Graphical calculus for Random Quantum Channels

Ion Nechita

University of Ottawa & CNRS, LPT Toulouse joint work with Benoît Collins

Quantum Information Theory program Mittag-Leffler Institute, November 23, 2010

Random quantum channels & additivity problems

• Quantum channels: CPTP maps $\Phi : \mathcal{M}_{in}(\mathbb{C}) \to \mathcal{M}_{out}(\mathbb{C})$

- Quantum channels: CPTP maps $\Phi : \mathcal{M}_{in}(\mathbb{C}) \to \mathcal{M}_{out}(\mathbb{C})$
- Rényi entropies

$$p > 0$$
 $H^p(\rho) = \frac{\log \operatorname{Tr} \rho^p}{1-\rho}, \quad H^1(\rho) = H(\rho) = -\operatorname{Tr}(\rho \log \rho).$

- Quantum channels: CPTP maps $\Phi : \mathcal{M}_{in}(\mathbb{C}) \to \mathcal{M}_{out}(\mathbb{C})$
- Rényi entropies

$$p > 0$$
 $H^p(\rho) = rac{\log \operatorname{Tr} \rho^p}{1-p},$ $H^1(\rho) = H(\rho) = -\operatorname{Tr}(\rho \log \rho).$

• *p*-Minimal Output Entropy of a quantum channel

$$egin{aligned} \mathcal{H}^{p}_{\min}(\Phi) &= \min_{
ho \in \mathcal{M}_{\mathrm{in}}(\mathbb{C})} \mathcal{H}^{
ho}(\Phi(
ho)) \ &= \min_{x \in \mathbb{C}^{\mathrm{in}}} \mathcal{H}^{
ho}(\Phi(P_{x})) \end{aligned}$$

- Quantum channels: CPTP maps $\Phi : \mathcal{M}_{in}(\mathbb{C}) \to \mathcal{M}_{out}(\mathbb{C})$
- Rényi entropies

$$p > 0$$
 $H^p(\rho) = rac{\log \operatorname{Tr} \rho^p}{1-p},$ $H^1(\rho) = H(\rho) = -\operatorname{Tr}(\rho \log \rho).$

p-Minimal Output Entropy of a quantum channel

$$egin{aligned} &\mathcal{H}^p_{\min}(\Phi) = \min_{
ho \in \mathcal{M}_{\mathrm{in}}(\mathbb{C})} \mathcal{H}^p(\Phi(
ho)) \ &= \min_{x \in \mathbb{C}^{\mathrm{in}}} \mathcal{H}^p(\Phi(P_x)) \end{aligned}$$

• Is the *p*-MOE additive ?

$$H^p_{\min}(\Phi\otimes\Psi)=H^p_{\min}(\Phi)+H^p_{\min}(\Psi)\quad \forall\Phi,\Psi.$$

- Quantum channels: CPTP maps $\Phi : \mathcal{M}_{in}(\mathbb{C}) \to \mathcal{M}_{out}(\mathbb{C})$
- Rényi entropies

$$p > 0$$
 $H^p(\rho) = rac{\log \operatorname{Tr} \rho^p}{1-p}, \quad H^1(\rho) = H(\rho) = -\operatorname{Tr}(\rho \log \rho).$

p-Minimal Output Entropy of a quantum channel

$$egin{aligned} &\mathcal{H}^p_{\min}(\Phi) = \min_{
ho \in \mathcal{M}_{\mathrm{in}}(\mathbb{C})} \mathcal{H}^p(\Phi(
ho)) \ &= \min_{x \in \mathbb{C}^{\mathrm{in}}} \mathcal{H}^p(\Phi(P_x)) \end{aligned}$$

Is the p-MOE additive ?

$$H^p_{\min}(\Phi\otimes\Psi)=H^p_{\min}(\Phi)+H^p_{\min}(\Psi)\quad \forall\Phi,\Psi.$$

• NO !!!

- p > 1: Hayden '07, Hayden & Winter '08, Aubrun, Szarek & Werner '09
- p = 1: Hastings '08, Fukuda & King '09, Horodecki & Brandao '09, Aubrun, Szarek & Werner '10

 Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.

Importance of additivity

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- P. Shor '04: equivalence of additivity questions in Quantum Information
 - additivity of MOE;
 - 2 additivity of the Holevo capacity χ ;
 - ((strong super-) additivity of the entanglement of formation E_F .

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- P. Shor '04: equivalence of additivity questions in Quantum Information
 - additivity of MOE;
 - 2 additivity of the Holevo capacity χ ;
 - ((strong super-) additivity of the entanglement of formation E_F .
- Additivity proved for some particular channels: unital qubit, depolarizing, entanglement breaking, etc.

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- P. Shor '04: equivalence of additivity questions in Quantum Information
 - additivity of MOE;
 - 2 additivity of the Holevo capacity χ ;
 - ((strong super-) additivity of the entanglement of formation E_F .
- Additivity proved for some particular channels: unital qubit, depolarizing, entanglement breaking, etc.
- Holevo-Werner channel violates additivity of the *p*-Rényi entropy for *p* > 4.79. No known deterministic examples for *p* = 1 or *p* close to 1.

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- P. Shor '04: equivalence of additivity questions in Quantum Information
 - additivity of MOE;
 - 2 additivity of the Holevo capacity χ ;
 - ((strong super-) additivity of the entanglement of formation E_F .
- Additivity proved for some particular channels: unital qubit, depolarizing, entanglement breaking, etc.
- Holevo-Werner channel violates additivity of the *p*-Rényi entropy for *p* > 4.79. No known deterministic examples for *p* = 1 or *p* close to 1.
- Difficult, mathematically challenging problem.

Random quantum channels

• Counterexamples to additivity conjectures are random.

Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random partial isometries

$$\Phi(\rho) = \mathsf{Tr}_{\mathsf{anc}}(V\rho V^*),$$

where V is a Haar partial isometry

$$V: \mathbb{C}^{\mathsf{in}} \to \mathbb{C}^{\mathsf{out}} \otimes \mathbb{C}^{\mathsf{anc}}.$$

Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random partial isometries

$$\Phi(\rho) = \mathsf{Tr}_{\mathsf{anc}}(V\rho V^*),$$

where V is a Haar partial isometry

$$V: \mathbb{C}^{\mathsf{in}} \to \mathbb{C}^{\mathsf{out}} \otimes \mathbb{C}^{\mathsf{anc}}.$$

• Equivalently, via the Stinespring dilation theorem

$$\Phi(\rho) = \mathsf{Tr}_{\mathsf{anc}}(U(\rho \otimes P_y)U^*),$$

where $y \in \mathbb{C}^{\frac{\text{out} \times \text{anc}}{\text{in}}}$ and $U \in \mathcal{M}_{\text{out} \times \text{anc}}(\mathbb{C})$ is a Haar unitary matrix.

Models of interest

Finite rank output

- in = tnk,
- out = *k*,
- anc = *n*,

where $n, k \in \mathbb{N}$ and $t \in (0, 1)$. In general, we shall assume that

- $n \rightarrow \infty$ and k is fixed, but "large";
- t is fixed, and may depend on k.

Models of interest

Finite rank output

- in = tnk,
- out = *k*,
- anc = *n*,

where $n, k \in \mathbb{N}$ and $t \in (0, 1)$. In general, we shall assume that

- $n \rightarrow \infty$ and k is fixed, but "large";
- t is fixed, and may depend on k.

Unbounded rank output

- in = *n*,
- out = *n*,
- anc = *k*,

where $n, k \in \mathbb{N}$ such that

- $n, k \rightarrow \infty$;
- $k/n \rightarrow c$, where c > 0 is a constant parameter.

• Choose Φ to be random and $\Psi = \overline{\Phi}$.

- Choose Φ to be random and $\Psi = \overline{\Phi}$.
- Find lower bounds for $H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$

- Choose Φ to be random and $\Psi = \overline{\Phi}$.
- Find lower bounds for $H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$
 - 1 Hayden, Leung, Winter

- Choose Φ to be random and $\Psi = \overline{\Phi}$.
- Find lower bounds for $H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$
 - 1 Hayden, Leung, Winter
 - Pastings, Fukuda, King

- Choose Φ to be random and $\Psi = \overline{\Phi}$.
- Find lower bounds for $H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$
 - 1 Hayden, Leung, Winter
 - Pastings, Fukuda, King
 - $\textcircled{\textbf{S} Collins, N.} \rightsquigarrow \textbf{see Benoit's talk on Thursday}$

- Choose Φ to be random and $\Psi = \overline{\Phi}$.
- Find lower bounds for $H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$
 - 1 Hayden, Leung, Winter
 - e Hastings, Fukuda, King
- Today : Find upper bounds for $H^p_{\min}(\Phi \otimes \overline{\Phi})$.

- Choose Φ to be random and $\Psi = \overline{\Phi}$.
- Find lower bounds for $H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$
 - 1 Hayden, Leung, Winter
 - e Hastings, Fukuda, King
- Today : Find upper bounds for $H^p_{\min}(\Phi \otimes \overline{\Phi})$.

Strategy

Use trivial bound

$$H^p_{\min}(\Phi\otimes\overline{\Phi})\leqslant H^p\left([\Phi\otimes\overline{\Phi}](X_{12})
ight),$$

for a particular choice of $X_{12} \in \mathcal{M}_{tnk}(\mathbb{C}) \otimes \mathcal{M}_{tnk}(\mathbb{C})$.

- Choose Φ to be random and $\Psi = \overline{\Phi}$.
- Find lower bounds for $H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$
 - Hayden, Leung, Winter
 - e Hastings, Fukuda, King
 - $\textcircled{O} Collins, N. \rightsquigarrow see Benoit's talk on Thursday$
- Today : Find upper bounds for $H^p_{\min}(\Phi \otimes \overline{\Phi})$.

Strategy

Use trivial bound

$$H^p_{\min}(\Phi\otimes\overline{\Phi})\leqslant H^p\left([\Phi\otimes\overline{\Phi}](X_{12})
ight),$$

for a particular choice of $X_{12} \in \mathcal{M}_{tnk}(\mathbb{C}) \otimes \mathcal{M}_{tnk}(\mathbb{C})$.

 X₁₂ = X₁ ⊗ X₂ do not yield counterexamples ⇒ choose a maximally entangled state X₁₂ = E_{in} = |Bell⟩⟨Bell|.

- Choose Φ to be random and $\Psi = \overline{\Phi}$.
- Find lower bounds for $H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$
 - Hayden, Leung, Winter
 - 2 Hastings, Fukuda, King
 - $\textcircled{O} Collins, N. \rightsquigarrow see Benoit's talk on Thursday$
- Today : Find upper bounds for $H^p_{\min}(\Phi \otimes \overline{\Phi})$.

Strategy

Use trivial bound

$$H^p_{\min}(\Phi\otimes\overline{\Phi})\leqslant H^p\left([\Phi\otimes\overline{\Phi}](X_{12})
ight),$$

for a particular choice of $X_{12} \in \mathcal{M}_{tnk}(\mathbb{C}) \otimes \mathcal{M}_{tnk}(\mathbb{C}).$

- X₁₂ = X₁ ⊗ X₂ do not yield counterexamples ⇒ choose a maximally entangled state X₁₂ = E_{in} = |Bell⟩⟨Bell|.
- Bound entropies of the (random) density matrix

 $Z = [\Phi \otimes \overline{\Phi}](E_{\mathsf{in}}) \in \mathcal{M}_{\mathsf{out}}(\mathbb{C}) \otimes \mathcal{M}_{\mathsf{out}}(\mathbb{C}).$

$$\left(t+rac{1-t}{k^2}, rac{1-t}{k^2}, \ldots, rac{1-t}{k^2}
ight).$$

For all k, t, almost surely as $n \to \infty$, the eigenvalues of $Z = [\Phi \otimes \overline{\Phi}](E_{tnk})$ converge to

$$\left(t+rac{1-t}{k^2}, \underbrace{rac{1-t}{k^2}, \ldots, rac{1-t}{k^2}}_{k^2-1 \ times}
ight).$$

• Previously known bound, the Hayden-Winter trick (deterministic, comes from linear algebra): for all *t*, *n*, *k*, the largest eigenvalue of *Z* is at least *t*.

$$\left(t+rac{1-t}{k^2}, \underbrace{rac{1-t}{k^2}, \ldots, rac{1-t}{k^2}}_{k^2-1 \ times}
ight).$$

- Previously known bound, the Hayden-Winter trick (deterministic, comes from linear algebra): for all *t*, *n*, *k*, the largest eigenvalue of *Z* is at least *t*.
- Two improvements:
 - 1 "better" largest eigenvalue,
 - 2 knowledge of the whole spectrum.

$$\left(t+\frac{1-t}{k^2},\underbrace{\frac{1-t}{k^2},\ldots,\frac{1-t}{k^2}}_{\substack{k^2-1 \text{ times}}}\right).$$

- Previously known bound, the Hayden-Winter trick (deterministic, comes from linear algebra): for all *t*, *n*, *k*, the largest eigenvalue of *Z* is at least *t*.
- Two improvements:
 - 1 "better" largest eigenvalue,
 - 2 knowledge of the whole spectrum.
- Precise knowledge of eigenvalues \rightsquigarrow optimal estimates for entropies.

$$\left(t+rac{1-t}{k^2}, \underbrace{rac{1-t}{k^2}, \ldots, rac{1-t}{k^2}}_{k^2-1 \ times}
ight).$$

- Previously known bound, the Hayden-Winter trick (deterministic, comes from linear algebra): for all *t*, *n*, *k*, the largest eigenvalue of *Z* is at least *t*.
- Two improvements:
 - 1 "better" largest eigenvalue,
 - 2 knowledge of the whole spectrum.
- Precise knowledge of eigenvalues \rightsquigarrow optimal estimates for entropies.
- However, smaller eigenvalues are the "worst possible".

- In probability, $cn\lambda_1 \rightarrow 1$.
- Almost surely, $\frac{1}{n^2-1}\sum_{i=2}^{n^2} \delta_{c^2n^2\lambda_i}$ converges to a free Poisson distribution of parameter c^2 .

- In probability, $cn\lambda_1 \rightarrow 1$.
- Almost surely, $\frac{1}{n^2-1}\sum_{i=2}^{n^2} \delta_{c^2n^2\lambda_i}$ converges to a free Poisson distribution of parameter c^2 .
- Large eigenvalue 1/cn due to $\Phi \overline{\Phi}$ symmetry.

- In probability, $cn\lambda_1 \rightarrow 1$.
- Almost surely, $\frac{1}{n^2-1}\sum_{i=2}^{n^2} \delta_{c^2n^2\lambda_i}$ converges to a free Poisson distribution of parameter c^2 .
- Large eigenvalue 1/cn due to $\Phi \overline{\Phi}$ symmetry.
- New phenomenon in Random Matrix Theory: eigenvalues of two different magnitude orders $(n^{-1} \text{ and } n^{-2})$.

- In probability, $cn\lambda_1 \rightarrow 1$.
- Almost surely, $\frac{1}{n^2-1}\sum_{i=2}^{n^2} \delta_{c^2n^2\lambda_i}$ converges to a free Poisson distribution of parameter c^2 .
- Large eigenvalue 1/cn due to $\Phi \overline{\Phi}$ symmetry.
- New phenomenon in Random Matrix Theory: eigenvalues of two different magnitude orders $(n^{-1} \text{ and } n^{-2})$.
- Smaller eigenvalues have non-trivial distribution.

- In probability, $cn\lambda_1 \rightarrow 1$.
- Almost surely, $\frac{1}{n^2-1}\sum_{i=2}^{n^2} \delta_{c^2n^2\lambda_i}$ converges to a free Poisson distribution of parameter c^2 .
- Large eigenvalue 1/cn due to $\Phi \overline{\Phi}$ symmetry.
- New phenomenon in Random Matrix Theory: eigenvalues of two different magnitude orders $(n^{-1} \text{ and } n^{-2})$.
- Smaller eigenvalues have non-trivial distribution.
- Precise knowledge of eigenvalues \rightsquigarrow optimal estimates for entropies.
Free Poisson distribution

• The free Poisson distribution of parameter c > 0 is given by

$$\pi_c = \max(1-c,0)\delta_0 + \frac{\sqrt{4c-(x-1-c)^2}}{2\pi x} \mathbf{1}_{[1+c-2\sqrt{c},1+c+2\sqrt{c}]}(x) \ dx.$$

Free Poisson distribution

• The free Poisson distribution of parameter c > 0 is given by

$$\pi_c = \max(1-c,0)\delta_0 + \frac{\sqrt{4c - (x-1-c)^2}}{2\pi x} \mathbf{1}_{[1+c-2\sqrt{c},1+c+2\sqrt{c}]}(x) \ dx.$$

Free Poisson distribution

• The free Poisson distribution of parameter c > 0 is given by

$$\pi_c = \max(1-c,0)\delta_0 + \frac{\sqrt{4c - (x-1-c)^2}}{2\pi x} \mathbf{1}_{[1+c-2\sqrt{c},1+c+2\sqrt{c}]}(x) \ dx.$$

• Free Poisson Central Limit Theorem:

$$\left[\left(1-\frac{c}{n}\right)\delta_0+\frac{c}{n}\delta_1\right]^{\boxplus n}\to\pi_c.$$

_

For c > 0, consider two independent random quantum channels Φ and Ψ . The eigenvalues $\lambda_1 \ge \cdots \ge \lambda_{n^2}$ of $Z = [\Phi \otimes \Psi](E_n)$ are such that almost surely,

$$\frac{1}{n^2}\sum_{i=1}^{n^2}\delta_{c^2n^2\lambda_i}\implies \pi_{c^2},$$

where π_{c^2} is a free Poisson distribution of parameter c^2 and the " \implies " denotes the convergence in distribution.

For c > 0, consider two independent random quantum channels Φ and Ψ . The eigenvalues $\lambda_1 \ge \cdots \ge \lambda_{n^2}$ of $Z = [\Phi \otimes \Psi](E_n)$ are such that almost surely,

$$\frac{1}{n^2}\sum_{i=1}^{n^2}\delta_{c^2n^2\lambda_i}\implies \pi_{c^2},$$

where π_{c^2} is a free Poisson distribution of parameter c^2 and the " \implies " denotes the convergence in distribution.

 Eigenvalue distribution identical to the Conjugate Channel Model (Φ ⊗ Φ) minus the large eigenvalue.

For c > 0, consider two independent random quantum channels Φ and Ψ . The eigenvalues $\lambda_1 \ge \cdots \ge \lambda_{n^2}$ of $Z = [\Phi \otimes \Psi](E_n)$ are such that almost surely,

$$\frac{1}{n^2}\sum_{i=1}^{n^2}\delta_{c^2n^2\lambda_i}\implies \pi_{c^2},$$

where π_{c^2} is a free Poisson distribution of parameter c^2 and the " \implies " denotes the convergence in distribution.

- Eigenvalue distribution identical to the Conjugate Channel Model (Φ ⊗ Φ) minus the large eigenvalue.
- All the eigenvalues are of order n^{-2} .

For c > 0, consider two independent random quantum channels Φ and Ψ . The eigenvalues $\lambda_1 \ge \cdots \ge \lambda_{n^2}$ of $Z = [\Phi \otimes \Psi](E_n)$ are such that almost surely,

$$\frac{1}{n^2}\sum_{i=1}^{n^2}\delta_{c^2n^2\lambda_i}\implies \pi_{c^2},$$

where π_{c^2} is a free Poisson distribution of parameter c^2 and the " \implies " denotes the convergence in distribution.

- Eigenvalue distribution identical to the Conjugate Channel Model $(\Phi \otimes \overline{\Phi})$ minus the large eigenvalue.
- All the eigenvalues are of order n^{-2} .
- Precise knowledge of eigenvalues \sim optimal estimates for entropies.

von Neumann entropies

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$

von Neumann entropies

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$, all other eigenvalues equal;

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$, all other eigenvalues equal;
 - Full, exact, asymptotic spectrum: $\lambda_1 = t + (1 t)/(k^2)$, all other eigenvalues equal;

von Neumann entropies

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$, all other eigenvalues equal;
 - Full, exact, asymptotic spectrum: $\lambda_1 = t + (1 t)/(k^2)$, all other eigenvalues equal;
 - \sim less uniform spectrum, lower entropy, better lower bounds.

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$, all other eigenvalues equal;
 - Full, exact, asymptotic spectrum: $\lambda_1 = t + (1 t)/(k^2)$, all other eigenvalues equal;
 - $\bullet \, \rightsquigarrow$ less uniform spectrum, lower entropy, better lower bounds.
 - Counter-examples for *p*-Rényi entropy additivity ∀ *p* > 1 for *t* = 1/2 (input is coupled to a qubit).

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$, all other eigenvalues equal;
 - Full, exact, asymptotic spectrum: $\lambda_1 = t + (1 t)/(k^2)$, all other eigenvalues equal;
 - $\bullet \, \rightsquigarrow$ less uniform spectrum, lower entropy, better lower bounds.
 - Counter-examples for *p*-Rényi entropy additivity ∀ *p* > 1 for *t* = 1/2 (input is coupled to a qubit).
- Unbounded rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = 1/k pprox 1/(cn)$

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$, all other eigenvalues equal;
 - Full, exact, asymptotic spectrum: $\lambda_1 = t + (1 t)/(k^2)$, all other eigenvalues equal;
 - $\bullet \, \rightsquigarrow$ less uniform spectrum, lower entropy, better lower bounds.
 - Counter-examples for *p*-Rényi entropy additivity ∀ *p* > 1 for *t* = 1/2 (input is coupled to a qubit).
- Unbounded rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = 1/k \approx 1/(cn)$, $\lambda_2 = \ldots = \lambda_{k^2} = (1 1/k)/(n^2 1)$ spectrum;

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$, all other eigenvalues equal;
 - Full, exact, asymptotic spectrum: $\lambda_1 = t + (1 t)/(k^2)$, all other eigenvalues equal;
 - \sim less uniform spectrum, lower entropy, better lower bounds.
 - Counter-examples for *p*-Rényi entropy additivity ∀ *p* > 1 for *t* = 1/2 (input is coupled to a qubit).
- Unbounded rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = 1/k \approx 1/(cn)$, $\lambda_2 = \ldots = \lambda_{k^2} = (1 1/k)/(n^2 1)$ spectrum;
 - Full, exact, asymptotic spectrum: λ₁ = 1/(cn) , λ₂,..., λ_{k²} of order n⁻², distributed as π_{c²};

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$, all other eigenvalues equal;
 - Full, exact, asymptotic spectrum: $\lambda_1 = t + (1 t)/(k^2)$, all other eigenvalues equal;
 - $\bullet \, \rightsquigarrow$ less uniform spectrum, lower entropy, better lower bounds.
 - Counter-examples for *p*-Rényi entropy additivity ∀ *p* > 1 for *t* = 1/2 (input is coupled to a qubit).
- Unbounded rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = 1/k \approx 1/(cn)$, $\lambda_2 = \ldots = \lambda_{k^2} = (1 - 1/k)/(n^2 - 1)$ spectrum;
 - Full, exact, asymptotic spectrum: λ₁ = 1/(cn) , λ₂,..., λ_{k²} of order n⁻², distributed as π_{c²};
 - \rightarrow less uniform spectrum, lower entropy, better lower bounds: $H_{\min}^{\lambda_1} \leq 2 \log n - \log n/n + o(\log n/n)$ vs. $H_{\min} \leq 2 \log n - 1/2c^2 + o(1)$.
 - The first order of the entropy defect is given by the $n^2 1$ small eigenvalues, and not by the largest eigenvalue.

- Finite rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = t$, all other eigenvalues equal;
 - Full, exact, asymptotic spectrum: $\lambda_1 = t + (1 t)/(k^2)$, all other eigenvalues equal;
 - \sim less uniform spectrum, lower entropy, better lower bounds.
 - Counter-examples for *p*-Rényi entropy additivity ∀ *p* > 1 for *t* = 1/2 (input is coupled to a qubit).
- Unbounded rank outputs
 - "Large eigenvalue" bound : $\lambda_1 = 1/k \approx 1/(cn)$, $\lambda_2 = \ldots = \lambda_{k^2} = (1 1/k)/(n^2 1)$ spectrum;
 - Full, exact, asymptotic spectrum: $\lambda_1 = 1/(cn)$, $\lambda_2, \ldots, \lambda_{k^2}$ of order n^{-2} , distributed as π_{c^2} ;
 - \sim less uniform spectrum, lower entropy, better lower bounds: $H_{\min}^{\lambda_1} \leq 2 \log n - \log n/n + o(\log n/n)$ vs. $H_{\min} \leq 2 \log n - 1/2c^2 + o(1)$.
 - The first order of the entropy defect is given by the $n^2 1$ small eigenvalues, and not by the largest eigenvalue.
 - No need for the conjugate channel trick, one may use independent channels !!!

Graphical calculus for random quantum channels

• Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \rightsquigarrow decorated boxes.

 $M \in V_1 \otimes V_2 \otimes V_3 \otimes V_1^* \otimes V_2^* \qquad x \in V_1 \qquad \varphi \in V_1^*$

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \rightsquigarrow decorated boxes.

 $M \in V_1 \otimes V_2 \otimes V_3 \otimes V_1^* \otimes V_2^* \qquad x \in V_1$

• Tensor contractions (or traces) $V \otimes V^* \to \mathbb{C} \rightsquigarrow$ wires.

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \rightsquigarrow decorated boxes.

 $M \in V_1 \otimes V_2 \otimes V_3 \otimes V_1^* \otimes V_2^* \qquad x \in V_1$

• Tensor contractions (or traces) $V \otimes V^* \to \mathbb{C} \rightsquigarrow$ wires.

 $Tr_{V_1}(D)$

• Bell state Bell = $\sum_{i=1}^{\dim V_1} e_i \otimes e_i \in V_1 \otimes V_1$

$$\begin{bmatrix} Bell \\ \bullet \end{bmatrix} = \bigcirc \bullet$$

• Decorations/labels

$${}^{\bullet}_{\bigcirc} = \mathbf{C}^n \qquad {}^{\bullet}_{\square} = \mathbf{C}^k \qquad {}^{\bullet}_{\Diamond} = \mathbf{C}^{tnk} \qquad {}^{\bullet}_{\triangle} = \mathbf{C}^{t^{-1}}$$

• Single channel (finite rank output)

$$\Box \Phi(X) \bullet = \bigcup U \bullet \bigcup U^* \bullet$$

Decorations/labels

$$\overset{\bullet}{_{\bigcirc}} = \mathbf{C}^n \qquad \overset{\bullet}{_{\square}} = \mathbf{C}^k \qquad \overset{\bullet}{_{\diamond}} = \mathbf{C}^{tnk} \qquad \overset{\bullet}{_{\triangle}} = \mathbf{C}^{t^{-1}}$$

• Single channel (finite rank output)

• Single channel (unbounded rank output, $n, k o \infty$)

$${}^{\bullet}_{\bigcirc} = \mathbf{C}^n \qquad {}^{\bullet}_{\square} = \mathbf{C}^k \qquad {}^{\bullet}_{\Diamond} = \mathbf{C}^{tnk} \qquad {}^{\bullet}_{\triangle} = \mathbf{C}^{t^{-1}}$$

• Product of conjugate channels, finite rank output

$${}^{\bullet}_{\bigcirc} = \mathbf{C}^n \qquad {}^{\bullet}_{\square} = \mathbf{C}^k \qquad {}^{\bullet}_{\diamond} = \mathbf{C}^{tnk} \qquad {}^{\bullet}_{\bigtriangleup} = \mathbf{C}^{t^{-1}}$$

Product of conjugate channels, finite rank output

Product of conjugate channels, unbounded rank output

The Hayden-Winter trick: a graphical perspective

• Output for a maximally entangled input:

• Output for a maximally entangled input:

• Want to show that Z has a large $(\ge t)$ eigenvalue.

• Output for a maximally entangled input:

Want to show that Z has a large (≥ t) eigenvalue. 1st idea: find unit vector x such that (x, Zx) is big.

• Output for a maximally entangled input:

Want to show that Z has a large (≥ t) eigenvalue. 1st idea: find unit vector x such that (x, Zx) is big. Take x = Bell_{k²}.

• 2nd idea: $I_n \ge E_n$

• Conclusion: $\lambda_1(Z) \ge \frac{(tnk)^2}{tn^2k^2} = t$.

- Conclusion: $\lambda_1(Z) \ge \frac{(tnk)^2}{tn^2k^2} = t$.
- The point: using the $U \overline{U}$ symmetry and the Bell state as an input, we get an output with one large eigenvalue, hence a small entropy.
The Hayden-Winter trick

- Conclusion: $\lambda_1(Z) \ge \frac{(tnk)^2}{tn^2k^2} = t$.
- The point: using the $U \overline{U}$ symmetry and the Bell state as an input, we get an output with one large eigenvalue, hence a small entropy.
- Is the choice of the Bell state as an input optimal ? Perhaps not...

The Hayden-Winter trick

- Conclusion: $\lambda_1(Z) \ge \frac{(tnk)^2}{tn^2k^2} = t$.
- The point: using the $U \overline{U}$ symmetry and the Bell state as an input, we get an output with one large eigenvalue, hence a small entropy.
- Is the choice of the Bell state as an input optimal ? Perhaps not...
- Possible improvement: choose an input adapted to the channel: $X_{12} = f(U)$ (work in progress with Benoit and Motohisa).

Dealing with random boxes: graphical Weingarten formula

• Use the method of moments

• Use the method of moments

1 Convergence in moments (finite rank case):

$$\mathbb{E}\operatorname{Tr}(Z^{p})
ightarrow \left(t+rac{1-t}{k^{2}}
ight)^{p}+\left(k^{2}-1
ight)\left(rac{1-t}{k^{2}}
ight)^{p};$$

• Use the method of moments

1 Convergence in moments (finite rank case):

$$\mathbb{E}\operatorname{Tr}(Z^{p})
ightarrow \left(t+rac{1-t}{k^{2}}
ight)^{p}+(k^{2}-1)\left(rac{1-t}{k^{2}}
ight)^{p};$$

Ø Borel-Cantelli for a.s. convergence:

$$\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\mathsf{Tr}(Z^p) - \mathbb{E} \operatorname{Tr}(Z^p))^2\right] < \infty.$$

• Use the method of moments

1 Convergence in moments (finite rank case):

$$\mathbb{E}\operatorname{\mathsf{Tr}}(Z^p) o \left(t+rac{1-t}{k^2}
ight)^p + (k^2-1)\left(rac{1-t}{k^2}
ight)^p;$$

Ø Borel-Cantelli for a.s. convergence:

$$\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\mathsf{Tr}(Z^{p}) - \mathbb{E} \mathsf{Tr}(Z^{p})\right)^{2}\right] < \infty.$$

• We need to compute moments $\mathbb{E}\left[\operatorname{Tr}(Z^{p_1})^{q_1}\cdots\operatorname{Tr}(Z^{p_s})^{q_s}\right]$.

• Use the method of moments

1 Convergence in moments (finite rank case):

$$\mathbb{E}\operatorname{Tr}(Z^{p})
ightarrow \left(t+rac{1-t}{k^{2}}
ight)^{p}+(k^{2}-1)\left(rac{1-t}{k^{2}}
ight)^{p};$$

2 Borel-Cantelli for a.s. convergence:

$$\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\mathsf{Tr}(Z^p) - \mathbb{E} \operatorname{Tr}(Z^p)\right)^2\right] < \infty.$$

- We need to compute moments $\mathbb{E}[\operatorname{Tr}(Z^{p_1})^{q_1}\cdots\operatorname{Tr}(Z^{p_s})^{q_s}].$
- Example (finite rank)

Unitary integration - Weingarten formula

• Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Unitary integration - Weingarten formula

• Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and $\mathbf{i} = (i_1, \dots, i_p)$, $\mathbf{i}' = (i'_1, \dots, i'_p)$, $\mathbf{j} = (j_1, \dots, j_p)$, $\mathbf{j}' = (j'_1, \dots, j'_p)$ be p-tuples of positive integers from $\{1, 2, \dots, d\}$. Then

$$\int_{\mathcal{U}(d)} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U_{i'_1 j'_1}} \cdots \overline{U_{i'_p j'_p}} \, dU = \sum_{\alpha, \beta \in \mathcal{S}_p} \delta_{i_1 i'_{\alpha(1)}} \cdots \delta_{i_p i'_{\alpha(p)}} \delta_{j_1 j'_{\beta(1)}} \cdots \delta_{j_p j'_{\beta(p)}} \, \mathrm{Wg}(d, \alpha \beta^{-1}).$$

If $p \neq p'$ then

$$\int_{\mathcal{U}(d)} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U_{i'_1 j'_1}} \cdots \overline{U_{i'_p j'_{p'}}} \ dU = 0.$$

Unitary integration - Weingarten formula

• Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and $\mathbf{i} = (i_1, \dots, i_p)$, $\mathbf{i}' = (i'_1, \dots, i'_p)$, $\mathbf{j} = (j_1, \dots, j_p)$, $\mathbf{j}' = (j'_1, \dots, j'_p)$ be p-tuples of positive integers from $\{1, 2, \dots, d\}$. Then

$$\int_{\mathcal{U}(d)} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U_{i'_1 j'_1}} \cdots \overline{U_{i'_p j'_p}} \, dU = \sum_{\alpha, \beta \in \mathcal{S}_p} \delta_{i_1 i'_{\alpha(1)}} \cdots \delta_{i_p i'_{\alpha(p)}} \delta_{j_1 j'_{\beta(1)}} \cdots \delta_{j_p j'_{\beta(p)}} \, \mathrm{Wg}(d, \alpha \beta^{-1}).$$

If $p \neq p'$ then

$$\int_{\mathcal{U}(d)} U_{i_1 j_1} \cdots U_{i_p j_p} \overline{U_{i'_1 j'_1}} \cdots \overline{U_{i'_p j'_p j'_p}} \ dU = 0.$$

There is a graphical way of reading this formula on the diagrams !

Consider a diagram D containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

() Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).

- **()** Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- **2** By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D} = 0$.

- **()** Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- **2** By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D} = 0$.
- Otherwise, choose a pair of permutations (α, β) ∈ S²_p. These permutations will be used to pair decorations of U/U boxes.

- **()** Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- **2** By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D} = 0$.
- Otherwise, choose a pair of permutations (α, β) ∈ S²_p. These permutations will be used to pair decorations of U/U boxes.
- ④ For all i = 1,..., p, add a wire between each white decoration of the *i*-th U box and the corresponding white decoration of the α(*i*)-th U box. In a similar manner, use β to pair black decorations.

Consider a diagram D containing random unitary matrices/boxes U and U^* . Apply the following removal procedure:

- **()** Start by replacing U^* boxed by \overline{U} boxes (by reversing decoration shading).
- **2** By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \overline{U} boxes, then $\mathbb{E}\mathcal{D} = 0$.
- Otherwise, choose a pair of permutations (α, β) ∈ S²_p. These permutations will be used to pair decorations of U/U boxes.
- ④ For all i = 1,..., p, add a wire between each white decoration of the *i*-th U box and the corresponding white decoration of the α(*i*)-th U box. In a similar manner, use β to pair black decorations.
- **6** Erase all U and \overline{U} boxes. The resulting diagram is denoted by $\mathcal{D}_{(\alpha,\beta)}$.

Theorem

$$\mathbb{E}\mathcal{D} = \sum_{\alpha,\beta} \mathcal{D}_{(\alpha,\beta)} \operatorname{Wg}(d, \alpha\beta^{-1}).$$

• We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S₄². Consider the permutation δ = (1 4) (2 3) ∈ S₄.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S₄². Consider the permutation δ = (1 4) (2 3) ∈ S₄.

The original diagram

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S₄². Consider the permutation δ = (1 4) (2 3) ∈ S₄.

The diagram with the boxes removed

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S₄². Consider the permutation δ = (1 4) (2 3) ∈ S₄.

The wiring for $\alpha = \beta = id$.

Contribution: $n^4 \cdot k^2 \cdot (tnk)^2 \cdot Wg(id)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 "U" boxes.
- Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S₄². Consider the permutation δ = (1 4) (2 3) ∈ S₄.

The wiring for $\alpha = id$, $\beta = \delta$.

Contribution: $n^4 \cdot k^2 \cdot (tnk)^4 \cdot Wg(\delta)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S₄². Consider the permutation δ = (1 4) (2 3) ∈ S₄.

The wiring for $\alpha = \delta$, $\beta = id$.

Contribution: $n^2 \cdot k^2 \cdot (tnk)^2 \cdot Wg(\delta)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S₄². Consider the permutation δ = (1 4) (2 3) ∈ S₄.

The wiring for $\alpha = \beta = \delta$.

Contribution: $n^2 \cdot k^2 \cdot (tnk)^4 \cdot Wg(id)$.

- We have to compute a sum over all pairings of 4 "U" boxes with 4 " \overline{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S₄². Consider the permutation δ = (1 4) (2 3) ∈ S₄.

The wiring for $\alpha = \beta = \delta$.

Contribution: $n^2 \cdot k^2 \cdot (tnk)^4 \cdot Wg(id)$.

 Contributions of diagrams → counting the loops → statistics over permutations.

• We want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$.

- We want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in \mathcal{S}_{2p}$.

- We want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in \mathcal{S}_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions *n*, *k* and *tnk*.

- We want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in \mathcal{S}_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions *n*, *k* and *tnk*.
- Asymptotic for Weingarten weights ($\sigma \in S_p$):

$$Wg(d, \sigma) = d^{-(p+|\sigma|)}(Mob(\sigma) + O(d^{-2})).$$

- We want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in \mathcal{S}_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions *n*, *k* and *tnk*.
- Asymptotic for Weingarten weights ($\sigma \in S_p$):

$$Wg(d,\sigma) = d^{-(p+|\sigma|)}(Mob(\sigma) + O(d^{-2})).$$

 The case of independent channels is simpler, since "U" boxes cannot be paired to "V" boxes; pairings are indexed by quadruples (α_U, β_U, α_V, β_V) ∈ S⁴_p.

- We want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in \mathcal{S}_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions *n*, *k* and *tnk*.
- Asymptotic for Weingarten weights ($\sigma \in S_p$):

$$\mathsf{Wg}(d,\sigma) = d^{-(p+|\sigma|)}(\mathsf{Mob}(\sigma) + O(d^{-2})).$$

- The case of independent channels is simpler, since "U" boxes cannot be paired to "V" boxes; pairings are indexed by quadruples (α_U, β_U, α_V, β_V) ∈ S⁴_p.
- The unbounded rank case for conjugate channels is more delicate, since the $n^2 1$ smaller eigenvalues are one order of magnitude below the largest eigenvalue.

- We want to compute, for all $p \ge 1$, $\mathbb{E} \operatorname{Tr}(Z^p)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha,\beta)}$, where $\alpha, \beta \in \mathcal{S}_{2p}$.
- $\mathcal{D}_{(\alpha,\beta)}$ is a collection of loops associated to vector spaces of dimensions *n*, *k* and *tnk*.
- Asymptotic for Weingarten weights ($\sigma \in S_p$):

$$\mathsf{Wg}(d,\sigma) = d^{-(p+|\sigma|)}(\mathsf{Mob}(\sigma) + O(d^{-2})).$$

- The case of independent channels is simpler, since "U" boxes cannot be paired to "V" boxes; pairings are indexed by quadruples (α_U, β_U, α_V, β_V) ∈ S⁴_p.
- The unbounded rank case for conjugate channels is more delicate, since the $n^2 1$ smaller eigenvalues are one order of magnitude below the largest eigenvalue. When computing moments of the matrix Z, only the large $(\sim n^{-1})$ eigenvalue gives a contribution. One needs to consider the eigenspace compression QZQ, where $Q = I E_n$ and finally apply interlacing results for eigenvalues.

• Depending on the asymptotic regime, one has to identify asymptotically dominating terms. Computations for fixed *n* are intractable due to the complexity of the Weingarten function.

- Depending on the asymptotic regime, one has to identify asymptotically dominating terms. Computations for fixed *n* are intractable due to the complexity of the Weingarten function.
- After doing the loop combinatorics, one is left with maximizing over S_{2p}^2 quantities such as

$$\#(\gamma^{-1}\alpha) + \#(\alpha^{-1}\beta) + \#(\beta^{-1}\delta) \text{ or} \\ \#(\alpha) + \#(\gamma^{-1}\alpha) + \#(\beta^{-1}\delta) + 2\#(\alpha\beta^{-1}),$$

where γ and δ are permutations coding the initial wiring of U/\overline{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Depending on the asymptotic regime, one has to identify asymptotically dominating terms. Computations for fixed *n* are intractable due to the complexity of the Weingarten function.
- After doing the loop combinatorics, one is left with maximizing over S_{2p}^2 quantities such as

$$\#(\gamma^{-1}\alpha) + \#(\alpha^{-1}\beta) + \#(\beta^{-1}\delta) \text{ or} \\ \#(\alpha) + \#(\gamma^{-1}\alpha) + \#(\beta^{-1}\delta) + 2\#(\alpha\beta^{-1}),$$

where γ and δ are permutations coding the initial wiring of U/\overline{U} boxes and $\#(\cdot)$ is the number of cycles function.

• Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.
Sketch of the proof

- Depending on the asymptotic regime, one has to identify asymptotically dominating terms. Computations for fixed *n* are intractable due to the complexity of the Weingarten function.
- After doing the loop combinatorics, one is left with maximizing over S_{2p}^2 quantities such as

$$\#(\gamma^{-1}\alpha) + \#(\alpha^{-1}\beta) + \#(\beta^{-1}\delta) \text{ or} \\ \#(\alpha) + \#(\gamma^{-1}\alpha) + \#(\beta^{-1}\delta) + 2\#(\alpha\beta^{-1}),$$

where γ and δ are permutations coding the initial wiring of U/\overline{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.
- The free Poisson distribution is characterized by its moments:

$$\int x^p \ d\pi_c(x) = \sum_{\substack{\alpha \in \mathcal{S}_p \\ \#\alpha + \#(\gamma^{-1}\alpha) = p+1}} c^{\#\alpha}.$$

• Graphical calculus for random matrices

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels

- Graphical calculus for random matrices
- · Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels
- Improved bounds for MOE of product channels

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels
- Improved bounds for MOE of product channels
- Importance of lower eigenvalues

- Graphical calculus for random matrices
- · Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels
- Improved bounds for MOE of product channels
- Importance of lower eigenvalues
- Other applications to QIT (with K. Życzkowsski: structured random states associated to graphs which encode their entanglement)

Thank you !

- Collins, N. Random quantum channels I: graphical calculus and the Bell state phenomenon. Comm. Math. Phys. 297 (2010), no. 2, 345-370.
- Ollins, N. Gaussianization and eigenvalue statistics for Random quantum channels (III). To appear in Annals of Applied Probability.
- 6 Collins, N. Eigenvalue and Entropy Statistics for Products of Conjugate Random Quantum Channels. Entropy 2010, 12(6), 1612-1631.
- Ollins, N., Życzkowski Random graph states, maximal flow and Fuss-Catalan distributions. J. Phys. A: Math. Theor. 43 (2010), 275303.