambda, d}(1)} \chi^{\lambda}(\sigma),
$$

where χ^{λ} is the character associated to the partition λ and $s_{\lambda, d}$ is the Schur polynomial. See [Ber04] for the complexity of computing χ^{λ}.

The Weingarten function

- It is a combinatorial function, in general very difficult to compute
- It can be obtained, for small p, as $\mathrm{Wg}\left(d, \alpha^{-1} \beta\right)=\left(C^{-1}\right)_{\alpha, \beta}$, where C is the $p!\times p!$ matrix having entries $C_{\alpha, \beta}=d^{\#\left(\alpha^{-1} \beta\right)}$, where $\#(\cdot)$ is the number of cycles function.
- Representation-theoretical formula used in practice:

$$
\mathrm{Wg}(d, \sigma)=\frac{1}{p!^{2}} \sum_{\lambda \vdash p, \ell(\lambda) \leqslant d} \frac{\chi^{\lambda}(e)^{2}}{s_{\lambda, d}(1)} \chi^{\lambda}(\sigma),
$$

where χ^{λ} is the character associated to the partition λ and $s_{\lambda, d}$ is the Schur polynomial. See [Ber04] for the complexity of computing χ^{λ}.

- Important asymptotic behavior at large d, fixed p :

$$
\mathrm{Wg}(d, \sigma)=\left(1+O\left(d^{-2}\right)\right) \operatorname{Mob}(\sigma) d^{-p-|\sigma|},
$$

where $|\sigma|=p-\# \sigma$ is the length function. In particular, the matrix C above is "almost" diagonal. The Möbius function Mob is multiplicative on the cycles of σ and on an n-cycle it's value is $(-1)^{n-1} \mathrm{Cat}_{n-1}$.

The Weingarten function

- It is a combinatorial function, in general very difficult to compute
- It can be obtained, for small p, as $\mathrm{Wg}\left(d, \alpha^{-1} \beta\right)=\left(C^{-1}\right)_{\alpha, \beta}$, where C is the $p!\times p$! matrix having entries $C_{\alpha, \beta}=d^{\#\left(\alpha^{-1} \beta\right)}$, where $\#(\cdot)$ is the number of cycles function.
- Representation-theoretical formula used in practice:

$$
\mathrm{Wg}(d, \sigma)=\frac{1}{p!^{2}} \sum_{\lambda \vdash p, \ell(\lambda) \leqslant d} \frac{\chi^{\lambda}(e)^{2}}{s_{\lambda, d}(1)} \chi^{\lambda}(\sigma),
$$

where χ^{λ} is the character associated to the partition λ and $s_{\lambda, d}$ is the Schur polynomial. See [Ber04] for the complexity of computing χ^{λ}.

- Important asymptotic behavior at large d, fixed p :

$$
\mathrm{Wg}(d, \sigma)=\left(1+O\left(d^{-2}\right)\right) \operatorname{Mob}(\sigma) d^{-p-|\sigma|},
$$

where $|\sigma|=p-\# \sigma$ is the length function. In particular, the matrix C above is "almost" diagonal. The Möbius function Mob is multiplicative on the cycles of σ and on an n-cycle it's value is $(-1)^{n-1} \mathrm{Cat}_{n-1}$.

- Example: $\int_{\mathcal{U}_{d}} U_{11} U_{22} U_{33} \bar{U}_{12} \bar{U}_{23} \bar{U}_{31} \mathrm{~d} U=\mathrm{Wg}(d,(123))=\frac{2}{d\left(d^{2}-1\right)\left(d^{2}-2\right)}$, since there is just one term in the sum, $\alpha=$ id and $\beta=$ (123).

Schur-Weyl duality

Theorem. [Aub18] Consider the following two subalgebras of $M_{d^{p}}(\mathbb{C})$: $\mathcal{A}=\operatorname{span}\left\{A^{\otimes p}: A \in M_{d}(\mathbb{C})\right\}$ and $\mathcal{B}=\operatorname{span}\left\{P_{\sigma}: \sigma \in \mathcal{S}_{p}\right\}$, where P_{σ} permutes the tensor factors according to σ

$$
P_{\sigma} x_{1} \otimes \cdots \otimes x_{p}=x_{\sigma(1)} \otimes \cdots x_{\sigma(p)} .
$$

Then \mathcal{A} and \mathcal{B} are the commutant of each other.

- We show $\mathcal{B}^{\prime} \subseteq \mathcal{A}$. Let $X \in \mathcal{B}^{\prime}$.
- $X=\frac{1}{p!} \sum_{\sigma \in S_{p}} P_{\sigma} X P_{\sigma}^{-1}$
- $M_{d^{p}}(\mathbb{C})$ is spanned by simple tensors, so it's enough to show $\sum_{\sigma \in S_{p}} P_{\sigma} X_{1} \otimes \cdots \otimes X_{p} P_{\sigma}^{-1} \in \mathcal{A}$.
- We have, for i.i.d. ± 1 centered random variables ε_{i}

$$
\begin{aligned}
\sum_{\sigma \in S_{p}} P_{\sigma} X_{1} \otimes \cdots \otimes X_{p} P_{\sigma}^{-1} & =\sum_{\sigma \in S_{p}} X_{\sigma(1)} \otimes \cdots \otimes X_{\sigma(p)} \\
& =\mathbb{E}\left[\left(\prod_{i=1}^{p} \varepsilon_{i}\right)\left(\sum_{j=1}^{p} \varepsilon_{j} X_{j}\right)^{\otimes p}\right] .
\end{aligned}
$$

- One can show $\mathcal{A}=\operatorname{span}\left\{U^{\otimes p}: A \in \mathcal{U}_{d}\right\}$.

Graphical Weingarten calculus

Boxes \& wires

$$
\begin{aligned}
& \rightarrow \\
& H=11-X, \quad H=111+X X+X X-X \mid-1 X-X \\
& +4=11+X, \quad+4 t=111+X X+X X+X 1+1 X+X
\end{aligned}
$$

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones...

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones...
- Tensors \rightsquigarrow decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*}
$$

$x \in V_{1}$
$\varphi \in V_{1}^{*}$

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones...
- Tensors \rightsquigarrow decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*} \quad x \in V_{1} \quad \varphi \in V_{1}^{*}
$$

- Tensor contractions (or traces) $V \otimes V^{*} \rightarrow \mathbb{C} \rightsquigarrow$ wires.

$\operatorname{Tr}(\mathrm{C})$

$\operatorname{Tr}_{V_{1}}(\mathrm{D})$

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones...
- Tensors \rightsquigarrow decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*} \quad x \in V_{1} \quad \varphi \in V_{1}^{*}
$$

- Tensor contractions (or traces) $V \otimes V^{*} \rightarrow \mathbb{C} \rightsquigarrow$ wires.

$$
\operatorname{Tr}(\mathrm{C})
$$

$\operatorname{Tr}_{V_{1}}$ (D)

- Maximally entangled vector $\Omega:=\sum_{i=1}^{\operatorname{dim} V_{1}} e_{i} \otimes e_{i} \in V_{1} \otimes V_{1}$

"Graphical" Weingarten formula: main idea

$$
\begin{aligned}
\int_{\mathcal{U}_{d}} U_{i_{1} j_{1}} \cdots U_{i_{p} j_{p}} & \bar{U}_{i_{1}^{\prime} j_{1}^{\prime}} \cdots \bar{U}_{i_{p}^{\prime} j_{p}^{\prime}} \mathrm{d} U= \\
& \sum_{\alpha, \beta \in \mathcal{S}_{p}} \delta_{i_{1} i_{\alpha(1)}^{\prime}} \ldots \delta_{i_{p_{i}} i_{\alpha(p)}^{\prime}} \delta_{j_{1} j_{\beta(1)}^{\prime}} \ldots \delta_{j_{p} j_{\beta(p)}^{\prime}} \operatorname{Wg}\left(d, \alpha^{-1} \beta\right)
\end{aligned}
$$

"Graphical" Weingarten formula: main idea

$$
\begin{aligned}
& \int_{\mathcal{U}_{d}} U_{i, j_{1}} \cdots U_{i j_{j} j_{j}} \bar{U}_{i_{i j 1} j_{1}} \cdots \bar{U}_{i j_{j} j_{p}^{\prime}} \mathrm{d} U= \\
& \sum_{\alpha, \beta \in \mathcal{S}_{\rho}} \delta_{i i_{\alpha(1)}^{\prime}} \ldots \delta_{\left.i i_{i \alpha(p)}^{\prime}\right)} \delta_{j j_{\beta(1)}^{\prime}} \ldots \delta_{j j_{\beta}^{\prime} \beta_{(\rho)}} \mathrm{Wg}\left(d, \alpha^{-1} \beta\right),
\end{aligned}
$$

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:

1. Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:

1. Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
2. By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E D}=0$.

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:

1. Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
2. By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E D}=0$.
3. Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{p}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:

1. Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
2. By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E D}=0$.
3. Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{P}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.
4. For all $i=1, \ldots, p$, add a wire between each white decoration of the i-th U box and the corresponding white decoration of the $\alpha(i)$-th \bar{U} box. In a similar manner, use β to pair black decorations.

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:

1. Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
2. By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E D}=0$.
3. Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{p}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.
4. For all $i=1, \ldots, p$, add a wire between each white decoration of the i-th U box and the corresponding white decoration of the $\alpha(i)$-th \bar{U} box. In a similar manner, use β to pair black decorations.
5. Erase all U and \bar{U} boxes. The resulting diagram is denoted by $\mathcal{D}_{(\alpha, \beta)}$.

Theorem.

$$
\mathbb{E} \mathcal{D}=\sum_{\alpha, \beta \in \mathcal{S}_{p}} \mathcal{D}_{(\alpha, \beta)} \mathrm{Wg}\left(d, \alpha \beta^{-1}\right) .
$$

First example

- Compute $\mathbb{E}\left|u_{i j}\right|^{2}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{2} \mathrm{~d} U$.

First example

- Compute $\mathbb{E}\left|u_{i j}\right|^{2}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{2} \mathrm{~d} U$.

Figure: Diagram for $\left|u_{i j}\right|^{2}=U_{i j} \cdot\left(U^{*}\right)_{j i}$.

First example

- Compute $\mathbb{E}\left|u_{i j}\right|^{2}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{2} \mathrm{~d} U$.

Figure: The U^{*} box replaced by an \bar{U} box.

First example

- Compute $\mathbb{E}\left|u_{i j}\right|^{2}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{2} \mathrm{~d} U$.

Figure: Erase U and \bar{U} boxes.

First example

- Compute $\mathbb{E}\left|u_{i j}\right|^{2}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{2} \mathrm{~d} U$.

Figure: Pair white decorations (red wires) and black decorations (blue wires); only one possible pairing : $\alpha=(1)$ and $\beta=(1)$.

First example

- Compute $\mathbb{E}\left|u_{i j}\right|^{2}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{2} \mathrm{~d} U$.

Figure: The only diagram $\mathcal{D}_{\alpha=(1), \beta=(1)}=1$.

First example

- Compute $\mathbb{E}\left|u_{i j}\right|^{2}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{2} \mathrm{~d} U$.

Figure: The only diagram $\mathcal{D}_{\alpha=(1), \beta=(1)}=1$.

- Conclusion :

$$
\mathbb{E}\left|u_{i j}\right|^{2}=\int\left|u_{i j}\right|^{2} \mathrm{~d} U=\mathcal{D}_{\alpha=(1), \beta=(1)} \cdot \operatorname{Wg}(N,(1))=1 \cdot 1 / N=1 / N .
$$

Second example

- Compute $\mathbb{E}\left|u_{i j}\right|^{4}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{4} \mathrm{~d} U$.

Second example

- Compute $\mathbb{E}\left|u_{i j}\right|^{4}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{4} \mathrm{~d} U$.

Figure: Diagram for $\left|u_{i j}\right|^{2}=U_{i j} \cdot\left(U^{*}\right)_{j i}$.

Second example

- Compute $\mathbb{E}\left|u_{i j}\right|^{4}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{4} \mathrm{~d} U$.

Figure: The U^{*} box replaced by an \bar{U} box.

Second example

- Compute $\mathbb{E}\left|u_{i j}\right|^{4}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{4} \mathrm{~d} U$.

Figure: Erase U and \bar{U} boxes.

Second example

- Compute $\mathbb{E}\left|u_{i j}\right|^{4}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{4} \mathrm{~d} U$.

Figure: Pair white decorations (red wires) and black decorations (blue wires); first pairing : $\alpha=(1)(2)$ and $\beta=(1)(2)$.

Second example

- Compute $\mathbb{E}\left|u_{i j}\right|^{4}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{4} \mathrm{~d} U$.

Figure: Second pairing : $\alpha=(1)(2)$ and $\beta=(12)$.

Second example

- Compute $\mathbb{E}\left|u_{i j}\right|^{4}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{4} \mathrm{~d} U$.

Figure: Third pairing : $\alpha=(12)$ and $\beta=(1)(2)$.

Second example

- Compute $\mathbb{E}\left|u_{i j}\right|^{4}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{4} \mathrm{~d} U$.

Figure: Fourth pairing : $\alpha=(12)$ and $\beta=(12)$.

Second example

- Compute $\mathbb{E}\left|u_{i j}\right|^{4}=\int_{\mathcal{U}(N)}\left|u_{i j}\right|^{4} \mathrm{~d} U$.
- Conclusion :

$$
\begin{aligned}
\mathbb{E}\left|u_{i j}\right|^{4} & =\int\left|u_{i j}\right|^{4} \mathrm{~d} U= \\
& \mathcal{D}_{(1)(2),(1)(2)} \cdot \mathrm{Wg}(N,(1)(2))+ \\
& \mathcal{D}_{(1)(2),(12)} \cdot \mathrm{Wg}(N,(12))+ \\
& \mathcal{D}_{(12),(1)(2)} \cdot \mathrm{Wg}(N,(12))+ \\
& \mathcal{D}_{(12),(12)} \cdot \mathrm{Wg}(N,(1)(2)) \\
& =\mathrm{Wg}(N,(1)(2))+\mathrm{Wg}(N,(12))+\mathrm{Wg}(N,(12))+\mathrm{Wg}(N,(1)(2)) \\
& =\frac{2}{N^{2}-1}-\frac{2}{N\left(N^{2}-1\right)}=\frac{2}{N(N+1)} .
\end{aligned}
$$

Third example : twirling

- Consider a fixed matrix $A \in \mathcal{M}_{N}(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^{*} A U \mathrm{~d} U$.

Third example : twirling

- Consider a fixed matrix $A \in \mathcal{M}_{N}(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^{*} A U \mathrm{~d} U$.

Figure: Diagram for $U^{*} A U$.

Third example : twirling

- Consider a fixed matrix $A \in \mathcal{M}_{N}(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^{*} A U \mathrm{~d} U$.

Figure: The U^{*} box replaced by an \bar{U} box.

Third example : twirling

- Consider a fixed matrix $A \in \mathcal{M}_{N}(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^{*} A U \mathrm{~d} U$.

Figure: Erase U and \bar{U} boxes.

Third example : twirling

- Consider a fixed matrix $A \in \mathcal{M}_{N}(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^{*} A U d U$.

Figure: Pair white decorations (red wires) and black decorations (blue wires); only one possible pairing : $\alpha=(1)$ and $\beta=(1)$.

Third example : twirling

- Consider a fixed matrix $A \in \mathcal{M}_{N}(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^{*} A U \mathrm{~d} U$.

Figure: The only diagram $\mathcal{D}_{\alpha=(1), \beta=(1)}=\operatorname{Tr}(A) I_{N}$.

Third example : twirling

- Consider a fixed matrix $A \in \mathcal{M}_{N}(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^{*} A U \mathrm{~d} U$.

Figure: The only diagram $\mathcal{D}_{\alpha=(1), \beta=(1)}=\operatorname{Tr}(A) I_{N}$.

- Conclusion : $\int_{\mathcal{U}(N)} U^{*} A U \mathrm{~d} U=\mathcal{D}_{\alpha=(1), \beta=(1)} \cdot \mathrm{Wg}(N,(1))=\frac{\operatorname{Tr}(A)}{N} I_{N}$.

Random Tensor Network Integrator

- An implementation of the graphical Weingarten calculus in Mathematica and python
$\ln [21]=$ (* another example with dangling edges: XUYU^* *)
$\mathbf{e 1}=\left\{\left\{{ }^{\prime \prime} \mathrm{X}^{\prime \prime}, 1,0,1\right\},\left\{" \cup{ }^{\prime \prime}, 1,1,1\right\}\right\} ;$
$e 2=\{\{" U ", 1,0,1\},\{" Y ", 1,1,1\}\} ;$
$e^{3}=\left\{\left\{{ }^{\prime \prime} Y^{\prime \prime}, 1,0,1\right\},\left\{" U_{*} ", 1,1,1\right\}\right\} ;$
$g=\{e 1, e 2, e 3\} ;$
visualizeGraph[g]
integrateHaarUnitary [g, "U", \{d\}, \{d\}, d]
visualizeGraphExpansion [\%]

Random Tensor Network Integrator

$\ln [40]:=$ (* two independent unitary operators *)
$e 1=\{\{" U ", 1,0,1\},\{" X ", 1,1,1\}\} ;$
$e 2=\left\{\{" X ", 1,0,1\},\left\{" U_{\star} ", 1,1,1\right\}\right\} ;$
$e 3=\{\{" U * ", 1,0,1\},\{" U ", 1,1,1\}\} ;$
e4 $=\{\{$ "V", 1, 0, 1\}, $\{$ "X", 1, 1, 2\}\};
$e 5=\left\{\{" X ", 1,0,2\},\left\{" V_{*} ", 1,1,1\right\}\right\} ;$
$e 6=\left\{\left\{{ }^{\prime \prime} V_{\star} ", 1,0,1\right\},\left\{" V^{\prime \prime}, 1,1,1\right\}\right\} ;$
$g=\{e 1, e 2, e 3, e 4, e 5, e 6\} ;$
visualizeGraph [g]
intU = integrateHaarUnitary $[\mathrm{g}, \mathrm{"U"}, \mathrm{\{d1} \mathrm{\}}, \mathrm{\{d1} \mathrm{\}}, \mathrm{d1];}$
intUV = integrateHaarUnitary [intU, " V ", \{d2\}, \{d2\}, d2]
visualizeGraphExpansion[intUV]

Out $[49)=\{(\{(\{x, 1,1,1\},(x, 1,0,1)\},(\{x, 1,1,2),(x, 1,0,2)\}), 1\})$

An application to QIT

Quantum information theory on one slide

- Classical information theory \equiv Shannon theory. Classical states: probability vectors $p=\left(p_{1}, \ldots, p_{k}\right)$ with $p_{i} \geqslant 0, \sum_{i} p_{i}=1$

Quantum information theory on one slide

- Classical information theory \equiv Shannon theory. Classical states: probability vectors $p=\left(p_{1}, \ldots, p_{k}\right)$ with $p_{i} \geqslant 0, \sum_{i} p_{i}=1$
- Classical channels \equiv Markov transition operators $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, L_{i j} \geqslant 0$, $\sum_{i} L_{i j}=1$ for all j

Quantum information theory on one slide

- Classical information theory \equiv Shannon theory. Classical states: probability vectors $p=\left(p_{1}, \ldots, p_{k}\right)$ with $p_{i} \geqslant 0, \sum_{i} p_{i}=1$
- Classical channels \equiv Markov transition operators $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, L_{i j} \geqslant 0$, $\sum_{i} L_{i j}=1$ for all j
- Quantum information theory \equiv quantum Shannon theory. Quantum states: positive semidefinite matrices of unit trace $\rho \in M_{k}(\mathbb{C})$ with $\rho \geqslant 0, \operatorname{Tr} \rho=1$

Quantum information theory on one slide

- Classical information theory \equiv Shannon theory. Classical states: probability vectors $p=\left(p_{1}, \ldots, p_{k}\right)$ with $p_{i} \geqslant 0, \sum_{i} p_{i}=1$
- Classical channels \equiv Markov transition operators $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, L_{i j} \geqslant 0$, $\sum_{i} L_{i j}=1$ for all j
- Quantum information theory \equiv quantum Shannon theory. Quantum states: positive semidefinite matrices of unit trace $\rho \in M_{k}(\mathbb{C})$ with $\rho \geqslant 0, \operatorname{Tr} \rho=1$
- Quantum channels \equiv trace preserving, completely positive linear maps $\Phi: M_{d}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$
- Completely positive: map PSD operators to PSD operators \& stable by tensoring with the id: $[\Phi \otimes \mathrm{id}](\rho) \geqslant 0$
- Trace preserving $\operatorname{Tr} \Phi(\rho)=\operatorname{Tr} \rho=1$

Quantum information theory on one slide

- Classical information theory \equiv Shannon theory. Classical states: probability vectors $p=\left(p_{1}, \ldots, p_{k}\right)$ with $p_{i} \geqslant 0, \sum_{i} p_{i}=1$
- Classical channels \equiv Markov transition operators $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}, L_{i j} \geqslant 0$, $\sum_{i} L_{i j}=1$ for all j
- Quantum information theory \equiv quantum Shannon theory. Quantum states: positive semidefinite matrices of unit trace $\rho \in M_{k}(\mathbb{C})$ with $\rho \geqslant 0, \operatorname{Tr} \rho=1$
- Quantum channels \equiv trace preserving, completely positive linear maps $\Phi: M_{d}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$
- Completely positive: map PSD operators to PSD operators \& stable by tensoring with the id: $[\Phi \otimes \mathrm{id}](\rho) \geqslant 0$
- Trace preserving $\operatorname{Tr} \Phi(\rho)=\operatorname{Tr} \rho=1$
- Stinespring dilation theorem: for any quantum channel Φ there exist an integer dimension n (\rightsquigarrow size of the environment) and an isometry $V: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ such that

$$
\Phi(\rho)=[\operatorname{id} \otimes \operatorname{Tr}]\left(V \rho V^{*}\right)
$$

Graphical representation of quantum channels

- A quantum channel $\Phi: M_{d}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$

- Decorations: $\circ / \bullet \rightsquigarrow \mathbb{C}^{d}, ~ \square / \bullet \rightsquigarrow \mathbb{C}^{k}, \diamond / \bullet \rightsquigarrow \mathbb{C}^{n}$

Graphical representation of quantum channels

- A quantum channel $\Phi: M_{d}(\mathbb{C}) \rightarrow M_{k}(\mathbb{C})$

- Decorations: $\circ / \bullet \rightsquigarrow \mathbb{C}^{d}, ~ \square / \bullet \rightsquigarrow \mathbb{C}^{k}, \diamond / \bullet \rightsquigarrow \mathbb{C}^{n}$
- Product of conjugate channels applied to the maximally entangled state $\omega=d^{-1} \Omega \Omega^{*}$

Classical capacity of quantum channels

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.

Classical capacity of quantum channels

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- For classical channels, Shannon's second coding theorem [Sha48]:

$$
C(L)=\max _{X} I(p, L p),
$$

where p is a probability distribution over the input.

Classical capacity of quantum channels

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- For classical channels, Shannon's second coding theorem [Sha48]:

$$
C(L)=\max _{X} I(p, L p),
$$

where p is a probability distribution over the input.

- For quantum channels:

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi\left(\Phi^{\otimes n}\right),
$$

where χ is an entropic quantity called the Holevo capacity.

Classical capacity of quantum channels

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- For classical channels, Shannon's second coding theorem [Sha48]:

$$
C(L)=\max _{X} I(p, L p),
$$

where p is a probability distribution over the input.

- For quantum channels:

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi\left(\Phi^{\otimes n}\right),
$$

where χ is an entropic quantity called the Holevo capacity.

- Equivalence of additivity questions [Sho04]

1. additivity of the Holevo capacity χ
2. additivity of minimum output entropy

Classical capacity of quantum channels

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- For classical channels, Shannon's second coding theorem [Sha48]:

$$
C(L)=\max _{X} I(p, L p),
$$

where p is a probability distribution over the input.

- For quantum channels:

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi\left(\Phi^{\otimes n}\right),
$$

where χ is an entropic quantity called the Holevo capacity.

- Equivalence of additivity questions [Sho04]

1. additivity of the Holevo capacity χ
2. additivity of minimum output entropy

- von Neuman entropy $H(\rho)=-\operatorname{Tr}(\rho \log \rho)$.

Classical capacity of quantum channels

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- For classical channels, Shannon's second coding theorem [Sha48]:

$$
C(L)=\max _{X} I(p, L p),
$$

where p is a probability distribution over the input.

- For quantum channels:

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi\left(\Phi^{\otimes n}\right),
$$

where χ is an entropic quantity called the Holevo capacity.

- Equivalence of additivity questions [Sho04]

1. additivity of the Holevo capacity χ
2. additivity of minimum output entropy

- von Neuman entropy $H(\rho)=-\operatorname{Tr}(\rho \log \rho)$.
- Minimal Output Entropy of a quantum channel

$$
H_{\min }(\Phi)=\min _{\rho \in M_{d}^{1,+}} H(\Phi(\rho))
$$

Classical capacity of quantum channels

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- For classical channels, Shannon's second coding theorem [Sha48]:

$$
C(L)=\max _{X} I(p, L p),
$$

where p is a probability distribution over the input.

- For quantum channels:

$$
C(\Phi)=\lim _{n \rightarrow \infty} \frac{1}{n} \chi\left(\Phi^{\otimes n}\right),
$$

where χ is an entropic quantity called the Holevo capacity.

- Equivalence of additivity questions [Sho04]

1. additivity of the Holevo capacity χ
2. additivity of minimum output entropy

- von Neuman entropy $H(\rho)=-\operatorname{Tr}(\rho \log \rho)$.
- Minimal Output Entropy of a quantum channel

$$
H_{\min }(\Phi)=\min _{\rho \in M_{d}^{1,+}} H(\Phi(\rho))
$$

- The MOE is not additive! [HW08, Has09]

Non-additivity: half of the story

- Additivity of MOE:

$$
H_{\min }(\Phi \otimes \Psi)=H_{\min }(\Phi)+H_{\min }(\Psi) \quad \forall \Phi, \Psi
$$

Non-additivity: half of the story

- Additivity of MOE:

$$
H_{\min }(\Phi \otimes \Psi)=H_{\min }(\Phi)+H_{\min }(\Psi) \quad \forall \Phi, \Psi
$$

- Only counterexamples known are random, with the choice $\psi=\bar{\Phi}$. Asymptotic regime: k fixed, $n \rightarrow \infty, d \sim t k n$ for fixed $t \in(0,1)$.

Non-additivity: half of the story

- Additivity of MOE:

$$
H_{\min }(\Phi \otimes \Psi)=H_{\min }(\Phi)+H_{\min }(\Psi) \quad \forall \Phi, \Psi
$$

- Only counterexamples known are random, with the choice $\psi=\bar{\Phi}$. Asymptotic regime: k fixed, $n \rightarrow \infty, d \sim t k n$ for fixed $t \in(0,1)$.

Theorem. [CN10] For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z_{n}=[\Phi \otimes \bar{\Phi}]\left(\omega_{\text {tnk }}\right)$ converge to

$$
\lambda=(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) \in \Delta_{k^{2}} .
$$

We have $H_{\text {min }}(\Phi \otimes \bar{\Phi}) \leqslant H(\lambda)$.

Non-additivity: half of the story

- Additivity of MOE:

$$
H_{\min }(\Phi \otimes \Psi)=H_{\min }(\Phi)+H_{\min }(\Psi) \quad \forall \Phi, \Psi
$$

- Only counterexamples known are random, with the choice $\psi=\bar{\Phi}$. Asymptotic regime: k fixed, $n \rightarrow \infty, d \sim t k n$ for fixed $t \in(0,1)$.

Theorem. [CN10] For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z_{n}=[\Phi \otimes \bar{\Phi}]\left(\omega_{\text {tnk }}\right)$ converge to

$$
\lambda=(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) \in \Delta_{k^{2}} .
$$

We have $H_{\text {min }}(\Phi \otimes \bar{\Phi}) \leqslant H(\lambda)$.

- Previously known bound (deterministic, comes from linear algebra): for all t, n, k, the largest eigenvalue of Z_{n} is at least t.
- Two improvements:

1. "better" largest eigenvalue,
2. knowledge of the whole spectrum.

Application: product of conjugate channels

- Method of moments: we want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$, in the case where V is a random Haar isometry.

Application: product of conjugate channels

- Method of moments: we want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$, in the case where V is a random Haar isometry.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.

Application: product of conjugate channels

- Method of moments: we want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$, in the case where V is a random Haar isometry.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.

Application: product of conjugate channels

- Method of moments: we want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$, in the case where V is a random Haar isometry.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.
- After doing the loop combinatorics, one is left with maximizing over $\mathcal{S}_{2 p}^{2}$ quantities such as

$$
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right)
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

Application: product of conjugate channels

- Method of moments: we want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$, in the case where V is a random Haar isometry.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.
- After doing the loop combinatorics, one is left with maximizing over $\mathcal{S}_{2 p}^{2}$ quantities such as

$$
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right)
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Use $\# \alpha=2 p-|\alpha| ; d(\alpha, \beta)=\left|\alpha^{-1} \beta\right|$ is a distance on $\mathcal{S}_{2 p}$.

Application: product of conjugate channels

- Method of moments: we want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$, in the case where V is a random Haar isometry.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.
- After doing the loop combinatorics, one is left with maximizing over $\mathcal{S}_{2 p}^{2}$ quantities such as

$$
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right)
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Use $\# \alpha=2 p-|\alpha| ; d(\alpha, \beta)=\left|\alpha^{-1} \beta\right|$ is a distance on $\mathcal{S}_{2 p}$.
- Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.

Application: product of conjugate channels

- Method of moments: we want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$, in the case where V is a random Haar isometry.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.
- After doing the loop combinatorics, one is left with maximizing over $\mathcal{S}_{2 p}^{2}$ quantities such as

$$
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right)
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Use $\# \alpha=2 p-|\alpha| ; d(\alpha, \beta)=\left|\alpha^{-1} \beta\right|$ is a distance on $\mathcal{S}_{2 p}$.
- Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.
- Asymptotic for Weingarten weights:

$$
\mathrm{Wg}(d, \sigma)=d^{-(p+|\sigma|)}\left(\operatorname{Mob}(\sigma)+O\left(d^{-2}\right)\right)
$$

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.

The original diagram

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The diagram with the boxes removed

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.

The wiring for $\alpha=\beta=\mathrm{id}$.

Contribution: $n^{4} \cdot k^{2} \cdot d^{2} \cdot \mathrm{Wg}(\mathrm{id})$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\mathrm{id}, \beta=\delta$.

Contribution: $n^{4} \cdot k^{2} \cdot d^{4} \cdot \mathrm{Wg}(\delta)$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\delta, \beta=\mathrm{id}$.

Contribution: $n^{2} \cdot k^{2} \cdot d^{2} \cdot \mathrm{Wg}(\delta)$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\beta=\delta$.

Contribution: $n^{2} \cdot k^{2} \cdot d^{4} \cdot \mathrm{Wg}(\mathrm{id})$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.

The wiring for $\alpha=\beta=\delta$.

Contribution: $n^{2} \cdot k^{2} \cdot d^{4} \cdot \mathrm{Wg}(i d)$.

- Contributions of diagrams \rightsquigarrow counting the loops \rightsquigarrow statistics over permutations.

Random Tensor Network Integrator

In|(01]:= (* Bell state as input in conjugate channels example; compute overlap of the output with another Bell state *) $e 1=\{\{" U ", 1,0,1\},\{" U * ", 2,1,1\}\} ;$
$e 2=\left\{\left\{" U_{\star} ", 1,1,1\right\},\{" U ", 2,0,1\}\right\} ;$
$e 3=\left\{\{" U ", 1,1,1\},\left\{" U_{\star} ", 1,0,1\right\}\right\} ;$
e4 = $\left\{\left\{" U_{*} ", 2,0,1\right\},\left\{" U^{\prime \prime}, 2,1,1\right\}\right\} ;$
$e 5=\left\{\{" U ", 1,1,2\},\left\{" U_{\star} ", 2,0,2\right\}\right\} ;$
$e 6=\left\{\left\{" U_{*} ", 1,0,2\right\},\{" U ", 2,1,2\}\right\} ;$
$g=\{e 1, e 2, e 3, e 4, e 5, e 6\} ;$
visualizeGraph[g]
integrateHaarUnitary [g, "U", \{d\}, \{n, k\}, nk]

Outfe9 $=\left\{\left\{\{ \}, \frac{d^{2} k^{2} n}{-1+k^{2} n^{2}}+\frac{d k n^{2}}{-1+k^{2} n^{2}}+\frac{d k^{2} n}{k n-k^{3} n^{3}}+\frac{d^{2} k n^{2}}{k n-k^{3} n^{3}}\right\}\right\}$

Thank you!

圊 G. Aubrun.
A naive look at schur-weyl duality.
available on the author's website, 2018.
Teodor Banica and Benoit Collins.
Integration over compact quantum groups.
Publications of the Research Institute for Mathematical Sciences,
43:277-302, 2007.
Dan Bernstein.
The computational complexity of rules for the character table of sn . Journal of Symbolic Computation, 37(6):727-748, 2004.
Benoit Collins and Ion Nechita.
Random quantum channels I: graphical calculus and the Bell state phenomenon.
Communications in Mathematical Physics, 297(2):345-370, 2010.
國 Benoît Collins.
Moments and cumulants of polynomial random variables on unitarygroups, the itzykson-zuber integral, and free probability. International Mathematics Research Notices, 2003(17):953-982, 2003.

圊 Benoît Collins and Piotr Śniady．
Integration with respect to the haar measure on unitary，orthogonal and symplectic group．
Communications in Mathematical Physics，264（3）：773－795， 2006.
圊 Matthew B Hastings．
Superadditivity of communication capacity using entangled inputs．
Nature Physics，5（4）：255－257， 2009.
－Patrick Hayden and Andreas Winter．
Counterexamples to the maximal p－norm multiplicativity conjecture for all $p>1$ ．
Communications in mathematical physics，284（1）：263－280， 2008.
围 Leon Isserlis．
On a formula for the product－moment coefficient of any order of a normal frequency distribution in any number of variables．
Biometrika，12（1／2）：134－139， 1918.
R Roger Penrose．
The road to reality．
Alfred A Knopf，New York， 2005.
\square Claude E．Shannon．

A mathematical theory of communication.
The Bell System Technical Journal, 27(3):379-423, 1948.
Peter W Shor.
Equivalence of additivity questions in quantum information theory. Communications in Mathematical Physics, 246(3):453-472, 2004.
國 Don Weingarten.
Asymptotic behavior of group integrals in the limit of infinite rank. Journal of Mathematical Physics, 19(5):999-1001, 1978.

