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Random quantum states

— unstructured models —



Random pure quantum states

e Pure states of a finite dimensional quantum system: [¢)) € H ~ CV.

e Up to an unimportant phase, the set of pure states is the unit sphere of CV.
e For N =2, a pure qubit is a point on the Bloch sphere (unit sphere of R3).
e A random pure state in H = C" is a uniform point on the unit sphere of C".

e One can sample from this distribution by normalizing a vector of N i.i.d.
complex Gaussian random variables, |¥) = X/||X||2.

e Equivalent definition: let U € Uy be a Haar-distributed random unitary
matrix and let |¢g) be a fixed quantum state. Then, |p) = U|wg) has the
same distribution as |1)).

e If, instead of a uniform distribution (U(/N) symmetry), we want to model
random fluctuations around a fixed state |pg), use |p:) = Ut|po), where Uy is
a random unitary Brownian motion. In the limit t — oo, one recovers the
previous model. The quantum state |¢;) is U(N — 1) invariant.

e The structure of H does not play any role here ~» unstructured quantum
states



Random pure states and the induced ensemble

e Induced ensemble : partial trace a random pure state on a composite system
H®K:
p = Tri [P) (],
where [1)) is a random pure state on CN @ CK.

e The random matrix p has the same distribution as a rescaled Wishart matrix
W/ Tr W, where W = XX* with X a Ginibre (i.i.d. Gaussian entries) matrix
from Mpyxk(C).

e The eigenvalue density of p is given by

N
(A1) = Cuk [[AMAG)?,

i=1

where A(\) = H1<i<j<N (N — Nj).
e Exact formula for the average von Neumann entropy [Page, '95]
N—-1

EH(p) = W(NK +1) = W(K +1) = =~ ~ In(N) = N/2K.



Random density matrices - asymptotics

e In the limit N — oo, K ~ cN, for a fixed constant ¢ > 0, the empirical
spectral distribution of the rescaled eigenvalues

LN
Ly = N ;5cN>\,-,

converges almost surely to the Marchenko-Pastur distribution 7721).

e The Marchenko-Pastur (or free Poisson) distribution is defined by

(x —a)(b—x)

71 = max{1 —¢,0}d + Y~
vy

lla’b](x)dx,

where a = (y/c —1)? and b= (y/c +1)%



Random density matrices - asymptotics

Figure: Empirical and limit measures for (N = 1000, K = 1000), (N = 1000, K = 2000)
and (N = 1000, K = 10000).



Random quantum states
associated to graphs

— structured models —



Pure states associated to graphs

e Total Hilbert space has a product structure H = H1 ® - - - @ Hg.

e We want our randomness model to encode initial quantum correlation
between different subsystems.

e The structure of correlations will be encoded in a graph:

o Vertices encode the different subsystems;
o Edges encode the presence of entanglement.



Pure states associated to graphs - examples
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Figure: Graphs with one edge: a loop on one vertex, in simplified notation (a) and in the
standard notation (b), and two vertices connected by one edge, in simplified notation (c)
and in the standard notation (d).



Pure states associated to graphs - examples
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Figure: A linear 2-edge graph, in the simplified notation (a) and in the standard notation
(b). Graph consisting of 3 vertices and 3 bonds (c), one of which is connected to the
same vertex so it forms a loop; (d) the corresponding ensemble of random pure states
defined in a Hilbert space composed of 6 subspaces represented by dark dots.



Pure states associated to graphs - formal definition

e Consider an undirected graph I' consisting of m edges By, ..., By, and k
vertices Vi, ..., V. o
e We associate to ' a pure state (W)W (V| e H=H; Q- ® Hom:

= & o)
{i,j} edge

where |d>,+]> denotes a maximally entangled state:

1 d;N
0) = —= le) @If),
’ d'N x=1

e dimH; = d;N, with d; fixed parameters and N — oo. For each edge {i,},
we have d; = dj.
e At each vertex, a Haar unitary matrix acts on the subsystems

n=2m
Q) Hi > i) = ( X uc> A
i=1 C vertex

e The random unitary matrices Uy, ..., Ui are independent.



Marginals of graph states

— moments and entropy —



Partial tracing random pure graph states

o Non-local properties of the random graph state |W) ~» partition of the set of
all 2m subsystems into two groups, {S, T}.

e Total Hilbert space can be decomposed as a tensor product, H = H1 ® Hs.

e Reduced density operator

pPs = TI’T |\U><\U|

e Graphically, partial traces are denoted at the graph by “crossing” the spaces
‘H; which are being traced out.

Hi Ho Hs

Ha Hs He

Figure: The random pure state supported on n = 6 subspaces is partial traced over the
subspace Hr defined by the set T = {2,4,6}, represented by crosses.The reduced state
ps supported on subspaces corresponding to the set S = {1,3,5}.



Moments

o Use the method of moments: compute limy_, . E Tr(XP) for a random
matrix X.

e Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and i = (i1, ..., 0p), V' = (if,. -, 0,), j = (1, Jp),
i'=(1,---,Jp) be p-tuples of positive integers from {1,2,...,d}. Then

/ Uijp -~ Upjp Uiy - - Upyjy dU =
u(d)

Z 5111’ .. Ipl 5111' a éjpjl’a(}’) Wg(da O‘ﬂil)'
a,BeES,

If p#£ p’ then

/ Uijp -+ Uipjpul/l/ U’/J// dl =0.
u(d)



Network associated to a marginal

e Using the Weingarten formula, one has to find the dominating term in a sum
indexed by permutations of p objects.

e This optimization problem is equivalent to finding the maximum flow in a
network.




Network associated to a marginal

o Network (V, &, w) with vertex set V, edge set £ and edge capacities w.

e The vertex set V = {id, v, 81, ..., Bk}, with two distinguished vertices: the
source id and the sink ~.

e The edges in £ are oriented and they are of three types:

where S;, T; is are the surviving and traced out subsystems at vertex i and
Ej; are the edges from vertex i to vertex j.

e The capacities of the edges are given by:
w(id, 8;) =|Ti| >0
w(Bi,7) =1Si| >0
w(Bi, ) = w(Bj, i) = | Ej > 0.



Main result

Theorem (Collins, N., Zyczkowski '10)

Asymptotically, as N — oo, the p-th moment of the reduced density matrix
behaves as

E Tr(p2) ~N~XP=1 [ combinatorial term + o(1)],
where X is the maximum flow in the network associated to the marginal. The

combinatorial part can be expressed in terms of the residual network obtained after
removing the capacities of the edges that appear in the maximum flow solution.



Fuss-Catalan limit distributions



e Matrix model: 7() is the limit eigenvalue distribution of the random matrix
Xs=Gs - GGG Gy -+ - GF, with i.i.d. Gaussian matrices G;.
e Combinatorics: moments given by

Jram (%))

=0 <1 <o < <os <1, e NC(p)}-

e Free probability: 7(*) = (ﬂ(l))gs, where 71 is the free Poisson (or
Marchenko-Pastur) distribution (of parameter ¢ = 1).

‘‘‘‘‘‘‘‘‘

—
—




Graph marginals with limit Fuss-Catalan distribution, s =1
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Figure: A vertex with one loop (a) and a marginal (b) having as a limit eigenvalue
distribution the Marchenko-Pastur law 7(!). In the network (c), both edges have capacity
one.

e This is the simplest graph state having the Marchenko-Pastur asymptotic
distribution.

e The reduced matrix is obtained by partial tracing an uniformly distributed
pure state, hence it is an element of the induced ensemble.



Graph marginals with limit Fuss-Catalan distribution, s = 2
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Figure: A graph (a) and a marginal (b) having as a limit eigenvalue distribution the
Fuss-Catalan law 7. In the network (c), non-labeled edges have capacity one. A
maximum flow of 3 can be sent from the source id to the sink : one unit through each
path id — i — 7, i = 1,2 and one unit through the path id — 81 — B> — ~. In this
way, the residual network is empty and the only constraint on the geodesic permutations
B1, B is 0, < [B1] < [B2] < 1p, i.e. [A1] and [B2] form a 2-chain in NC(p)



Graph marginals with limit Fuss-Catalan distribution, s > 2
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Figure: An example of a graph state (a) with a marginal (b) having as a limit eigenvalue
distribution the s-th Fuss-Catalan probability measure 7*). The associated network (c)
has a maximal flow of s 4 1, obtained by sending a unit of flow through each §; and a
unit through the path id — 1 — --- — Bs — «. The linear chain condition

[B1] < -+ < [Bs] follows.



Proof techniques

— graphical Weingarten calculus —



Method of moments & unitary integration

e Recall the main Theorem

Theorem

Asymptotically, as N — oo, the p-th moment of the reduced density matrix
behaves as

E Tr(p2) ~N~XP=1 [ combinatorial term + o(1)],

where X is the maximum flow in the network associated to the marginal. The
combinatorial part can be expressed in terms of the residual network obtained after
removing the capacities of the edges that appear in the maximum flow solution.

e Use the method of moments: compute limy_,o E Tr(p%2) for a random graph
state ps.

e Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.



Boxes & wires

e Graphical formalism inspired by work of Penrose, Coecke, Jones, etc.
e Tensors ~ decorated boxes.
*
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e Tensor contractions (or traces) V @ V* — C ~» wires.
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Graphical representation of random graph states
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Figure: A graph state and its graphical representation.



Graphical representation of random graph states
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Figure: A marginal ps of a graph state and its graphical representation.



Recall the Weingarten formula

Theorem (Weingarten formula)

Let d be a positive integer and i = (i1, ...,ip), i = (if, ..., i), i = (1,

<+sJp)s
i'=(1,---,Jp) be p-tuples of positive integers from {1,2,...,d}. Then

/I:{(d) Uiljl U Uipjp U’IIJII o i"; dU =
-1
..6;}7;&(")5]11'23(1) ”'6jpjll3(p) Wg(d7 OA,B )
If p# p' then
Ui1j1 T Uipjp Uil’jl’ Uy dU = 0.

Z/[(d) IP'JP,

e There is a graphical way of reading this formula on the diagrams !



“Graphical” Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and U*.
Apply the following removal procedure:

© Start by replacing U* boxed by U boxes (by reversing decoration shading).

@® By the (algebraic) Weingarten formula, if the number p of U boxes is
different from the number of U boxes, then ED = 0.

© Otherwise, choose a pair of permutations (a, 3) € S3. These permutations
will be used to pair decorations of U/U boxes.

O Foralli=1,...,p, add a wire between each white decoration of the /-th U
box and the corresponding white decoration of the a(i)-th U box. In a similar
manner, use (3 to pair black decorations.

O Erase all U and U boxes. The resulting diagram is denoted by D(a,p)-

Theorem (Collins, N. - CMP '10)

ED = Dia,g We(d, ™).
o.f



First example

o Compute E|u;|*> = fu(N) |ug|* dU.



First example

o Compute E|u;|*> = fu(N) |ug|* dU.
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Figure: Diagram for |uj|* = U; - (U*);i.



First example

o Compute E|u;|*> = fu(N) |ug|* dU.
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Figure: The U* box replaced by an U box.



First example

o Compute E|u;|*> = fu(N) |ug|* dU.
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Figure: Erase U and U boxes.



First example

o Compute E|u;|*> = fu(N) |ug|* dU.

Figure: Pair white decorations (red wires) and black decorations (blue wires); only one
possible pairing : @ = (1) and 8 = (1).



First example

o Compute E|u;|*> = fu(N) |ug|* dU.

Figure: The only diagram D,—(1) s-a) = 1.



First example

o Compute E|u;|*> = fu(N) |ug|* dU.

e Conclusion :
Eluz* = [ usl* AU = Do) 5=y - We(N, (1)) = 1- 1/N = 1/N.



Second example

o Compute E|u;[* = fu(N) |ug[* dU.



Second example

o Compute E|u;[* = fu(N) |ug[* dU.
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Figure: Diagram for |uj|* = Uy - (U*);i.
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Second example

o Compute E|u;[* = fU(N) Juj|* dU.
W] | (
i) p—7 ) t

Figure: The U* box replaced by an U box.
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Second example

o Compute E|u;[* = fu(N) |ug[* dU.
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Figure: Erase U and U boxes.



Second example

o Compute E|u;[* = fu(N) |ug[* dU.

Figure: Pair white decorations (red wires) and black decorations (blue wires); first
pairing : « = (1)(2) and 8 = (1)(2).



Second example

o Compute E|u;[* = fu(N) |ug[* dU.

Figure: Second pairing : « = (1)(2) and 8 = (12).



Second example

o Compute E|u;[* = fu(N) |ug[* dU.

Figure: Third pairing : o = (12) and 8 = (1)(2).



Second example

o Compute E|u;[* = fu(N) |ug[* dU.

Figure: Fourth pairing : « = (12) and g = (12).



Second example

o Compute E|u;[* = fu(N) |ug[* dU.

e Conclusion :

By * =/|u,-,-|4dU=

Day2).2) - Wa(N, (1)(2))+

D1y2),12) - We(N, (12))+

D12),1)(2) - We(N, (12))+

D(12) (12) - Wg(N,(1)(2))

= Wg(N, (1)(2)) + Wg(N, (12)) + Wg(N, (12)) + Wg(N, (1)(2))
2 2 2

TNZ-1 N(NZ-1) N(N+1)




Third example : twirling

o Consider a fixed matrix A € My(C). Compute fu(N) U*AUAU.



Third example : twirling

o Consider a fixed matrix A € My(C). Compute [,y U*AUdU.

Figure: Diagram for U*AU.



Third example : twirling

o Consider a fixed matrix A € My(C). Compute [,y U*AUdU.

Figure: The U box replaced by an U box.



Third example : twirling

o Consider a fixed matrix A € My(C). Compute [,y U*AUdU.
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Figure: Erase U and U boxes.



Third example : twirling

o Consider a fixed matrix A € My(C). Compute [,y U*AUdU.

Figure: Pair white decorations (red wires) and black decorations (blue wires); only one
possible pairing : « = (1) and 8 = (1).



Third example : twirling

o Consider a fixed matrix A € My(C). Compute [,y U*AUdU.

@ —

Figure: The only diagram D,_q) =) = Tr(A) In.



Third example : twirling

o Consider a fixed matrix A € My(C). Compute [,y U*AUdU.

@ —

Figure: The only diagram D,_q) =) = Tr(A) In.

e Conclusion : [,y UTAUAU = D1 5-(1) - We(N, (1)) = A .



Conclusion and perspectives



Conclusion and perspectives

e Unstructured models

@ Random pure states from unitary Brownian motion lead naturally to (non
unitarily invariant) induced measures.

@® Try to provide “environmental” models for measures on states defined
geometrically, via distances (following Osipov and Zyczkowski).

e Structured models
@ Study lattice graphs.
@® Connection with free probability: classical and free multiplicative convolution
semigroups.
©® Dual graphs: vertices are GHZ states and edges represent unitary coupling.
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