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Hp(Φ(ρ))

= min
x∈Cin

Hp(Φ(Px))

• Is the p-MOE additive ?

Hp
min(Φ⊗Ψ) = Hp

min(Φ) + Hp
min(Ψ) ∀Φ,Ψ.

• NO !!!
• p > 1: Hayden ’07, Hayden & Winter ’08, Aubrun, Szarek & Werner ’09
• p = 1: Hastings ’08, Fukuda & King ’09, Horodecki & Brandao ’09, Aubrun,

Szarek & Werner ’10
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• P. Shor ’04: equivalence of additivity questions in Quantum Information

1 additivity of MOE;
2 additivity of the Holevo capacity χ ;
3 (strong super-) additivity of the entanglement of formation EF .

• Additivity proved for some particular channels: unital qubit, depolarizing,
entanglement breaking, etc.

• Holevo-Werner channel violates additivity of the p-Rényi entropy for
p > 4.79. No known deterministic examples for p = 1 or p close to 1.

• Difficult, mathematically challenging problem.
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Random quantum channels

• Counterexamples to additivity conjectures are random.

• Random quantum channels from random partial isometries

Φ(ρ) = Tranc(V ρV ∗),

where V is a Haar partial isometry

V : Cin → C
out ⊗ C

anc.

• Equivalently, via the Stinespring dilation theorem

Φ(ρ) = Tranc(U(ρ⊗ Py )U
∗),

where y ∈ C
out×anc

in and U ∈ Mout×anc(C) is a Haar unitary matrix.
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Models of interest

Finite rank output

• in = tnk ,
• out = k ,
• anc = n,

where n, k ∈ N and t ∈ (0, 1). In general, we shall assume that

• n → ∞ and k is fixed, but“large”;
• t is fixed, and may depend on k .
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• out = k ,
• anc = n,

where n, k ∈ N and t ∈ (0, 1). In general, we shall assume that

• n → ∞ and k is fixed, but“large”;
• t is fixed, and may depend on k .

Unbounded rank output

• in = n,
• out = n,
• anc = k ,

where n, k ∈ N such that

• n, k → ∞;
• k/n → c , where c > 0 is a constant parameter.
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• Use trivial bound

Hp
min(Φ⊗ Φ) 6 Hp

(
[Φ⊗ Φ](X12)

)
,

for a particular choice of X12 ∈ Mtnk(C)⊗Mtnk(C).

• X12 = X1 ⊗ X2 do not yield counterexamples ⇒ choose a maximally
entangled state X12 = Ein = |Bell〉〈Bell|.

• Bound entropies of the (random) density matrix

Z = [Φ⊗ Φ](Ein) ∈ Mout(C)⊗Mout(C).
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Main result - finite rank output

Theorem (Collins + N. ’09)

For all k , t, almost surely as n → ∞, the eigenvalues of Z = [Φ⊗ Φ](Etnk)
converge to






t +

1− t

k2
,
1− t

k2
, . . . ,

1− t

k2
︸ ︷︷ ︸

k2−1 times







.
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





.

• Previously known bound, the Hayden-Winter trick (deterministic, comes from
linear algebra): for all t, n, k , the largest eigenvalue of Z is at least t.

• Two improvements:

1 “better” largest eigenvalue,
2 knowledge of the whole spectrum.

• Precise knowledge of eigenvalues ; optimal estimates for entropies.

• However, smaller eigenvalues are the“worst possible”.
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Main result - unbounded rank

Theorem (Collins + N. ’09)

For all c > 0, the eigenvalues λ1 > · · · > λn2 of Z = [Φ⊗ Φ](En) satisfy:

• In probability, cnλ1 → 1.

• Almost surely, 1
n2−1

∑n2

i=2 δc2n2λi
converges to a free Poisson distribution of

parameter c2.
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Free Poisson distribution

• The free Poisson distribution of parameter c > 0 is given by

πc = max(1− c , 0)δ0 +

√

4c − (x − 1− c)2

2πx
1[1+c−2

√
c,1+c+2

√
c](x) dx .
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• The free Poisson distribution of parameter c > 0 is given by

πc = max(1− c , 0)δ0 +

√

4c − (x − 1− c)2

2πx
1[1+c−2

√
c,1+c+2

√
c](x) dx .

• Free Poisson Central Limit Theorem:
[(

1−
c

n

)

δ0 +
c

n
δ1

]⊞n

→ πc .
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Independent channels - unbounded rank

Theorem (Collins + N. ’09)

For c > 0, consider two independent random quantum channels Φ and Ψ. The
eigenvalues λ1 > · · · > λn2 of Z = [Φ⊗Ψ](En) are such that almost surely,

1

n2

n2∑

i=1

δc2n2λi
=⇒ πc2 ,

where πc2 is a free Poisson distribution of parameter c2 and the“ =⇒ ”denotes
the convergence in distribution.
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• Counter-examples for p-Rényi entropy additivity ∀ p > 1 for t = 1/2 (input is

coupled to a qubit).

12 / 29



von Neumann entropies

• Finite rank outputs

• “Large eigenvalue”bound :λ1 = t , all other eigenvalues equal;
• Full, exact, asymptotic spectrum: λ1 = t + (1− t)/(k2) , all other eigenvalues

equal;
• ; less uniform spectrum, lower entropy, better lower bounds.
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distributed as πc2 ;
• ; less uniform spectrum, lower entropy, better lower bounds:

H
λ1
min 6 2 log n − log n/n + o(log n/n) vs. Hmin 6 2 log n − 1/2c2 + o(1).

• The first order of the entropy defect is given by the n2
− 1 small eigenvalues,

and not by the largest eigenvalue.
• No need for the conjugate channel trick, one may use independent channels !!!
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Graphical calculus for
random quantum channels



Boxes & wires

• Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
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ϕ ∈ V ∗

1

• Tensor contractions (or traces) V ⊗ V ∗ → C ; wires.

AB = A B
C D

Tr(C) TrV1
(D)

• Bell state Bell =
∑dimV1

i=1 ei ⊗ ei ∈ V1 ⊗ V1

Bell =
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Graphical representation of quantum channels

• Decorations/labels

= C
t
−1

= C
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= C
n

= C
k

• Single channel (finite rank output)

U U
∗Φ(X) =

X
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∗Φ(X) =

X
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X
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= C
t
−1

= C
tnk

= C
n

= C
k

• Product of conjugate channels, finite rank output

U U
∗

Z = [Φ⊗ Φ̄](Etnk) =

Ū Ū
∗

1

tnk

• Product of conjugate channels, unbounded rank output

U U
∗

Z = [Φ⊗ Φ̄](En) =

Ū Ū
∗

1

n
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The Hayden-Winter trick:
a graphical perspective



The Hayden-Winter trick

• Output for a maximally entangled input:

U U
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Ū Ū
∗

1
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• Output for a maximally entangled input:

U U
∗

Z = [Φ⊗ Φ̄](Etnk) =

Ū Ū
∗

1

tnk

• Want to show that Z has a large (> t) eigenvalue. 1st idea: find unit vector
x such that 〈x ,Zx〉 is big. Take x = Bellk2 .

U U∗

λ1(Z) ≥ 〈Bellk2 , ZBellk2〉 =

Ū Ū∗

1

k

1

tnk
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The Hayden-Winter trick

U U∗

λ1(Z) ≥ 〈Bellk2 , ZBellk2〉 =

Ū Ū∗

1

k

1

tnk

• 2nd idea: In > En

U U
∗

Ū Ū
∗

1

tnk2

U U
∗

Ū Ū
∗

≥
1

tnk2

1

n
=

1

tn2k2 a
2
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The Hayden-Winter trick

U

Ū

a =

U

Ū

= = = tnk
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• The point: using the U − Ū symmetry and the Bell state as an input, we get
an output with one large eigenvalue, hence a small entropy.

• Is the choice of the Bell state as an input optimal ? Perhaps not...

20 / 29



The Hayden-Winter trick

U

Ū

a =

U

Ū

= = = tnk

• Conclusion: λ1(Z ) >
(tnk)2

tn2k2 = t.

• The point: using the U − Ū symmetry and the Bell state as an input, we get
an output with one large eigenvalue, hence a small entropy.

• Is the choice of the Bell state as an input optimal ? Perhaps not...

• Possible improvement: choose an input adapted to the channel: X12 = f (U)
(work in progress with Benoit and Motohisa).
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Dealing with random boxes:
graphical Weingarten formula



Proof strategy for a.s. spectrum of random channels

• Use the method of moments
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Proof strategy for a.s. spectrum of random channels

• Use the method of moments
1 Convergence in moments (finite rank case):

ETr(Z p) →

(

t +
1− t

k2

)p

+ (k2
− 1)

(

1− t

k2

)p

;

2 Borel-Cantelli for a.s. convergence:
∞
∑

n=1

E

[

(Tr(Z p)− ETr(Z p))
2
]

< ∞.

• We need to compute moments E [Tr(Z p1)q1 · · ·Tr(Z ps )qs ].
• Example (finite rank)

U U
∗

ETr(Z2) =

Ū Ū
∗

E
1

(tnk)2

U U
∗

Ū Ū
∗
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Unitary integration - Weingarten formula

• Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.
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Unitary integration - Weingarten formula

• Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and i = (i1, . . . , ip), i
′ = (i ′1, . . . , i

′
p), j = (j1, . . . , jp),

j′ = (j ′1, . . . , j
′
p) be p-tuples of positive integers from {1, 2, . . . , d}. Then

∫

U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′

1
· · ·Ui ′p j

′

p
dU =

∑

α,β∈Sp

δi1i ′α(1)
. . . δip i ′α(p)

δj1j′β(1)
. . . δjp j′β(p)

Wg(d , αβ−1).

If p 6= p′ then ∫

U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′

1
· · ·Ui ′

p′
j′
p′
dU = 0.
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• Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and i = (i1, . . . , ip), i
′ = (i ′1, . . . , i

′
p), j = (j1, . . . , jp),

j′ = (j ′1, . . . , j
′
p) be p-tuples of positive integers from {1, 2, . . . , d}. Then

∫

U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′

1
· · ·Ui ′p j

′

p
dU =

∑

α,β∈Sp

δi1i ′α(1)
. . . δip i ′α(p)

δj1j′β(1)
. . . δjp j′β(p)

Wg(d , αβ−1).

If p 6= p′ then ∫

U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′

1
· · ·Ui ′

p′
j′
p′
dU = 0.

• There is a graphical way of reading this formula on the diagrams !
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“Graphical”Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and U∗.
Apply the following removal procedure:
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“Graphical”Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and U∗.
Apply the following removal procedure:

1 Start by replacing U∗ boxed by U boxes (by reversing decoration shading).

2 By the (algebraic) Weingarten formula, if the number p of U boxes is
different from the number of U boxes, then ED = 0.

3 Otherwise, choose a pair of permutations (α, β) ∈ S2
p . These permutations

will be used to pair decorations of U/U boxes.

4 For all i = 1, . . . , p, add a wire between each white decoration of the i-th U
box and the corresponding white decoration of the α(i)-th U box. In a similar
manner, use β to pair black decorations.

5 Erase all U and U boxes. The resulting diagram is denoted by D(α,β).

Theorem

ED =
∑

α,β

D(α,β) Wg(d , αβ−1).

24 / 29



Example: ETr(Z 2) - finite rank case

• We have to compute a sum over all pairings of 4“U”boxes with 4“U”boxes.
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• Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S2
4 .

Consider the permutation δ = (1 4) (2 3) ∈ S4.
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Ū U

U Ū

Ū U
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• Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S2
4 .

Consider the permutation δ = (1 4) (2 3) ∈ S4.
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2 2̄

3̄ 3
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Example: ETr(Z 2) - finite rank case

• We have to compute a sum over all pairings of 4“U”boxes with 4“U”boxes.

• Diagrams associated to pairings are indexed by 2 permutations (α, β) ∈ S2
4 .

Consider the permutation δ = (1 4) (2 3) ∈ S4.

The wiring for α = β = δ.

1 1̄

4̄ 4

2 2̄

3̄ 3

Contribution: n2 · k2 · (tnk)4 ·Wg(id).

• Contributions of diagrams ; counting the loops ; statistics over
permutations.
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Sketch of the proof

• We want to compute, for all p > 1, ETr(Z p).
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• D(α,β) is a collection of loops associated to vector spaces of dimensions n, k
and tnk .

• Asymptotic for Weingarten weights (σ ∈ Sp):

Wg(d , σ) = d−(p+|σ|)(Mob(σ) + O(d−2)).

• The case of independent channels is simpler, since“U”boxes cannot be paired
to“V ”boxes; pairings are indexed by quadruples (αU , βU , αV , βV ) ∈ S4

p .

• The unbounded rank case for conjugate channels is more delicate, since the
n2 − 1 smaller eigenvalues are one order of magnitude below the largest
eigenvalue. When computing moments of the matrix Z , only the large
(∼ n−1) eigenvalue gives a contribution. One needs to consider the
eigenspace compression QZQ, where Q = I−En and finally apply interlacing
results for eigenvalues.

26 / 29



Sketch of the proof
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dominating terms. Computations for fixed n are intractable due to the
complexity of the Weingarten function.
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• Depending on the asymptotic regime, one has to identify asymptotically
dominating terms. Computations for fixed n are intractable due to the
complexity of the Weingarten function.

• After doing the loop combinatorics, one is left with maximizing over S2
2p

quantities such as

#(γ−1α) + #(α−1β) + #(β−1δ) or

#(α) + #(γ−1α) + #(β−1δ) + 2#(αβ−1),

where γ and δ are permutations coding the initial wiring of U/U boxes and
#(·) is the number of cycles function.

• Geodesic problems in symmetric groups ⇒ non-crossing partitions ⇒ free
probability.

• The free Poisson distribution is characterized by its moments:
∫

xp dπc(x) =
∑

α∈Sp

#α+#(γ−1α)=p+1

c#α.
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Concluding remarks

• Graphical calculus for random matrices

• Powerful and intuitive reinterpretation of the Weingarten formula

• Adapted to tensor products and partial traces

• Almost sure asymptotic eigenvalues for product conjugate channels

• Almost sure asymptotic eigenvalues for product of independent channels

• Improved bounds for MOE of product channels

• Importance of lower eigenvalues

• Other applications to QIT (with K. Życzkowsski: structured random states
associated to graphs which encode their entanglement)
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Thank you !
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