Graphical calculus for
 Random Quantum Channels

Ion Nechita
University of Ottawa \& CNRS, LPT Toulouse joint work with Benoît Collins

Quantum Information Theory program Mittag-Leffler Institute, November 23, 2010

Random quantum channels

$\stackrel{\text { additivity }}{\&} \stackrel{\text { problems }}{ }$

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$
- Rényi entropies

$$
p>0 \quad H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad H^{1}(\rho)=H(\rho)=-\operatorname{Tr}(\rho \log \rho) .
$$

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$
- Rényi entropies

$$
p>0 \quad H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad H^{1}(\rho)=H(\rho)=-\operatorname{Tr}(\rho \log \rho) .
$$

- p-Minimal Output Entropy of a quantum channel

$$
\begin{aligned}
H_{\min }^{p}(\Phi) & =\min _{\rho \in \mathcal{\mathcal { M } _ { \text { in } } (\mathbb { C })}} H^{p}(\Phi(\rho)) \\
& =\min _{x \in \mathbb{C}^{\text {in }}} H^{P}\left(\Phi\left(P_{x}\right)\right)
\end{aligned}
$$

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$
- Rényi entropies

$$
p>0 \quad H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad H^{1}(\rho)=H(\rho)=-\operatorname{Tr}(\rho \log \rho) .
$$

- p-Minimal Output Entropy of a quantum channel

$$
\begin{aligned}
H_{\min }^{p}(\Phi) & =\min _{\rho \in \mathcal{M}_{\mathrm{in}}(\mathbb{C})} H^{p}(\Phi(\rho)) \\
& =\min _{x \in \mathbb{C}^{\text {in }}} H^{P}\left(\Phi\left(P_{x}\right)\right)
\end{aligned}
$$

- Is the p-MOE additive ?

$$
H_{\min }^{p}(\Phi \otimes \Psi)=H_{\min }^{p}(\Phi)+H_{\min }^{p}(\Psi) \quad \forall \Phi, \Psi
$$

Additivity for MOE of quantum channels

- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{\text {in }}(\mathbb{C}) \rightarrow \mathcal{M}_{\text {out }}(\mathbb{C})$
- Rényi entropies

$$
p>0 \quad H^{p}(\rho)=\frac{\log \operatorname{Tr} \rho^{p}}{1-p}, \quad H^{1}(\rho)=H(\rho)=-\operatorname{Tr}(\rho \log \rho) .
$$

- p-Minimal Output Entropy of a quantum channel

$$
\begin{aligned}
H_{\min }^{p}(\Phi) & =\min _{\rho \in \mathcal{\mathcal { M } _ { \text { in } } (\mathbb { C })}} H^{p}(\Phi(\rho)) \\
& =\min _{x \in \mathbb{C}^{\text {in }}} H^{P}\left(\Phi\left(P_{x}\right)\right)
\end{aligned}
$$

- Is the p-MOE additive ?

$$
H_{\min }^{p}(\Phi \otimes \Psi)=H_{\min }^{p}(\Phi)+H_{\min }^{p}(\Psi) \quad \forall \Phi, \Psi
$$

- NO !!!
- $p>1$: Hayden '07, Hayden \& Winter '08, Aubrun, Szarek \& Werner '09
- $p=1$: Hastings '08, Fukuda \& King '09, Horodecki \& Brandao '09, Aubrun, Szarek \& Werner '10

Importance of additivity

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.

Importance of additivity

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- P. Shor '04: equivalence of additivity questions in Quantum Information
(1) additivity of MOE;
(2) additivity of the Holevo capacity χ;
(3) (strong super-) additivity of the entanglement of formation E_{F}.

Importance of additivity

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- P. Shor '04: equivalence of additivity questions in Quantum Information
(1) additivity of MOE;
(2) additivity of the Holevo capacity χ;
(3) (strong super-) additivity of the entanglement of formation E_{F}.
- Additivity proved for some particular channels: unital qubit, depolarizing, entanglement breaking, etc.

Importance of additivity

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- P. Shor '04: equivalence of additivity questions in Quantum Information
(1) additivity of MOE;
(2) additivity of the Holevo capacity χ;
(3) (strong super-) additivity of the entanglement of formation E_{F}.
- Additivity proved for some particular channels: unital qubit, depolarizing, entanglement breaking, etc.
- Holevo-Werner channel violates additivity of the p-Rényi entropy for $p>4.79$. No known deterministic examples for $p=1$ or p close to 1 .

Importance of additivity

- Simple formula for the (classical) capacity of quantum channels: if additivity holds, then there is no need to use inputs entangled over multiple uses of Φ.
- P. Shor '04: equivalence of additivity questions in Quantum Information
(1) additivity of MOE;
(2) additivity of the Holevo capacity χ;
(3) (strong super-) additivity of the entanglement of formation E_{F}.
- Additivity proved for some particular channels: unital qubit, depolarizing, entanglement breaking, etc.
- Holevo-Werner channel violates additivity of the p-Rényi entropy for $p>4.79$. No known deterministic examples for $p=1$ or p close to 1 .
- Difficult, mathematically challenging problem.

Random quantum channels

- Counterexamples to additivity conjectures are random.

Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random partial isometries

$$
\Phi(\rho)=\operatorname{Tr}_{\mathrm{anc}}\left(V \rho V^{*}\right),
$$

where V is a Haar partial isometry

$$
V: \mathbb{C}^{\text {in }} \rightarrow \mathbb{C}^{\text {out }} \otimes \mathbb{C}^{\text {anc }}
$$

Random quantum channels

- Counterexamples to additivity conjectures are random.
- Random quantum channels from random partial isometries

$$
\Phi(\rho)=\operatorname{Tr}_{\mathrm{anc}}\left(V \rho V^{*}\right)
$$

where V is a Haar partial isometry

$$
V: \mathbb{C}^{\text {in }} \rightarrow \mathbb{C}^{\text {out }} \otimes \mathbb{C}^{\text {anc }}
$$

- Equivalently, via the Stinespring dilation theorem

$$
\Phi(\rho)=\operatorname{Tr}_{\mathrm{anc}}\left(U\left(\rho \otimes P_{y}\right) U^{*}\right)
$$

where $y \in \mathbb{C}^{\frac{\text { out } \times \text { anc }}{\text { in }}}$ and $U \in \mathcal{M}_{\text {out } \times \text { anc }}(\mathbb{C})$ is a Haar unitary matrix.

Models of interest

Finite rank output

- in = tnk,
- out $=k$,
- $\mathrm{anc}=n$,
where $n, k \in \mathbb{N}$ and $t \in(0,1)$. In general, we shall assume that
- $n \rightarrow \infty$ and k is fixed, but "large";
- t is fixed, and may depend on k.

Models of interest

Finite rank output

- in =tnk,
- out $=k$,
- $\mathrm{anc}=n$,
where $n, k \in \mathbb{N}$ and $t \in(0,1)$. In general, we shall assume that
- $n \rightarrow \infty$ and k is fixed, but "large";
- t is fixed, and may depend on k.

Unbounded rank output

- $\mathrm{in}=n$,
- out $=n$,
- anc $=k$,
where $n, k \in \mathbb{N}$ such that
- $n, k \rightarrow \infty$;
- $k / n \rightarrow c$, where $c>0$ is a constant parameter.

How to get counterexamples ?

- Choose Φ to be random and $\psi=\bar{\Phi}$.

How to get counterexamples ?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi})$

How to get counterexamples ?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi})$
(1) Hayden, Leung, Winter

How to get counterexamples?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi})$
(1) Hayden, Leung, Winter
(2) Hastings, Fukuda, King

How to get counterexamples?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi})$
(1) Hayden, Leung, Winter
(2) Hastings, Fukuda, King
(3) Collins, N. \leadsto see Benoit's talk on Thursday

How to get counterexamples?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi})$
(1) Hayden, Leung, Winter
(2) Hastings, Fukuda, King
(3) Collins, N. \leadsto see Benoit's talk on Thursday
- Today: Find upper bounds for $H_{\text {min }}^{p}(\Phi \otimes \bar{\Phi})$.

How to get counterexamples?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi})$
(1) Hayden, Leung, Winter
(2) Hastings, Fukuda, King
(3) Collins, N. \leadsto see Benoit's talk on Thursday
- Today: Find upper bounds for $H_{\min }^{p}(\Phi \otimes \bar{\Phi})$.

Strategy

- Use trivial bound

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leqslant H^{p}\left([\Phi \otimes \bar{\Phi}]\left(X_{12}\right)\right),
$$

for a particular choice of $X_{12} \in \mathcal{M}_{\text {tnk }}(\mathbb{C}) \otimes \mathcal{M}_{t n k}(\mathbb{C})$.

How to get counterexamples?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi})$
(1) Hayden, Leung, Winter
(2) Hastings, Fukuda, King
(3) Collins, N. \leadsto see Benoit's talk on Thursday
- Today: Find upper bounds for $H_{\min }^{p}(\Phi \otimes \bar{\Phi})$.

Strategy

- Use trivial bound

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leqslant H^{p}\left([\Phi \otimes \bar{\Phi}]\left(X_{12}\right)\right),
$$

for a particular choice of $X_{12} \in \mathcal{M}_{t n k}(\mathbb{C}) \otimes \mathcal{M}_{t n k}(\mathbb{C})$.

- $X_{12}=X_{1} \otimes X_{2}$ do not yield counterexamples \Rightarrow choose a maximally entangled state $X_{12}=E_{\text {in }}=\mid$ Bell $\rangle\langle$ Bell $|$.

How to get counterexamples?

- Choose Φ to be random and $\Psi=\bar{\Phi}$.
- Find lower bounds for $H_{\text {min }}^{p}(\Phi)=H_{\text {min }}^{p}(\bar{\Phi})$
(1) Hayden, Leung, Winter
(2) Hastings, Fukuda, King
(3) Collins, N. \leadsto see Benoit's talk on Thursday
- Today: Find upper bounds for $H_{\text {min }}^{p}(\Phi \otimes \bar{\Phi})$.

Strategy

- Use trivial bound

$$
H_{\min }^{p}(\Phi \otimes \bar{\Phi}) \leqslant H^{p}\left([\Phi \otimes \bar{\Phi}]\left(X_{12}\right)\right),
$$

for a particular choice of $X_{12} \in \mathcal{M}_{t n k}(\mathbb{C}) \otimes \mathcal{M}_{t n k}(\mathbb{C})$.

- $X_{12}=X_{1} \otimes X_{2}$ do not yield counterexamples \Rightarrow choose a maximally entangled state $X_{12}=E_{\text {in }}=\mid$ Bell $\rangle\langle$ Bell $|$.
- Bound entropies of the (random) density matrix

$$
Z=[\Phi \otimes \bar{\Phi}]\left(E_{\text {in }}\right) \in \mathcal{M}_{\text {out }}(\mathbb{C}) \otimes \mathcal{M}_{\text {out }}(\mathbb{C}) .
$$

Main result - finite rank output

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

Main result - finite rank output

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

- Previously known bound, the Hayden-Winter trick (deterministic, comes from linear algebra): for all t, n, k, the largest eigenvalue of Z is at least t.

Main result - finite rank output

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

- Previously known bound, the Hayden-Winter trick (deterministic, comes from linear algebra): for all t, n, k, the largest eigenvalue of Z is at least t.
- Two improvements:
(1) "better" largest eigenvalue,
(2) knowledge of the whole spectrum.

Main result - finite rank output

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

- Previously known bound, the Hayden-Winter trick (deterministic, comes from linear algebra): for all t, n, k, the largest eigenvalue of Z is at least t.
- Two improvements:
(1) "better" largest eigenvalue,
(2) knowledge of the whole spectrum.
- Precise knowledge of eigenvalues \leadsto optimal estimates for entropies.

Main result - finite rank output

Theorem (Collins + N. '09)

For all k, t, almost surely as $n \rightarrow \infty$, the eigenvalues of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{t n k}\right)$ converge to

$$
(t+\frac{1-t}{k^{2}}, \underbrace{\frac{1-t}{k^{2}}, \ldots, \frac{1-t}{k^{2}}}_{k^{2}-1 \text { times }}) .
$$

- Previously known bound, the Hayden-Winter trick (deterministic, comes from linear algebra): for all t, n, k, the largest eigenvalue of Z is at least t.
- Two improvements:
(1) "better" largest eigenvalue,
(2) knowledge of the whole spectrum.
- Precise knowledge of eigenvalues \leadsto optimal estimates for entropies.
- However, smaller eigenvalues are the "worst possible".

Main result - unbounded rank

Theorem (Collins + N. '09)

For all $c>0$, the eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}$ of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{n}\right)$ satisfy:

- In probability, cn $\lambda_{1} \rightarrow 1$.
- Almost surely, $\frac{1}{n^{2}-1} \sum_{i=2}^{n^{2}} \delta_{c^{2} n^{2} \lambda_{i}}$ converges to a free Poisson distribution of parameter c^{2}.

Main result - unbounded rank

Theorem (Collins + N. '09)

For all $c>0$, the eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}$ of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{n}\right)$ satisfy:

- In probability, cn $\lambda_{1} \rightarrow 1$.
- Almost surely, $\frac{1}{n^{2}-1} \sum_{i=2}^{n^{2}} \delta_{c^{2} n^{2} \lambda_{i}}$ converges to a free Poisson distribution of parameter c^{2}.
- Large eigenvalue $1 / c n$ due to $\Phi-\bar{\Phi}$ symmetry.

Main result - unbounded rank

Theorem (Collins + N. '09)

For all $c>0$, the eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}$ of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{n}\right)$ satisfy:

- In probability, cn $\lambda_{1} \rightarrow 1$.
- Almost surely, $\frac{1}{n^{2}-1} \sum_{i=2}^{n^{2}} \delta_{c^{2} n^{2} \lambda_{i}}$ converges to a free Poisson distribution of parameter c^{2}.
- Large eigenvalue $1 /$ cn due to $\Phi-\bar{\Phi}$ symmetry.
- New phenomenon in Random Matrix Theory: eigenvalues of two different magnitude orders (n^{-1} and n^{-2}).

Main result - unbounded rank

Theorem (Collins + N. '09)

For all $c>0$, the eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}$ of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{n}\right)$ satisfy:

- In probability, cn $\lambda_{1} \rightarrow 1$.
- Almost surely, $\frac{1}{n^{2}-1} \sum_{i=2}^{n^{2}} \delta_{c^{2} n^{2} \lambda_{i}}$ converges to a free Poisson distribution of parameter c^{2}.
- Large eigenvalue $1 / c n$ due to $\Phi-\bar{\Phi}$ symmetry.
- New phenomenon in Random Matrix Theory: eigenvalues of two different magnitude orders (n^{-1} and n^{-2}).
- Smaller eigenvalues have non-trivial distribution.

Main result - unbounded rank

Theorem (Collins + N. '09)

For all $c>0$, the eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}$ of $Z=[\Phi \otimes \bar{\Phi}]\left(E_{n}\right)$ satisfy:

- In probability, cn $\lambda_{1} \rightarrow 1$.
- Almost surely, $\frac{1}{n^{2}-1} \sum_{i=2}^{n^{2}} \delta_{c^{2} n^{2} \lambda_{i}}$ converges to a free Poisson distribution of parameter c^{2}.
- Large eigenvalue $1 /$ cn due to $\Phi-\bar{\Phi}$ symmetry.
- New phenomenon in Random Matrix Theory: eigenvalues of two different magnitude orders (n^{-1} and n^{-2}).
- Smaller eigenvalues have non-trivial distribution.
- Precise knowledge of eigenvalues \leadsto optimal estimates for entropies.

Free Poisson distribution

- The free Poisson distribution of parameter $c>0$ is given by

$$
\pi_{c}=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{[1+c-2 \sqrt{c}, 1+c+2 \sqrt{c}]}(x) d x .
$$

Free Poisson distribution

- The free Poisson distribution of parameter $c>0$ is given by

$$
\pi_{c}=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{[1+c-2 \sqrt{c}, 1+c+2 \sqrt{c}]}(x) d x .
$$

Free Poisson distribution

- The free Poisson distribution of parameter $c>0$ is given by

$$
\pi_{c}=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{[1+c-2 \sqrt{c}, 1+c+2 \sqrt{c}]}(x) d x .
$$

- Free Poisson Central Limit Theorem:

$$
\left[\left(1-\frac{c}{n}\right) \delta_{0}+\frac{c}{n} \delta_{1}\right]^{\boxplus n} \rightarrow \pi_{c} .
$$

Independent channels - unbounded rank

Theorem (Collins + N. '09)

For $c>0$, consider two independent random quantum channels Φ and Ψ. The eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}$ of $Z=[\Phi \otimes \Psi]\left(E_{n}\right)$ are such that almost surely,

$$
\frac{1}{n^{2}} \sum_{i=1}^{n^{2}} \delta_{c^{2} n^{2} \lambda_{i}} \Longrightarrow \pi_{c^{2}},
$$

where $\pi_{c^{2}}$ is a free Poisson distribution of parameter c^{2} and the " \Longrightarrow "denotes the convergence in distribution.

Independent channels - unbounded rank

Theorem (Collins + N. '09)

For $c>0$, consider two independent random quantum channels Φ and Ψ. The eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}$ of $Z=[\Phi \otimes \Psi]\left(E_{n}\right)$ are such that almost surely,

$$
\frac{1}{n^{2}} \sum_{i=1}^{n^{2}} \delta_{c^{2} n^{2} \lambda_{i}} \Longrightarrow \pi_{c^{2}}
$$

where $\pi_{c^{2}}$ is a free Poisson distribution of parameter c^{2} and the " \Longrightarrow "denotes the convergence in distribution.

- Eigenvalue distribution identical to the Conjugate Channel Model $(\Phi \otimes \bar{\Phi})$ minus the large eigenvalue.

Independent channels - unbounded rank

Theorem (Collins + N. '09)

For $c>0$, consider two independent random quantum channels Φ and Ψ. The eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}$ of $Z=[\Phi \otimes \Psi]\left(E_{n}\right)$ are such that almost surely,

$$
\frac{1}{n^{2}} \sum_{i=1}^{n^{2}} \delta_{c^{2} n^{2} \lambda_{i}} \Longrightarrow \pi_{c^{2}}
$$

where $\pi_{c^{2}}$ is a free Poisson distribution of parameter c^{2} and the " \Longrightarrow "denotes the convergence in distribution.

- Eigenvalue distribution identical to the Conjugate Channel Model $(\Phi \otimes \bar{\Phi})$ minus the large eigenvalue.
- All the eigenvalues are of order n^{-2}.

Independent channels - unbounded rank

Theorem (Collins + N. '09)

For $c>0$, consider two independent random quantum channels Φ and Ψ. The eigenvalues $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n^{2}}$ of $Z=[\Phi \otimes \Psi]\left(E_{n}\right)$ are such that almost surely,

$$
\frac{1}{n^{2}} \sum_{i=1}^{n^{2}} \delta_{c^{2} n^{2} \lambda_{i}} \Longrightarrow \pi_{c^{2}}
$$

where $\pi_{c^{2}}$ is a free Poisson distribution of parameter c^{2} and the " \Longrightarrow "denotes the convergence in distribution.

- Eigenvalue distribution identical to the Conjugate Channel Model $(\Phi \otimes \bar{\Phi})$ minus the large eigenvalue.
- All the eigenvalues are of order n^{-2}.
- Precise knowledge of eigenvalues \leadsto optimal estimates for entropies.

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$, all other eigenvalues equal;

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$, all other eigenvalues equal;
- Full, exact, asymptotic spectrum: $\lambda_{1}=t+(1-t) /\left(k^{2}\right)$, all other eigenvalues equal;

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$, all other eigenvalues equal;
- Full, exact, asymptotic spectrum: $\lambda_{1}=t+(1-t) /\left(k^{2}\right)$, all other eigenvalues equal;
- \sim less uniform spectrum, lower entropy, better lower bounds.

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$, all other eigenvalues equal;
- Full, exact, asymptotic spectrum: $\lambda_{1}=t+(1-t) /\left(k^{2}\right)$, all other eigenvalues equal;
- \sim less uniform spectrum, lower entropy, better lower bounds.
- Counter-examples for p-Rényi entropy additivity $\forall p>1$ for $t=1 / 2$ (input is coupled to a qubit).

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$, all other eigenvalues equal;
- Full, exact, asymptotic spectrum: $\lambda_{1}=t+(1-t) /\left(k^{2}\right)$, all other eigenvalues equal;
- \sim less uniform spectrum, lower entropy, better lower bounds.
- Counter-examples for p-Rényi entropy additivity $\forall p>1$ for $t=1 / 2$ (input is coupled to a qubit).
- Unbounded rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=1 / k \approx 1 /(c n)$

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$, all other eigenvalues equal;
- Full, exact, asymptotic spectrum: $\lambda_{1}=t+(1-t) /\left(k^{2}\right)$, all other eigenvalues equal;
- \sim less uniform spectrum, lower entropy, better lower bounds.
- Counter-examples for p-Rényi entropy additivity $\forall p>1$ for $t=1 / 2$ (input is coupled to a qubit).
- Unbounded rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=1 / k \approx 1 /(c n)$, $\lambda_{2}=\ldots=\lambda_{k^{2}}=(1-1 / k) /\left(n^{2}-1\right)$ spectrum;

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$, all other eigenvalues equal;
- Full, exact, asymptotic spectrum: $\lambda_{1}=t+(1-t) /\left(k^{2}\right)$, all other eigenvalues equal;
- \sim less uniform spectrum, lower entropy, better lower bounds.
- Counter-examples for p-Rényi entropy additivity $\forall p>1$ for $t=1 / 2$ (input is coupled to a qubit).
- Unbounded rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=1 / k \approx 1 /(c n)$, $\lambda_{2}=\ldots=\lambda_{k^{2}}=(1-1 / k) /\left(n^{2}-1\right)$ spectrum;
- Full, exact, asymptotic spectrum: $\lambda_{1}=1 /(c n), \lambda_{2}, \ldots, \lambda_{k^{2}}$ of order n^{-2}, distributed as $\pi_{c^{2}}$;

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$, all other eigenvalues equal;
- Full, exact, asymptotic spectrum: $\lambda_{1}=t+(1-t) /\left(k^{2}\right)$, all other eigenvalues equal;
- \sim less uniform spectrum, lower entropy, better lower bounds.
- Counter-examples for p-Rényi entropy additivity $\forall p>1$ for $t=1 / 2$ (input is coupled to a qubit).
- Unbounded rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=1 / k \approx 1 /(c n)$, $\lambda_{2}=\ldots=\lambda_{k^{2}}=(1-1 / k) /\left(n^{2}-1\right)$ spectrum;
- Full, exact, asymptotic spectrum: $\lambda_{1}=1 /(c n), \lambda_{2}, \ldots, \lambda_{k^{2}}$ of order n^{-2}, distributed as $\pi_{c^{2}}$;
- \leadsto less uniform spectrum, lower entropy, better lower bounds: $H_{\text {min }}^{\lambda_{1}} \leqslant 2 \log n-\log n / n+o(\log n / n)$ vs. $H_{\text {min }} \leqslant 2 \log n-1 / 2 c^{2}+o(1)$.
- The first order of the entropy defect is given by the $n^{2}-1$ small eigenvalues, and not by the largest eigenvalue.

von Neumann entropies

- Finite rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=t$, all other eigenvalues equal;
- Full, exact, asymptotic spectrum: $\lambda_{1}=t+(1-t) /\left(k^{2}\right)$, all other eigenvalues equal;
- \sim less uniform spectrum, lower entropy, better lower bounds.
- Counter-examples for p-Rényi entropy additivity $\forall p>1$ for $t=1 / 2$ (input is coupled to a qubit).
- Unbounded rank outputs
- "Large eigenvalue" bound : $\lambda_{1}=1 / k \approx 1 /(c n)$,
$\lambda_{2}=\ldots=\lambda_{k^{2}}=(1-1 / k) /\left(n^{2}-1\right)$ spectrum;
- Full, exact, asymptotic spectrum: $\lambda_{1}=1 /(c n), \lambda_{2}, \ldots, \lambda_{k^{2}}$ of order n^{-2}, distributed as $\pi_{c^{2}}$;
- \leadsto less uniform spectrum, lower entropy, better lower bounds: $H_{\text {min }}^{\lambda_{1}} \leqslant 2 \log n-\log n / n+o(\log n / n)$ vs. $H_{\text {min }} \leqslant 2 \log n-1 / 2 c^{2}+o(1)$.
- The first order of the entropy defect is given by the $n^{2}-1$ small eigenvalues, and not by the largest eigenvalue.
- No need for the conjugate channel trick, one may use independent channels !!!

Graphical calculus for random quantum channels

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \leadsto decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*} \quad x \in V_{1} \quad \varphi \in V_{1}^{*}
$$

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \leadsto decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*}
$$

$$
x \in V_{1}
$$

$$
\varphi \in V_{1}^{*}
$$

- Tensor contractions (or traces) $V \otimes V^{*} \rightarrow \mathbb{C} \leadsto$ wires.

$$
\operatorname{Tr}(\mathrm{C})
$$

$\operatorname{Tr}_{V_{1}}$ (D)

Boxes \& wires

- Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
- Tensors \leadsto decorated boxes.

$$
M \in V_{1} \otimes V_{2} \otimes V_{3} \otimes V_{1}^{*} \otimes V_{2}^{*} \quad x \in V_{1} \quad \varphi \in V_{1}^{*}
$$

- Tensor contractions (or traces) $V \otimes V^{*} \rightarrow \mathbb{C} \leadsto$ wires.

$$
\operatorname{Tr}(\mathrm{C})
$$

- Bell state Bell $=\sum_{i=1}^{\operatorname{dim} V_{1}} e_{i} \otimes e_{i} \in V_{1} \otimes V_{1}$

Graphical representation of quantum channels

- Decorations/labels

$$
\stackrel{\bullet}{\circ}=\mathbf{C}^{n} \quad \stackrel{■}{ } \quad \stackrel{C^{k}}{\diamond}=\mathbf{C}^{t n k} \quad \stackrel{\Delta}{\Delta}=\mathbf{C}^{t^{-1}}
$$

- Single channel (finite rank output)

Graphical representation of quantum channels

- Decorations/labels

$$
\stackrel{\bullet}{\circ}=\mathbf{C}^{n} \quad \stackrel{\square}{\square}=\mathbf{C}^{k} \quad \stackrel{\diamond}{ }=\mathbf{C}^{t n k} \quad \stackrel{\Delta}{\Delta}=\mathbf{C}^{t^{-1}}
$$

- Single channel (finite rank output)

- Single channel (unbounded rank output, $n, k \rightarrow \infty$)

Graphical representation of quantum channels

$$
\stackrel{\bullet}{\circ}=\mathbf{C}^{n} \quad \Delta=\mathbf{C}^{k} \quad \dot{\Delta}=\mathbf{C}^{\text {tnk }} \quad \Delta=\mathbf{C}^{t^{-1}}
$$

- Product of conjugate channels, finite rank output

Graphical representation of quantum channels

$$
\stackrel{\bullet}{\circ}=\mathbf{C}^{n} \quad \quad \quad=\mathbf{C}^{k} \quad \dot{\Delta}=\mathbf{C}^{t n k} \quad \Delta=\mathbf{C}^{t^{-1}}
$$

- Product of conjugate channels, finite rank output

- Product of conjugate channels, unbounded rank output

The Hayden-Winter trick: a graphical perspective

The Hayden-Winter trick

- Output for a maximally entangled input:

The Hayden-Winter trick

- Output for a maximally entangled input:

- Want to show that Z has a large $(\geqslant t)$ eigenvalue.

The Hayden-Winter trick

- Output for a maximally entangled input:

- Want to show that Z has a large $(\geqslant t)$ eigenvalue. 1st idea: find unit vector x such that $\langle x, Z x\rangle$ is big.

The Hayden-Winter trick

- Output for a maximally entangled input:

- Want to show that Z has a large $(\geqslant t)$ eigenvalue. 1st idea: find unit vector x such that $\langle x, Z x\rangle$ is big. Take $x=$ Bell $_{k^{2}}$.

The Hayden-Winter trick

The Hayden-Winter trick

- 2nd idea: $I_{n} \geqslant E_{n}$

The Hayden-Winter trick

The Hayden-Winter trick

- Conclusion: $\lambda_{1}(Z) \geqslant \frac{(t n k)^{2}}{t n^{2} k^{2}}=t$.

The Hayden-Winter trick

- Conclusion: $\lambda_{1}(Z) \geqslant \frac{(t n k)^{2}}{t n^{2} k^{2}}=t$.
- The point: using the $U-\bar{U}$ symmetry and the Bell state as an input, we get an output with one large eigenvalue, hence a small entropy.

The Hayden-Winter trick

- Conclusion: $\lambda_{1}(Z) \geqslant \frac{(t n k)^{2}}{t n^{2} k^{2}}=t$.
- The point: using the $U-\bar{U}$ symmetry and the Bell state as an input, we get an output with one large eigenvalue, hence a small entropy.
- Is the choice of the Bell state as an input optimal ? Perhaps not...

The Hayden-Winter trick

- Conclusion: $\lambda_{1}(Z) \geqslant \frac{(t n k)^{2}}{t n^{2} k^{2}}=t$.
- The point: using the $U-\bar{U}$ symmetry and the Bell state as an input, we get an output with one large eigenvalue, hence a small entropy.
- Is the choice of the Bell state as an input optimal ? Perhaps not...
- Possible improvement: choose an input adapted to the channel: $X_{12}=f(U)$ (work in progress with Benoit and Motohisa).

Dealing with random boxes: graphical Weingarten formula

Proof strategy for a.s. spectrum of random channels

- Use the method of moments

Proof strategy for a.s. spectrum of random channels

- Use the method of moments
(1) Convergence in moments (finite rank case):

$$
\mathbb{E} \operatorname{Tr}\left(Z^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p} ;
$$

Proof strategy for a.s. spectrum of random channels

- Use the method of moments
(1) Convergence in moments (finite rank case):

$$
\mathbb{E} \operatorname{Tr}\left(Z^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p} ;
$$

(2) Borel-Cantelli for a.s. convergence:

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\operatorname{Tr}\left(Z^{p}\right)-\mathbb{E} \operatorname{Tr}\left(Z^{p}\right)\right)^{2}\right]<\infty .
$$

Proof strategy for a.s. spectrum of random channels

- Use the method of moments
(1) Convergence in moments (finite rank case):

$$
\mathbb{E} \operatorname{Tr}\left(Z^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p} ;
$$

(2) Borel-Cantelli for a.s. convergence:

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\operatorname{Tr}\left(Z^{p}\right)-\mathbb{E} \operatorname{Tr}\left(Z^{p}\right)\right)^{2}\right]<\infty .
$$

- We need to compute moments $\mathbb{E}\left[\operatorname{Tr}\left(Z^{p_{1}}\right)^{q_{1}} \cdots \operatorname{Tr}\left(Z^{p_{s}}\right)^{q_{s}}\right]$.

Proof strategy for a.s. spectrum of random channels

- Use the method of moments
(1) Convergence in moments (finite rank case):

$$
\mathbb{E} \operatorname{Tr}\left(Z^{p}\right) \rightarrow\left(t+\frac{1-t}{k^{2}}\right)^{p}+\left(k^{2}-1\right)\left(\frac{1-t}{k^{2}}\right)^{p}
$$

(2) Borel-Cantelli for a.s. convergence:

$$
\sum_{n=1}^{\infty} \mathbb{E}\left[\left(\operatorname{Tr}\left(Z^{p}\right)-\mathbb{E} \operatorname{Tr}\left(Z^{p}\right)\right)^{2}\right]<\infty
$$

- We need to compute moments $\mathbb{E}\left[\operatorname{Tr}\left(Z^{p_{1}}\right)^{q_{1}} \ldots \operatorname{Tr}\left(Z^{p_{s}}\right)^{q_{s}}\right]$.
- Example (finite rank)

Unitary integration - Weingarten formula

- Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Unitary integration - Weingarten formula

- Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and $\mathbf{i}=\left(i_{1}, \ldots, i_{p}\right), \mathbf{i}^{\prime}=\left(i_{1}^{\prime}, \ldots, i_{p}^{\prime}\right), \mathbf{j}=\left(j_{1}, \ldots, j_{p}\right)$, $\mathbf{j}^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{p}^{\prime}\right)$ be p-tuples of positive integers from $\{1,2, \ldots, d\}$. Then

$$
\begin{aligned}
& \int_{\mathcal{U}(d)} U_{i_{1} j_{1}} \ldots U_{i_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \ldots \overline{U_{i_{p}^{\prime} j_{p}^{\prime}}} d U= \\
& \sum_{\alpha, \beta \in \mathcal{S}_{p}} \delta_{i_{1} i_{\alpha(1)}^{\prime}} \ldots \delta_{i_{p} i_{\alpha(p)}^{\prime}} \delta_{j_{1} j_{\beta(1)}^{\prime}} \ldots \delta_{j_{p} j_{\beta(p)}^{\prime}} \operatorname{Wg}\left(d, \alpha \beta^{-1}\right)
\end{aligned}
$$

If $p \neq p^{\prime}$ then

$$
\int_{\mathcal{U}(d)} U_{i, j j_{1}} \cdots U_{i j_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \cdots \overline{U_{i_{p^{\prime}, j_{p}^{\prime}}^{\prime}}} d U=0
$$

Unitary integration - Weingarten formula

- Using matrix coordinates, we can reduce our problem to computing integrals over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and $\mathbf{i}=\left(i_{1}, \ldots, i_{p}\right), \mathbf{i}^{\prime}=\left(i_{1}^{\prime}, \ldots, i_{p}^{\prime}\right), \mathbf{j}=\left(j_{1}, \ldots, j_{p}\right)$, $\mathbf{j}^{\prime}=\left(j_{1}^{\prime}, \ldots, j_{p}^{\prime}\right)$ be p-tuples of positive integers from $\{1,2, \ldots, d\}$. Then

$$
\begin{aligned}
& \int_{\mathcal{U}(d)} U_{i_{1} j_{1}} \cdots U_{i_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \ldots \overline{U_{i_{p}^{\prime} j_{p}^{\prime}}} d U= \\
& \sum_{\alpha, \beta \in \mathcal{S}_{p}} \delta_{i_{1} i_{\alpha(1)}^{\prime}} \ldots \delta_{i_{p} i_{\alpha(p)}^{\prime}} \delta_{j_{1} j_{\beta(1)}^{\prime}} \ldots \delta_{j_{p} j_{\beta(p)}^{\prime}} \operatorname{Wg}\left(d, \alpha \beta^{-1}\right)
\end{aligned}
$$

If $p \neq p^{\prime}$ then

$$
\int_{\mathcal{U}(d)} U_{i, j} \cdots U_{i j_{p} j_{p}} \overline{U_{i_{1}^{\prime} j_{1}^{\prime}}} \cdots \overline{U_{i_{p^{\prime}}^{\prime} j_{p^{\prime}}^{\prime}}} d U=0
$$

- There is a graphical way of reading this formula on the diagrams !

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
(2) By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E} \mathcal{D}=0$.

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
(2) By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E} \mathcal{D}=0$.
(3) Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{p}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
(2) By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E} \mathcal{D}=0$.
(3) Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{p}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.
(4) For all $i=1, \ldots, p$, add a wire between each white decoration of the i-th U box and the corresponding white decoration of the $\alpha(i)$-th \bar{U} box. In a similar manner, use β to pair black decorations.

"Graphical" Weingarten formula: graph expansion

Consider a diagram \mathcal{D} containing random unitary matrices/boxes U and U^{*}. Apply the following removal procedure:
(1) Start by replacing U^{*} boxed by \bar{U} boxes (by reversing decoration shading).
(2) By the (algebraic) Weingarten formula, if the number p of U boxes is different from the number of \bar{U} boxes, then $\mathbb{E} \mathcal{D}=0$.
(3) Otherwise, choose a pair of permutations $(\alpha, \beta) \in \mathcal{S}_{p}^{2}$. These permutations will be used to pair decorations of U / \bar{U} boxes.
(4) For all $i=1, \ldots, p$, add a wire between each white decoration of the i-th U box and the corresponding white decoration of the $\alpha(i)$-th \bar{U} box. In a similar manner, use β to pair black decorations.
(5) Erase all U and \bar{U} boxes. The resulting diagram is denoted by $\mathcal{D}_{(\alpha, \beta)}$.

Theorem

$$
\mathbb{E} \mathcal{D}=\sum_{\alpha, \beta} \mathcal{D}_{(\alpha, \beta)} \operatorname{Wg}\left(d, \alpha \beta^{-1}\right)
$$

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$ - finite rank case

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$ - finite rank case

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$ - finite rank case

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " U " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The original diagram

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$ - finite rank case

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The diagram with the boxes removed

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$ - finite rank case

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " U " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\beta=\mathrm{id}$.

Contribution: $n^{4} \cdot k^{2} \cdot(t n k)^{2} \cdot \mathrm{Wg}(\mathrm{id})$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$ - finite rank case

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " U " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\mathrm{id}, \beta=\delta$.

Contribution: $n^{4} \cdot k^{2} \cdot(t n k)^{4} \cdot \mathrm{Wg}(\delta)$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$ - finite rank case

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " U " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\delta, \beta=\mathrm{id}$.

Contribution: $n^{2} \cdot k^{2} \cdot(t n k)^{2} \cdot \mathrm{Wg}(\delta)$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$ - finite rank case

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " \bar{U} " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\beta=\delta$.

Contribution: $n^{2} \cdot k^{2} \cdot(t n k)^{4} \cdot \mathrm{Wg}(\mathrm{id})$.

Example: $\mathbb{E} \operatorname{Tr}\left(Z^{2}\right)$ - finite rank case

- We have to compute a sum over all pairings of 4 " U " boxes with 4 " U " boxes.
- Diagrams associated to pairings are indexed by 2 permutations $(\alpha, \beta) \in \mathcal{S}_{4}^{2}$. Consider the permutation $\delta=(14)(23) \in \mathcal{S}_{4}$.
The wiring for $\alpha=\beta=\delta$.

Contribution: $n^{2} \cdot k^{2} \cdot(t n k)^{4} \cdot \mathrm{Wg}(\mathrm{id})$.

- Contributions of diagrams \leadsto counting the loops \leadsto statistics over permutations.

Sketch of the proof

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.

Sketch of the proof

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.

Sketch of the proof

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and tnk.

Sketch of the proof

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{p}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and tnk.
- Asymptotic for Weingarten weights $\left(\sigma \in \mathcal{S}_{p}\right)$:

$$
\mathrm{Wg}(d, \sigma)=d^{-(p+|\sigma|)}\left(\operatorname{Mob}(\sigma)+O\left(d^{-2}\right)\right)
$$

Sketch of the proof

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{P}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and tnk.
- Asymptotic for Weingarten weights $\left(\sigma \in \mathcal{S}_{p}\right)$:

$$
\mathrm{Wg}(d, \sigma)=d^{-(p+|\sigma|)}\left(\operatorname{Mob}(\sigma)+O\left(d^{-2}\right)\right)
$$

- The case of independent channels is simpler, since " U " boxes cannot be paired to " V " boxes; pairings are indexed by quadruples $\left(\alpha_{U}, \beta_{U}, \alpha_{V}, \beta_{V}\right) \in \mathcal{S}_{p}^{4}$.

Sketch of the proof

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{P}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and tnk.
- Asymptotic for Weingarten weights $\left(\sigma \in \mathcal{S}_{p}\right)$:

$$
\mathrm{Wg}(d, \sigma)=d^{-(p+|\sigma|)}\left(\operatorname{Mob}(\sigma)+O\left(d^{-2}\right)\right)
$$

- The case of independent channels is simpler, since " U " boxes cannot be paired to " V " boxes; pairings are indexed by quadruples $\left(\alpha_{U}, \beta_{U}, \alpha_{V}, \beta_{V}\right) \in \mathcal{S}_{P}^{4}$.
- The unbounded rank case for conjugate channels is more delicate, since the $n^{2}-1$ smaller eigenvalues are one order of magnitude below the largest eigenvalue.

Sketch of the proof

- We want to compute, for all $p \geqslant 1, \mathbb{E} \operatorname{Tr}\left(Z^{P}\right)$.
- One needs to compute the contribution of each diagram $\mathcal{D}_{(\alpha, \beta)}$, where $\alpha, \beta \in \mathcal{S}_{2 p}$.
- $\mathcal{D}_{(\alpha, \beta)}$ is a collection of loops associated to vector spaces of dimensions n, k and tnk.
- Asymptotic for Weingarten weights $\left(\sigma \in \mathcal{S}_{p}\right)$:

$$
\mathrm{Wg}(d, \sigma)=d^{-(p+|\sigma|)}\left(\operatorname{Mob}(\sigma)+O\left(d^{-2}\right)\right)
$$

- The case of independent channels is simpler, since " U " boxes cannot be paired to " V " boxes; pairings are indexed by quadruples $\left(\alpha_{U}, \beta_{U}, \alpha_{V}, \beta_{V}\right) \in \mathcal{S}_{p}^{4}$.
- The unbounded rank case for conjugate channels is more delicate, since the $n^{2}-1$ smaller eigenvalues are one order of magnitude below the largest eigenvalue. When computing moments of the matrix Z, only the large ($\sim n^{-1}$) eigenvalue gives a contribution. One needs to consider the eigenspace compression $Q Z Q$, where $Q=I-E_{n}$ and finally apply interlacing results for eigenvalues.

Sketch of the proof

- Depending on the asymptotic regime, one has to identify asymptotically dominating terms. Computations for fixed n are intractable due to the complexity of the Weingarten function.

Sketch of the proof

- Depending on the asymptotic regime, one has to identify asymptotically dominating terms. Computations for fixed n are intractable due to the complexity of the Weingarten function.
- After doing the loop combinatorics, one is left with maximizing over $S_{2 p}^{2}$ quantities such as

$$
\begin{gathered}
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right) \quad \text { or } \\
\#(\alpha)+\#\left(\gamma^{-1} \alpha\right)+\#\left(\beta^{-1} \delta\right)+2 \#\left(\alpha \beta^{-1}\right),
\end{gathered}
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

Sketch of the proof

- Depending on the asymptotic regime, one has to identify asymptotically dominating terms. Computations for fixed n are intractable due to the complexity of the Weingarten function.
- After doing the loop combinatorics, one is left with maximizing over $S_{2 p}^{2}$ quantities such as

$$
\begin{gathered}
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right) \quad \text { or } \\
\#(\alpha)+\#\left(\gamma^{-1} \alpha\right)+\#\left(\beta^{-1} \delta\right)+2 \#\left(\alpha \beta^{-1}\right),
\end{gathered}
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.

Sketch of the proof

- Depending on the asymptotic regime, one has to identify asymptotically dominating terms. Computations for fixed n are intractable due to the complexity of the Weingarten function.
- After doing the loop combinatorics, one is left with maximizing over $S_{2 p}^{2}$ quantities such as

$$
\begin{gathered}
\#\left(\gamma^{-1} \alpha\right)+\#\left(\alpha^{-1} \beta\right)+\#\left(\beta^{-1} \delta\right) \quad \text { or } \\
\#(\alpha)+\#\left(\gamma^{-1} \alpha\right)+\#\left(\beta^{-1} \delta\right)+2 \#\left(\alpha \beta^{-1}\right),
\end{gathered}
$$

where γ and δ are permutations coding the initial wiring of U / \bar{U} boxes and $\#(\cdot)$ is the number of cycles function.

- Geodesic problems in symmetric groups \Rightarrow non-crossing partitions \Rightarrow free probability.
- The free Poisson distribution is characterized by its moments:

$$
\int x^{p} d \pi_{c}(x)=\sum_{\substack{\alpha \in \mathcal{S}_{p} \\ \# \alpha+\#\left(\gamma^{-1} \alpha\right)=p+1}} c^{\# \alpha}
$$

Concluding remarks

- Graphical calculus for random matrices

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels
- Improved bounds for MOE of product channels

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels
- Improved bounds for MOE of product channels
- Importance of lower eigenvalues

Concluding remarks

- Graphical calculus for random matrices
- Powerful and intuitive reinterpretation of the Weingarten formula
- Adapted to tensor products and partial traces
- Almost sure asymptotic eigenvalues for product conjugate channels
- Almost sure asymptotic eigenvalues for product of independent channels
- Improved bounds for MOE of product channels
- Importance of lower eigenvalues
- Other applications to QIT (with K. Życzkowsski: structured random states associated to graphs which encode their entanglement)

Thank you!

(1) Collins, N. Random quantum channels I: graphical calculus and the Bell state phenomenon. Comm. Math. Phys. 297 (2010), no. 2, 345-370.
(2) Collins, N. Gaussianization and eigenvalue statistics for Random quantum channels (III). To appear in Annals of Applied Probability.
(3) Collins, N. Eigenvalue and Entropy Statistics for Products of Conjugate Random Quantum Channels. Entropy 2010, 12(6), 1612-1631.
(4) Collins, N., Życzkowski Random graph states, maximal flow and Fuss-Catalan distributions. J. Phys. A: Math. Theor. 43 (2010), 275303.

