Weingarten calculus and applications to Quantum Information Theory

Ion Nechita CNRS, LPT Toulouse

joint work with Benoit Collins, Motohisa Fukuda and Robert König

Tübingen, September 26th, 2018

Talk outline

1. The Weingarten formula

- 2. Graphical Weingarten calculus
- 3. An application to QIT

The Weingarten formula

Computing expectation values

▶ Gaussian integrals: if $X \in \mathbb{C}^d$ is a centered random complex Gaussian vector, i.e. $d\mathbb{P}/dLeb \sim \exp(\langle x, Ax \rangle/2)$, then [Iss18]

$$\mathbb{E}[X_{i_1}\cdots X_{i_p}\bar{X}_{i'_1}\cdots \bar{X}_{i'_p}] = \prod_{\alpha\in\mathcal{S}_p}\prod_{k=1}^p \mathbb{E}[X_{i_k}\bar{X}_{i'_{\alpha(k)}}]$$

Computing expectation values

• Gaussian integrals: if $X \in \mathbb{C}^d$ is a centered random complex Gaussian vector, i.e. $d\mathbb{P}/dLeb \sim \exp(\langle x, Ax \rangle/2)$, then [lss18]

$$\mathbb{E}[X_{i_1}\cdots X_{i_p}\bar{X}_{i'_1}\cdots \bar{X}_{i'_p}] = \prod_{\alpha\in\mathcal{S}_p}\prod_{k=1}^p \mathbb{E}[X_{i_k}\bar{X}_{i'_{\alpha(k)}}]$$

• Spherical integrals: if Y is a uniform random point on the unit sphere of \mathbb{C}^d , then YN is a standard complex Gaussian in \mathbb{C}^d , where N is an independent χ^2 random variable. Thus one can use the Gaussian formula to compute the spherical integrals.

Computing expectation values

• Gaussian integrals: if $X \in \mathbb{C}^d$ is a centered random complex Gaussian vector, i.e. $d\mathbb{P}/dLeb \sim \exp(\langle x, Ax \rangle/2)$, then [lss18]

$$\mathbb{E}[X_{i_1}\cdots X_{i_p}\bar{X}_{i'_1}\cdots \bar{X}_{i'_p}] = \prod_{\alpha\in\mathcal{S}_p}\prod_{k=1}^p \mathbb{E}[X_{i_k}\bar{X}_{i'_{\alpha(k)}}]$$

- Spherical integrals: if Y is a uniform random point on the unit sphere of \mathbb{C}^d , then YN is a standard complex Gaussian in \mathbb{C}^d , where N is an independent χ^2 random variable. Thus one can use the Gaussian formula to compute the spherical integrals.
- Unitary integrals?

The Weingarten formula

Theorem. [Wei78, Col03, CS06] Let d be a positive integer and $\mathbf{i} = (i_1, \dots, i_p), \ \mathbf{i}' = (i'_1, \dots, i'_{p'}), \ \mathbf{j} = (j_1, \dots, j_p), \ \mathbf{j}' = (j'_1, \dots, j'_{p'})$ be tuples of positive integers from $\{1, 2, ..., d\}$. Then, if $p \neq p'$ $\int_{U_i} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U}_{i'_1 j'_1} \cdots \overline{U}_{i'_p j'_{p'}} \mathrm{d} U = 0.$ If p = p'. $\int_{U_{i_1}J_{i_1}} U_{i_1j_1} \cdots U_{i_pj_p} \overline{U}_{i'_1j'_1} \cdots \overline{U}_{i'_pj'_p} \, \mathrm{d}U =$ $\sum \delta_{i_1i'_{\alpha(1)}} \dots \delta_{i_pi'_{\alpha(p)}} \delta_{j_1j'_{\beta(1)}} \dots \delta_{j_pj'_{\beta(p)}} \mathsf{Wg}(d, \alpha^{-1}\beta),$

where Wg is a combinatorial weight, taking as parameters the dimension of the unitary group and a permutation.

The Weingarten formula

Theorem. [Wei78, Col03, CS06] Let d be a positive integer and $\mathbf{i} = (i_1, \dots, i_p), \ \mathbf{i}' = (i'_1, \dots, i'_{p'}), \ \mathbf{j} = (j_1, \dots, j_p), \ \mathbf{j}' = (j'_1, \dots, j'_{p'})$ be tuples of positive integers from $\{1, 2, ..., d\}$. Then, if $p \neq p'$ $\int_{U_i} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U}_{i'_1 j'_1} \cdots \overline{U}_{i'_p j'_{p'}} \mathrm{d} U = 0.$ If p = p'. $\int_{U_1} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U}_{i'_1 j'_1} \cdots \overline{U}_{i'_p j'_p} \, \mathrm{d}U =$ $\sum \delta_{i_1 i'_{\alpha(1)}} \dots \delta_{i_p i'_{\alpha(p)}} \delta_{j_1 j'_{\beta(1)}} \dots \delta_{j_p j'_{\beta(p)}} \mathsf{Wg}(d, \alpha^{-1}\beta),$

where Wg is a combinatorial weight, taking as parameters the dimension of the unitary group and a permutation.

 Has found many applications (especially in RMT, e.g. [Col03]) and extensions (e.g. quantum groups [BC07])

> It is a combinatorial function, in general very difficult to compute

- > It is a combinatorial function, in general very difficult to compute
- It can be obtained, for small *p*, as Wg(*d*, α⁻¹β) = (C⁻¹)_{α,β}, where *C* is the *p*! × *p*! matrix having entries C_{α,β} = d^{#(α⁻¹β)}, where #(·) is the number of cycles function.

- > It is a combinatorial function, in general very difficult to compute
- It can be obtained, for small *p*, as Wg(*d*, α⁻¹β) = (C⁻¹)_{α,β}, where *C* is the *p*! × *p*! matrix having entries C_{α,β} = d^{#(α⁻¹β)}, where #(·) is the number of cycles function.
- Representation-theoretical formula used in practice:

$$\mathsf{Wg}(d,\sigma) = \frac{1}{\rho!^2} \sum_{\lambda \vdash \rho, \ell(\lambda) \leqslant d} \frac{\chi^{\lambda}(e)^2}{s_{\lambda,d}(1)} \chi^{\lambda}(\sigma),$$

where χ^{λ} is the character associated to the partition λ and $s_{\lambda,d}$ is the Schur polynomial. See [Ber04] for the complexity of computing χ^{λ} .

- > It is a combinatorial function, in general very difficult to compute
- It can be obtained, for small *p*, as Wg(*d*, α⁻¹β) = (C⁻¹)_{α,β}, where *C* is the *p*! × *p*! matrix having entries C_{α,β} = d^{#(α⁻¹β)}, where #(·) is the number of cycles function.
- Representation-theoretical formula used in practice:

$$\mathsf{Wg}(d,\sigma) = \frac{1}{\rho!^2} \sum_{\lambda \vdash \rho, \ell(\lambda) \leqslant d} \frac{\chi^{\lambda}(e)^2}{s_{\lambda,d}(1)} \chi^{\lambda}(\sigma),$$

where χ^{λ} is the character associated to the partition λ and $s_{\lambda,d}$ is the Schur polynomial. See [Ber04] for the complexity of computing χ^{λ} .

Important asymptotic behavior at large d, fixed p:

$$\mathsf{Wg}(d,\sigma) = (1 + O(d^{-2})) \operatorname{\mathsf{Mob}}(\sigma) d^{-p - |\sigma|},$$

where $|\sigma| = p - \#\sigma$ is the length function. In particular, the matrix *C* above is "almost" diagonal. The Möbius function Mob is multiplicative on the cycles of σ and on an *n*-cycle it's value is $(-1)^{n-1} \operatorname{Cat}_{n-1}$.

- > It is a combinatorial function, in general very difficult to compute
- It can be obtained, for small *p*, as Wg(*d*, α⁻¹β) = (C⁻¹)_{α,β}, where *C* is the *p*! × *p*! matrix having entries C_{α,β} = d^{#(α⁻¹β)}, where #(·) is the number of cycles function.
- Representation-theoretical formula used in practice:

$$\mathsf{Wg}(d,\sigma) = \frac{1}{\rho!^2} \sum_{\lambda \vdash \rho, \ell(\lambda) \leqslant d} \frac{\chi^{\lambda}(e)^2}{s_{\lambda,d}(1)} \chi^{\lambda}(\sigma),$$

where χ^{λ} is the character associated to the partition λ and $s_{\lambda,d}$ is the Schur polynomial. See [Ber04] for the complexity of computing χ^{λ} .

Important asymptotic behavior at large d, fixed p:

$$\mathsf{Wg}(d,\sigma) = (1 + O(d^{-2})) \operatorname{\mathsf{Mob}}(\sigma) d^{-p - |\sigma|},$$

where $|\sigma| = p - \#\sigma$ is the length function. In particular, the matrix *C* above is "almost" diagonal. The Möbius function Mob is multiplicative on the cycles of σ and on an *n*-cycle it's value is $(-1)^{n-1} \operatorname{Cat}_{n-1}$.

• Example: $\int_{\mathcal{U}_d} U_{11} U_{22} U_{33} \overline{U}_{12} \overline{U}_{23} \overline{U}_{31} dU = Wg(d, (123)) = \frac{2}{d(d^2-1)(d^2-2)}$, since there is just one term in the sum, $\alpha = \text{id}$ and $\beta = (123)$.

Schur-Weyl duality

Theorem. [Aub18] Consider the following two subalgebras of $M_{d^p}(\mathbb{C})$: $\mathcal{A} = \operatorname{span}\{A^{\otimes p} : A \in M_d(\mathbb{C})\}$ and $\mathcal{B} = \operatorname{span}\{P_{\sigma} : \sigma \in S_p\}$, where P_{σ} permutes the tensor factors according to σ

$$P_{\sigma}x_1\otimes\cdots\otimes x_{\rho}=x_{\sigma(1)}\otimes\cdots x_{\sigma(\rho)}.$$

Then \mathcal{A} and \mathcal{B} are the commutant of each other.

• We show
$$\mathcal{B}' \subseteq \mathcal{A}$$
. Let $X \in \mathcal{B}'$.

$$\bullet X = \frac{1}{p!} \sum_{\sigma \in S_p} P_{\sigma} X P_{\sigma}^{-1}$$

- $M_{d^p}(\mathbb{C})$ is spanned by simple tensors, so it's enough to show $\sum_{\sigma \in S_p} P_{\sigma} X_1 \otimes \cdots \otimes X_p P_{\sigma}^{-1} \in \mathcal{A}.$
- We have, for i.i.d. ± 1 centered random variables ε_i

$$\sum_{\sigma \in S_p} P_{\sigma} X_1 \otimes \cdots \otimes X_p P_{\sigma}^{-1} = \sum_{\sigma \in S_p} X_{\sigma(1)} \otimes \cdots \otimes X_{\sigma(p)}$$
$$= \mathbb{E}\left[\left(\prod_{i=1}^p \varepsilon_i\right) \left(\sum_{j=1}^p \varepsilon_j X_j\right)^{\otimes p}\right]$$

• One can show $\mathcal{A} = \operatorname{span}\{U^{\otimes p} : A \in \mathcal{U}_d\}.$

Graphical Weingarten calculus

· Graphical formalism inspired by works of Penrose, Coecke, Jones...

- · Graphical formalism inspired by works of Penrose, Coecke, Jones...
- ► Tensors ~→ decorated boxes.

 $M \in V_1 \otimes V_2 \otimes V_3 \otimes V_1^* \otimes V_2^* \qquad x \in V_1 \qquad \varphi \in V_1^*$

- · Graphical formalism inspired by works of Penrose, Coecke, Jones...
- ► Tensors ~→ decorated boxes.

 $M \in V_1 \otimes V_2 \otimes V_3 \otimes V_1^* \otimes V_2^* \qquad x \in V_1 \qquad \varphi \in V_1^*$

• Tensor contractions (or traces) $V \otimes V^* \to \mathbb{C} \rightsquigarrow$ wires.

- · Graphical formalism inspired by works of Penrose, Coecke, Jones...
- ► Tensors ~→ decorated boxes.

 $M \in V_1 \otimes V_2 \otimes V_3 \otimes V_1^* \otimes V_2^* \qquad x \in V_1 \qquad \varphi \in V_1^*$

• Tensor contractions (or traces) $V \otimes V^* \to \mathbb{C} \rightsquigarrow$ wires.

• Maximally entangled vector $\Omega := \sum_{i=1}^{\dim V_1} e_i \otimes e_i \in V_1 \otimes V_1$

"Graphical" Weingarten formula: main idea

$$\begin{split} \int_{\mathcal{U}_d} U_{i_1 j_1} \cdots U_{i_p j_p} \bar{U}_{i'_1 j'_1} \cdots \bar{U}_{i'_p j'_p} \, \mathrm{d}U = \\ & \sum_{\alpha, \beta \in \mathcal{S}_p} \delta_{i_1 i'_{\alpha(1)}} \dots \delta_{i_p i'_{\alpha(p)}} \delta_{j_1 j'_{\beta(1)}} \dots \delta_{j_p j'_{\beta(p)}} \mathsf{Wg}(d, \alpha^{-1}\beta), \end{split}$$

"Graphical" Weingarten formula: main idea

$$\int_{\mathcal{U}_{d}} \mathcal{U}_{i_{1}j_{1}} \cdots \mathcal{U}_{i_{p}j_{p}} \bar{\mathcal{U}}_{i'_{1}j'_{1}} \cdots \bar{\mathcal{U}}_{i'_{p}j'_{p}} \, \mathrm{d}\mathcal{U} = \sum_{\alpha,\beta \in S_{p}} \delta_{i_{1}i'_{\alpha(1)}} \cdots \delta_{i_{p}i'_{\alpha(p)}} \delta_{j_{1}j'_{\beta(1)}} \cdots \delta_{j_{p}j'_{\beta(p)}} \mathrm{Wg}(d, \alpha^{-1}\beta),$$

Consider a diagram D containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

1. Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

- 1. Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- 2. By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D} = 0$.

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

- 1. Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- 2. By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D} = 0$.
- 3. Otherwise, choose a pair of permutations $(\alpha, \beta) \in S_p^2$. These permutations will be used to pair decorations of U/\overline{U} boxes.

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

- 1. Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- 2. By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D} = 0$.
- 3. Otherwise, choose a pair of permutations $(\alpha, \beta) \in S_p^2$. These permutations will be used to pair decorations of U/\overline{U} boxes.
- 4. For all i = 1, ..., p, add a wire between each white decoration of the *i*-th U box and the corresponding white decoration of the $\alpha(i)$ -th \overline{U} box. In a similar manner, use β to pair black decorations.

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

- 1. Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- 2. By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D} = 0$.
- 3. Otherwise, choose a pair of permutations $(\alpha, \beta) \in S_p^2$. These permutations will be used to pair decorations of U/\overline{U} boxes.
- 4. For all i = 1, ..., p, add a wire between each white decoration of the *i*-th U box and the corresponding white decoration of the $\alpha(i)$ -th \overline{U} box. In a similar manner, use β to pair black decorations.
- 5. Erase all U and \overline{U} boxes. The resulting diagram is denoted by $\mathcal{D}_{(\alpha,\beta)}$.

Theorem.

$$\mathbb{E}\mathcal{D} = \sum_{\alpha,\beta\in\mathcal{S}_p} \mathcal{D}_{(\alpha,\beta)} \operatorname{Wg}(d,\alpha\beta^{-1}).$$

• Compute
$$\mathbb{E}|u_{ij}|^2 = \int_{\mathcal{U}(N)} |u_{ij}|^2 \mathrm{d}U.$$

Figure: Diagram for $|u_{ij}|^2 = U_{ij} \cdot (U^*)_{ji}$.

Figure: The U^* box replaced by an \overline{U} box.

Figure: Erase U and \overline{U} boxes.

• Compute $\mathbb{E}|u_{ij}|^2 = \int_{\mathcal{U}(N)} |u_{ij}|^2 \mathrm{d}U.$

Figure: Pair white decorations (red wires) and black decorations (blue wires); only one possible pairing : $\alpha = (1)$ and $\beta = (1)$.

Figure: The only diagram $\mathcal{D}_{\alpha=(1),\beta=(1)} = 1$.

• Compute $\mathbb{E}|u_{ij}|^2 = \int_{\mathcal{U}(N)} |u_{ij}|^2 \mathrm{d}U.$

Figure: The only diagram $\mathcal{D}_{\alpha=(1),\beta=(1)} = 1$.

 $\begin{array}{l} \succ \quad \text{Conclusion} : \\ \mathbb{E}|u_{ij}|^2 = \int |u_{ij}|^2 \mathrm{d}U = \mathcal{D}_{\alpha=(1),\beta=(1)} \cdot \mathsf{Wg}(N,(1)) = 1 \cdot 1/N = 1/N. \end{array}$

Second example

• Compute
$$\mathbb{E}|u_{ij}|^4 = \int_{\mathcal{U}(N)} |u_{ij}|^4 \mathrm{d}U.$$
• Compute $\mathbb{E}|u_{ij}|^4 = \int_{\mathcal{U}(N)} |u_{ij}|^4 dU.$

Figure: Diagram for $|u_{ij}|^2 = U_{ij} \cdot (U^*)_{ji}$.

• Compute $\mathbb{E}|u_{ij}|^4 = \int_{\mathcal{U}(N)} |u_{ij}|^4 dU.$

Figure: The U^* box replaced by an \overline{U} box.

• Compute $\mathbb{E}|u_{ij}|^4 = \int_{\mathcal{U}(N)} |u_{ij}|^4 dU.$

Figure: Erase U and \overline{U} boxes.

• Compute $\mathbb{E}|u_{ij}|^4 = \int_{\mathcal{U}(N)} |u_{ij}|^4 \mathrm{d}U.$

Figure: Pair white decorations (red wires) and black decorations (blue wires); first pairing : $\alpha = (1)(2)$ and $\beta = (1)(2)$.

• Compute $\mathbb{E}|u_{ij}|^4 = \int_{\mathcal{U}(N)} |u_{ij}|^4 \mathrm{d}U.$

Figure: Second pairing : $\alpha = (1)(2)$ and $\beta = (12)$.

• Compute $\mathbb{E}|u_{ij}|^4 = \int_{\mathcal{U}(N)} |u_{ij}|^4 \mathrm{d} U.$

Figure: Third pairing : $\alpha = (12)$ and $\beta = (1)(2)$.

• Compute $\mathbb{E}|u_{ij}|^4 = \int_{\mathcal{U}(N)} |u_{ij}|^4 \mathrm{d} U.$

Figure: Fourth pairing : $\alpha = (12)$ and $\beta = (12)$.

• Compute
$$\mathbb{E}|u_{ij}|^4 = \int_{\mathcal{U}(N)} |u_{ij}|^4 \mathrm{d}U.$$

Conclusion :

$$\begin{split} \mathbb{E}|u_{ij}|^4 &= \int |u_{ij}|^4 dU = \\ \mathcal{D}_{(1)(2),(1)(2)} \cdot Wg(N,(1)(2)) + \\ \mathcal{D}_{(1)(2),(12)} \cdot Wg(N,(12)) + \\ \mathcal{D}_{(12),(1)(2)} \cdot Wg(N,(12)) + \\ \mathcal{D}_{(12),(12)} \cdot Wg(N,(1)(2)) \\ &= Wg(N,(1)(2)) + Wg(N,(12)) + Wg(N,(12)) + Wg(N,(1)(2)) \\ &= \frac{2}{N^2 - 1} - \frac{2}{N(N^2 - 1)} = \frac{2}{N(N + 1)}. \end{split}$$

▶ Consider a fixed matrix $A \in \mathcal{M}_N(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^*AU dU$.

▶ Consider a fixed matrix $A \in \mathcal{M}_N(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^*AU dU$.

Figure: Diagram for U^*AU .

• Consider a fixed matrix $A \in \mathcal{M}_N(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^* A U dU$.

Figure: The U^* box replaced by an \overline{U} box.

• Consider a fixed matrix $A \in \mathcal{M}_N(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^* A U dU$.

Figure: Erase U and \overline{U} boxes.

• Consider a fixed matrix $A \in \mathcal{M}_N(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^* A U d U$.

Figure: Pair white decorations (red wires) and black decorations (blue wires); only one possible pairing : $\alpha = (1)$ and $\beta = (1)$.

• Consider a fixed matrix $A \in \mathcal{M}_N(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^* A U dU$.

Figure: The only diagram $\mathcal{D}_{\alpha=(1),\beta=(1)} = \text{Tr}(A)I_N$.

• Consider a fixed matrix $A \in \mathcal{M}_N(\mathbb{C})$. Compute $\int_{\mathcal{U}(N)} U^* A U d U$.

Figure: The only diagram $\mathcal{D}_{\alpha=(1),\beta=(1)} = \text{Tr}(A)I_N$.

▶ Conclusion : $\int_{\mathcal{U}(N)} U^* A U dU = \mathcal{D}_{\alpha=(1),\beta=(1)} \cdot Wg(N,(1)) = \frac{Tr(A)}{N} I_N.$

Random Tensor Network Integrator

 An implementation of the graphical Weingarten calculus in Mathematica and python

Random Tensor Network Integrator

big00= (* two independent unitary operators *) e1 = ({"U", 1, 0, 1}, ("X", 1, 1, 1); e2 = {({"X", 1, 0, 1}, {"U", 1, 1, 1}; e3 = {("U*, 1, 0, 1), ("U*, 1, 1, 1); e4 = {("V", 1, 0, 1), ("X", 1, 1, 2); e5 = {("X", 1, 0, 2), ("V*, 1, 1, 1); e6 = {("V*, 1, 0, 1), ("V", 1, 1, 1); g = {e1, e2, e3, e4, e5, e6}; visualizedraph[g] intU = integrateHaarUnitary[g, "U", {d1}, {d1}; intUV = integrateHaarUnitary[intU, "V", {d2}, {d2}, {d2}] visualizedraphsion [intUV]

 $\texttt{Out[49]=} \{ \{ \{ \{ \{X, 1, 1, 1\}, \{X, 1, 0, 1\} \}, \{ \{X, 1, 1, 2\}, \{X, 1, 0, 2\} \} \}, 1 \} \}$

An application to QIT

▶ Classical information theory \equiv Shannon theory. Classical states: probability vectors $p = (p_1, ..., p_k)$ with $p_i \ge 0$, $\sum_i p_i = 1$

- Classical information theory \equiv Shannon theory. Classical states: probability vectors $p = (p_1, \dots, p_k)$ with $p_i \ge 0$, $\sum_i p_i = 1$
- Classical channels \equiv Markov transition operators $L : \mathbb{R}^d \to \mathbb{R}^k$, $L_{ij} \ge 0$, $\sum_i L_{ij} = 1$ for all j

- ▶ Classical information theory \equiv Shannon theory. Classical states: probability vectors $p = (p_1, ..., p_k)$ with $p_i \ge 0$, $\sum_i p_i = 1$
- Classical channels \equiv Markov transition operators $L : \mathbb{R}^d \to \mathbb{R}^k$, $L_{ij} \ge 0$, $\sum_i L_{ij} = 1$ for all j
- ▶ Quantum information theory ≡ quantum Shannon theory. Quantum states: positive semidefinite matrices of unit trace $\rho \in M_k(\mathbb{C})$ with $\rho \ge 0$, Tr $\rho = 1$

- ▶ Classical information theory \equiv Shannon theory. Classical states: probability vectors $p = (p_1, ..., p_k)$ with $p_i \ge 0$, $\sum_i p_i = 1$
- Classical channels \equiv Markov transition operators $L : \mathbb{R}^d \to \mathbb{R}^k$, $L_{ij} \ge 0$, $\sum_i L_{ij} = 1$ for all j
- ▶ Quantum information theory ≡ quantum Shannon theory. Quantum states: positive semidefinite matrices of unit trace $\rho \in M_k(\mathbb{C})$ with $\rho \ge 0$, Tr $\rho = 1$
- ▶ Quantum channels ≡ trace preserving, completely positive linear maps $\Phi: M_d(\mathbb{C}) \to M_k(\mathbb{C})$
 - ► Completely positive: map PSD operators to PSD operators & stable by tensoring with the id: $[\Phi \otimes id](\rho) \ge 0$
 - Trace preserving $\operatorname{Tr} \Phi(\rho) = \operatorname{Tr} \rho = 1$

- ▶ Classical information theory \equiv Shannon theory. Classical states: probability vectors $p = (p_1, ..., p_k)$ with $p_i \ge 0$, $\sum_i p_i = 1$
- Classical channels \equiv Markov transition operators $L : \mathbb{R}^d \to \mathbb{R}^k$, $L_{ij} \ge 0$, $\sum_i L_{ij} = 1$ for all j
- ▶ Quantum information theory ≡ quantum Shannon theory. Quantum states: positive semidefinite matrices of unit trace $\rho \in M_k(\mathbb{C})$ with $\rho \ge 0$, Tr $\rho = 1$
- ▶ Quantum channels ≡ trace preserving, completely positive linear maps $\Phi: M_d(\mathbb{C}) \to M_k(\mathbb{C})$
 - ► Completely positive: map PSD operators to PSD operators & stable by tensoring with the id: $[\Phi \otimes id](\rho) \ge 0$
 - Trace preserving $\operatorname{Tr} \Phi(\rho) = \operatorname{Tr} \rho = 1$
- Stinespring dilation theorem: for any quantum channel Φ there exist an integer dimension $n (\rightsquigarrow \text{ size of the environment})$ and an isometry $V : \mathbb{C}^d \to \mathbb{C}^k \otimes \mathbb{C}^n$ such that

$$\Phi(\rho) = [\mathsf{id} \otimes \mathsf{Tr}](V \rho V^*)$$

Graphical representation of quantum channels

• A quantum channel $\Phi: M_d(\mathbb{C}) \to M_k(\mathbb{C})$

• Decorations: $\circ/\bullet \rightsquigarrow \mathbb{C}^d$, $\Box/\bullet \rightsquigarrow \mathbb{C}^k$, $\diamond/\bullet \rightsquigarrow \mathbb{C}^n$

Graphical representation of quantum channels

• A quantum channel $\Phi: M_d(\mathbb{C}) \to M_k(\mathbb{C})$

- Decorations: $\circ/\bullet \rightsquigarrow \mathbb{C}^d$, $\Box/\bullet \rightsquigarrow \mathbb{C}^k$, $\diamond/\bullet \rightsquigarrow \mathbb{C}^n$
- Product of conjugate channels applied to the maximally entangled state $\omega = d^{-1}\Omega\Omega^*$

 Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- ▶ For classical channels, Shannon's second coding theorem [Sha48]:

$$C(L) = \max_{X} I(p, Lp),$$

where p is a probability distribution over the input.

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- ▶ For classical channels, Shannon's second coding theorem [Sha48]:

$$C(L) = \max_{X} I(p, Lp),$$

where p is a probability distribution over the input.

For quantum channels:

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi(\Phi^{\otimes n}),$$

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- ▶ For classical channels, Shannon's second coding theorem [Sha48]:

$$C(L) = \max_{X} I(p, Lp),$$

where p is a probability distribution over the input.

For quantum channels:

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi(\Phi^{\otimes n}),$$

- Equivalence of additivity questions [Sho04]
 - 1. additivity of the Holevo capacity χ
 - 2. additivity of minimum output entropy

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- ▶ For classical channels, Shannon's second coding theorem [Sha48]:

$$C(L) = \max_{X} I(p, Lp),$$

where p is a probability distribution over the input.

For quantum channels:

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi(\Phi^{\otimes n}),$$

- Equivalence of additivity questions [Sho04]
 - 1. additivity of the Holevo capacity χ
 - 2. additivity of minimum output entropy
- von Neuman entropy $H(\rho) = -\text{Tr}(\rho \log \rho)$.

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- For classical channels, Shannon's second coding theorem [Sha48]:

$$C(L) = \max_{X} I(p, Lp),$$

where p is a probability distribution over the input.

For quantum channels:

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi(\Phi^{\otimes n}),$$

- Equivalence of additivity questions [Sho04]
 - 1. additivity of the Holevo capacity χ
 - 2. additivity of minimum output entropy
- von Neuman entropy $H(\rho) = -\text{Tr}(\rho \log \rho)$.
- Minimal Output Entropy of a quantum channel

$$H_{\min}(\Phi) = \min_{\rho \in M_d^{1,+}} H(\Phi(\rho))$$

- Capacity of a (quantum) channel: number of uses of channels needed to reliably transmit 1 bit of information in the limit of large number of channels uses.
- ▶ For classical channels, Shannon's second coding theorem [Sha48]:

$$C(L) = \max_{X} I(p, Lp),$$

where p is a probability distribution over the input.

For quantum channels:

$$C(\Phi) = \lim_{n \to \infty} \frac{1}{n} \chi(\Phi^{\otimes n}),$$

where χ is an entropic quantity called the Holevo capacity.

- Equivalence of additivity questions [Sho04]
 - 1. additivity of the Holevo capacity χ
 - 2. additivity of minimum output entropy
- von Neuman entropy $H(\rho) = -\text{Tr}(\rho \log \rho)$.
- Minimal Output Entropy of a quantum channel

$$H_{\min}(\Phi) = \min_{\rho \in M_d^{1,+}} H(\Phi(\rho))$$

The MOE is not additive! [HW08, Has09]

Additivity of MOE:

 ${\it H}_{\rm min}(\Phi\otimes\Psi)={\it H}_{\rm min}(\Phi)+{\it H}_{\rm min}(\Psi)\quad \forall\Phi,\Psi$

Additivity of MOE:

$$H_{\min}(\Phi \otimes \Psi) = H_{\min}(\Phi) + H_{\min}(\Psi) \quad \forall \Phi, \Psi$$

• Only counterexamples known are random, with the choice $\Psi = \overline{\Phi}$. Asymptotic regime: k fixed, $n \to \infty$, $d \sim tkn$ for fixed $t \in (0, 1)$.

Additivity of MOE:

$$H_{\min}(\Phi\otimes\Psi)=H_{\min}(\Phi)+H_{\min}(\Psi)\quad\forall\Phi,\Psi$$

• Only counterexamples known are random, with the choice $\Psi = \overline{\Phi}$. Asymptotic regime: k fixed, $n \to \infty$, $d \sim tkn$ for fixed $t \in (0, 1)$.

Theorem. [CN10] For all k, t, almost surely as $n \to \infty$, the eigenvalues of $Z_n = [\Phi \otimes \overline{\Phi}](\omega_{tnk})$ converge to

$$\lambda = \left(t + \frac{1-t}{k^2}, \underbrace{\frac{1-t}{k^2}, \dots, \frac{1-t}{k^2}}_{\substack{k^2-1 \text{ times}}}\right) \in \Delta_{k^2}.$$

We have $H_{\min}(\Phi \otimes \overline{\Phi}) \leqslant H(\lambda)$.

Additivity of MOE:

$$H_{\min}(\Phi \otimes \Psi) = H_{\min}(\Phi) + H_{\min}(\Psi) \quad \forall \Phi, \Psi$$

• Only counterexamples known are random, with the choice $\Psi = \overline{\Phi}$. Asymptotic regime: k fixed, $n \to \infty$, $d \sim tkn$ for fixed $t \in (0, 1)$.

Theorem. [CN10] For all k, t, almost surely as $n \to \infty$, the eigenvalues of $Z_n = [\Phi \otimes \overline{\Phi}](\omega_{tnk})$ converge to

$$\lambda = \left(t + \frac{1-t}{k^2}, \underbrace{\frac{1-t}{k^2}, \dots, \frac{1-t}{k^2}}_{\substack{k^2-1 \text{ times}}}\right) \in \Delta_{k^2}.$$

We have $H_{\min}(\Phi \otimes \overline{\Phi}) \leq H(\lambda)$.

- Previously known bound (deterministic, comes from linear algebra): for all t, n, k, the largest eigenvalue of Z_n is at least t.
- Two improvements:
 - 1. "better" largest eigenvalue,
 - 2. knowledge of the whole spectrum.
▶ Method of moments: we want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$, in the case where V is a random Haar isometry.

- ▶ Method of moments: we want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$, in the case where V is a random Haar isometry.
- ▶ One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in \mathcal{S}_{2p}$.

- Method of moments: we want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$, in the case where V is a random Haar isometry.
- ▶ One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in \mathcal{S}_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.

- Method of moments: we want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$, in the case where V is a random Haar isometry.
- ▶ One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in S_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.
- \blacktriangleright After doing the loop combinatorics, one is left with maximizing over \mathcal{S}^2_{2p} quantities such as

$$\#(\gamma^{-1}\alpha) + \#(\alpha^{-1}\beta) + \#(\beta^{-1}\delta),$$

where γ and δ are permutations coding the initial wiring of U/\bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Method of moments: we want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$, in the case where V is a random Haar isometry.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in \mathcal{S}_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.
- \blacktriangleright After doing the loop combinatorics, one is left with maximizing over \mathcal{S}^2_{2p} quantities such as

$$\#(\gamma^{-1}\alpha) + \#(\alpha^{-1}\beta) + \#(\beta^{-1}\delta),$$

where γ and δ are permutations coding the initial wiring of U/\bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

• Use $\#\alpha = 2p - |\alpha|$; $d(\alpha, \beta) = |\alpha^{-1}\beta|$ is a distance on S_{2p} .

- Method of moments: we want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$, in the case where V is a random Haar isometry.
- ▶ One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in S_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.
- \blacktriangleright After doing the loop combinatorics, one is left with maximizing over \mathcal{S}^2_{2p} quantities such as

$$\#(\gamma^{-1}\alpha) + \#(\alpha^{-1}\beta) + \#(\beta^{-1}\delta),$$

where γ and δ are permutations coding the initial wiring of U/\bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Use $\#\alpha = 2p |\alpha|$; $d(\alpha, \beta) = |\alpha^{-1}\beta|$ is a distance on S_{2p} .
- Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.

- Method of moments: we want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$, in the case where V is a random Haar isometry.
- ▶ One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in S_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and d.
- \blacktriangleright After doing the loop combinatorics, one is left with maximizing over \mathcal{S}^2_{2p} quantities such as

$$\#(\gamma^{-1}\alpha) + \#(\alpha^{-1}\beta) + \#(\beta^{-1}\delta),$$

where γ and δ are permutations coding the initial wiring of U/\bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Use $\#\alpha = 2p |\alpha|$; $d(\alpha, \beta) = |\alpha^{-1}\beta|$ is a distance on S_{2p} .
- Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.
- Asymptotic for Weingarten weights:

$$\mathsf{Wg}(d,\sigma) = d^{-(p+|\sigma|)}(\mathsf{Mob}(\sigma) + O(d^{-2})).$$

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The original diagram

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The diagram with the boxes removed

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The wiring for $\alpha = \beta = id$.

Contribution: $n^4 \cdot k^2 \cdot d^2 \cdot Wg(id)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The wiring for $\alpha = id$, $\beta = \delta$.

Contribution: $n^4 \cdot k^2 \cdot d^4 \cdot Wg(\delta)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The wiring for $\alpha = \delta$, $\beta = id$.

Contribution: $n^2 \cdot k^2 \cdot d^2 \cdot Wg(\delta)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The wiring for $\alpha = \beta = \delta$.

Contribution: $n^2 \cdot k^2 \cdot d^4 \cdot Wg(id)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in S_4^2$. Consider the permutation $\delta = (1 \ 4) \ (2 \ 3) \in S_4$.

The wiring for $\alpha = \beta = \delta$.

Contribution: $n^2 \cdot k^2 \cdot d^4 \cdot Wg(id)$.

Contributions of diagrams → counting the loops → statistics over permutations.

Random Tensor Network Integrator

in[01]:= (* Bell state as input in conjugate channels example; compute overlap of the output with another Bell state *)

 $\begin{aligned} \mathbf{e1} &= \{\{ ``U", 1, 0, 1\}, \{ ``U+", 2, 1, 1\} \} \} \\ \mathbf{e2} &= \{ (``U+", 1, 1, 1), (``U", 2, 0, 0, 1) \} \\ \mathbf{e3} &= \{ (``U, 1, 1, 1), (``U", 2, 0, 1) \} \} \\ \mathbf{e4} &= \{ (``U+", 2, 0, 1), (`U", 2, 1, 1\} \} \} \\ \mathbf{e5} &= \{ (``U+", 1, 1, 2), (`U+", 2, 0, 0, 2) \} \\ \mathbf{e6} &= \{ (`U+", 1, 0, 2), (`U", 2, 1, 2\} \} \\ \mathbf{g} &= \{ \mathbf{e4}, \mathbf{e2}, \mathbf{e3}, \mathbf{e4}, \mathbf{e5}, \mathbf{e6} \} \\ \mathbf{visualizeGraph} [g] \\ \mathbf{visualizeGraph} [g] \\ \end{aligned}$

integrateHaarUnitary[g, "U", {d}, {n, k}, nk]

Thank you!

G. Aubrun.

A naive look at schur-weyl duality.

available on the author's website, 2018.

 Teodor Banica and Benoit Collins.
Integration over compact quantum groups.
Publications of the Research Institute for Mathematical Sciences, 43:277–302, 2007.

Dan Bernstein.

The computational complexity of rules for the character table of sn. *Journal of Symbolic Computation*, 37(6):727–748, 2004.

Benoît Collins and Ion Nechita.

Random quantum channels I: graphical calculus and the Bell state phenomenon.

Communications in Mathematical Physics, 297(2):345–370, 2010.

Benoît Collins.

Moments and cumulants of polynomial random variables on unitarygroups, the itzykson-zuber integral, and free probability. *International Mathematics Research Notices*, 2003(17):953–982, 2003.

Benoît Collins and Piotr Śniady.

Integration with respect to the haar measure on unitary, orthogonal and symplectic group.

Communications in Mathematical Physics, 264(3):773-795, 2006.

Matthew B Hastings.

Superadditivity of communication capacity using entangled inputs. *Nature Physics*, 5(4):255–257, 2009.

Patrick Hayden and Andreas Winter.

Counterexamples to the maximal *p*-norm multiplicativity conjecture for all p > 1.

Communications in mathematical physics, 284(1):263–280, 2008.

Leon Isserlis.

On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. *Biometrika*, 12(1/2):134-139, 1918.

Roger Penrose.

Claude E. Shannon.

The road to reality. Alfred A Knopf, New York, 2005.

A mathematical theory of communication. The Bell System Technical Journal, 27(3):379–423, 1948.

Peter W Shor.

Equivalence of additivity questions in quantum information theory. *Communications in Mathematical Physics*, 246(3):453–472, 2004.

Don Weingarten.

Asymptotic behavior of group integrals in the limit of infinite rank. Journal of Mathematical Physics, 19(5):999–1001, 1978.