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Additivity for MOE of quantum channels

e Quantum channels: CPTP maps ¢ : M;,(C) — Mou(C)
e Rényi entropies
log Tr p?

p>0 HP(p) = 1,

H(p) = H(p) = = Tr(plog p).

e p-Minimal Output Entropy of a quantum channel

®) = peTAT(C) HP(®(p))

min HP(®(Py))

mln(

e Is the p-MOE additive ?
I’l’lln(<b ® \U) mm(cb) + HrI:Hn(\U) Vd)’ w

e NO !l
e p > 1: Hayden '07, Hayden & Winter '08, Aubrun, Szarek & Werner '09
e p = 1: Hastings '08, Fukuda & King '09, Horodecki & Brandao '09, Aubrun,
Szarek & Werner '10



Importance of additivity

e Simple formula for the (classical) capacity of quantum channels: if additivity
holds, then there is no need to use inputs entangled over multiple uses of ®.



Importance of additivity

e Simple formula for the (classical) capacity of quantum channels: if additivity
holds, then there is no need to use inputs entangled over multiple uses of ®.

e P. Shor '04: equivalence of additivity questions in Quantum Information
@ additivity of MOE;
@® additivity of the Holevo capacity x ;
© (strong super-) additivity of the entanglement of formation Ef.



Importance of additivity

e Simple formula for the (classical) capacity of quantum channels: if additivity
holds, then there is no need to use inputs entangled over multiple uses of ®.

e P. Shor '04: equivalence of additivity questions in Quantum Information
@ additivity of MOE;
@® additivity of the Holevo capacity x ;
© (strong super-) additivity of the entanglement of formation Ef.

e Additivity proved for some particular channels: unital qubit, depolarizing,
entanglement breaking, etc.



Importance of additivity

Simple formula for the (classical) capacity of quantum channels: if additivity
holds, then there is no need to use inputs entangled over multiple uses of ®.

P. Shor '04: equivalence of additivity questions in Quantum Information
@ additivity of MOE;
@® additivity of the Holevo capacity x ;
© (strong super-) additivity of the entanglement of formation Er.

Additivity proved for some particular channels: unital qubit, depolarizing,
entanglement breaking, etc.

Holevo-Werner channel violates additivity of the p-Rényi entropy for
p > 4.79. No known deterministic examples for p = 1 or p close to 1.



Importance of additivity

Simple formula for the (classical) capacity of quantum channels: if additivity
holds, then there is no need to use inputs entangled over multiple uses of ®.

P. Shor '04: equivalence of additivity questions in Quantum Information
@ additivity of MOE;
@® additivity of the Holevo capacity x ;
© (strong super-) additivity of the entanglement of formation Er.

Additivity proved for some particular channels: unital qubit, depolarizing,
entanglement breaking, etc.

Holevo-Werner channel violates additivity of the p-Rényi entropy for
p > 4.79. No known deterministic examples for p = 1 or p close to 1.

Difficult, mathematically challenging problem.
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e Counterexamples to additivity conjectures are random.

e Random quantum channels from random partial isometries
Cb(p) = Tranc(vp\/*)a
where V is a Haar partial isometry

V- Cin N Cout ® (Canc‘

e Equivalently, via the Stinespring dilation theorem

D(p) = Tranc(U(p @ Py)UY),

out X anc

where y € C™ i and U € Moutxanc(C) is a Haar unitary matrix.

Random quantum channels
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Models of interest

Finite rank output

e in = tnk,
e out = k,
e anc = n,

where n,k € N and t € (0,1). In general, we shall assume that

e n— oo and k is fixed, but “large”;
e tis fixed, and may depend on k.

Unbounded rank output

e in=n,
e out = n,
e anc = k,

where n, k € N such that
e n k — oo
e k/n — c, where ¢ > 0 is a constant parameter.
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How to get counterexamples 7

e Choose ® to be random and ¥ =®.
e Find lower bounds for HY. (®) = HE. (®)
@ Hayden, Leung, Winter
® Hastings, Fukuda, King
© Collins, N. ~» see Benoit's talk on Thursday

e Today : Find upper bounds for H?, (¢ @ ®).

Strategy

e Use trivial bound
HE (@ ®) < HP ([ ® ](X12)) ,

for a particular choice of X2 € Mk (C) ® M i (C).

e X2 = X1 ® X5 do not yield counterexamples = choose a maximally
entangled state Xi» = E;, = |Bell)(Bell|.

e Bound entropies of the (random) density matrix

Z = [¢ ® ®](En) € Mout(C) ® Mout(C).
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Main result - finite rank output

Theorem (Collins + N. '09)

For all k,t, almost surely as n — oo, the eigenvalues of Z = [® @ ®](Esnk)
converge to

1—t 1-—t 1—t
b+ T
~—_——

k2—1 times

e Previously known bound, the Hayden-Winter trick (deterministic, comes from
linear algebra): for all t, n, k, the largest eigenvalue of Z is at least t.
e Two improvements:
@ “better” largest eigenvalue,
® knowledge of the whole spectrum.

e Precise knowledge of eigenvalues ~» optimal estimates for entropies.

e However, smaller eigenvalues are the “worst possible”.
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Main result - unbounded rank

Theorem (Collins + N. '09)

For all ¢ > 0, the eigenvalues \; > --- > \,p of Z = [® @ ®](E,) satisfy:
In probability, cnA\; — 1.

2
Almost surely, ﬁ > or 58225, converges to a free Poisson distribution of

parameter .

Large eigenvalue 1/cn due to ® — ® symmetry.

New phenomenon in Random Matrix Theory: eigenvalues of two different
magnitude orders (n~1 and n~2).

Smaller eigenvalues have non-trivial distribution.

Precise knowledge of eigenvalues ~+» optimal estimates for entropies.
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e The free Poisson distribution of parameter ¢ > 0 is given by

Vic—(x—1-c¢)?
Te = maX(l — C7 0)60 + 27TX 1[1+C72\/E’1+C+2\/a(x) dX.
free Poisson distrbution, c=1 free Poisson distribution, c-2

04

4
03

N

density density

024

2]

14 01

0 i : 3 i 5 § o i : 3 4 3 6

e Free Poisson Central Limit Theorem:

(- 5)or 28 .

Free Poisson distribution

29
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equal;
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e “Large eigenvalue” bound : A\; =1/k~1/(cn),
Xo=...= X2 = (1—1/k)/(n* — 1) spectrum;

e Full, exact, asymptotic spectrum: A\; = 1/(cn) , A2,..., A2 of order n™2,
distributed as 7;

e ~ less uniform spectrum, lower entropy, better lower bounds:
H) < 2logn —logn/n+ o(log n/n) vs. Hmin < 2logn —1/2¢ + o(1).

e The first order of the entropy defect is given by the n? — 1 small eigenvalues,
and not by the largest eigenvalue.

e No need for the conjugate channel trick, one may use independent channels !!!
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e Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
e Tensors ~» decorated boxes.

v Va
N <
M -3 x q @
/1 -
vy Vi
MeVi@aV,@ Vs Vi@ Vy zeV; peVy

e Tensor contractions (or traces) V @ V* — C ~» wires.

AB+=OA+—QB- @ @

Tr(C) Try, (D)

Q

e Bell state Bell = z‘f';; e weeVioW

[
Bell| = (
.

14 / 29



Graphical representation of quantum channels

e Decorations/labels
® __n B~k ® _ (ink A _ 7!
0o=C n=C o=C 2=C

e Single channel (finite rank output)

O <I>(X)+=
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Graphical representation of quantum channels

® _ n B~k ® _ (ink A _ ~tt
O_C D_C O_C A_C

e Product of conjugate channels, finite rank output

T I ¥

a
d B n g o
Z=[0@8(Emt) | = 7 )
q ] g s

N
n
_ C:: "
o .
N

&—* N

ST
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Graphical representation of quantum channels

® _ n B~k ® _ (ink A _ ~tt
*_cr "t t-cC Ao

e Product of conjugate channels, finite rank output

T I ¥

a
U A
d B n g o
Z=[0@8(Emt) | = 7 )
q ] O L

N
: .
_ o~ _h
U ' U~
f 'y N :

e Product of conjugate channels, unbounded rank output

m 1 d ;

vl . |

Jrmremen [ — 00—
o | | o

f m d :




The Hayden-Winter trick:
a graphical perspective



The Hayden-Winter trick

e Output for a maximally entangled input:

Z = [®® B|(Eynr)

1
nk
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The Hayden-Winter trick

e Output for a maximally entangled input:

; N :

U U~
O ]

Trmwomana] - Y0
o | o
:( 'S N :
e Want to show that Z has a large (> t) eigenvalue. 1st idea: find unit vector
x such that (x, Zx) is big. Take x = Bellje.

e
U

U
M(Z) > (Bellyz, ZBellye) = 1L C :>

U

—~+ b
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The Hayden-Winter trick

M(Z) > (Bellye, ZBellye) = 1L (z :>
" N

e 2nd idea: I, > E,

;; A A :

U U~
) e
tnk? tnk?
U

A N

&— b




The Hayden-Winter trick




The Hayden-Winter trick

-0

(tnk)?

e Conclusion: A\1(Z) > =2 = t.
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The Hayden-Winter trick

-0

Conclusion: A\(Z) > (:,:72—[1)22 =t

The point: using the U — U symmetry and the Bell state as an input, we get
an output with one large eigenvalue, hence a small entropy.

Is the choice of the Bell state as an input optimal ? Perhaps not...

Possible improvement: choose an input adapted to the channel: Xjo = f(U)
(work in progress with Benoit and Motohisa).

20 /29



Dealing with random boxes:
graphical Weingarten formula



Proof strategy for a.s. spectrum of random channels

e Use the method of moments
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Proof strategy for a.s. spectrum of random channels
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e Use the method of moments
@ Convergence in moments (finite rank case):

1—t\” 1—t\”
ETI’(ZP) — (t+ 7) + (k2 - 1) ( X2 ) )
@® Borel-Cantelli for a.s. convergence:
S E [(Tr(zp) - ETr(zP))2] < oo
n=1

e We need to compute moments E [Tr(ZPt)% ... Tr(ZP)%].
e Example (finite rank)

A A
U . U
wr — )
(tnk)? L
AN

U U~
N

ETr(Z?) =E
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Unitary integration - Weingarten formula

e Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.
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e Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and i = (iv,...,ip), ' = (i, i5), j= (1, Jp),
i'=(i,---,Jp) be p-tuples of positive integers from {1,2,...,d}. Then

/ Uiju -+ Uy, Uy -+ Uy dU =
u(d)

§ : -1
(5,1,;(1) TN 6’P’./1(p)6-/11;,3(1) cee 6113123(,,) Wg(d, 04,8 )
a,BES,

If p#£ p’ then
/ Uijp -+~ Uipj,,@' < Uy dU =0.
U(d) P

P

e There is a graphical way of reading this formula on the diagrams !



“Graphical” Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and U*.
Apply the following removal procedure:
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“Graphical” Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and U*.
Apply the following removal procedure:

© Start by replacing U* boxed by U boxes (by reversing decoration shading).

@ By the (algebraic) Weingarten formula, if the number p of U boxes is
different from the number of U boxes, then ED = 0.

©® Otherwise, choose a pair of permutations (a, 3) € Sﬁ. These permutations
will be used to pair decorations of U/U boxes.

O Foralli=1,...,p, add a wire between each white decoration of the i-th U
box and the corresponding white decoration of the a(i)-th U box. In a similar
manner, use (3 to pair black decorations.

O Erase all U and U boxes. The resulting diagram is denoted by D(a,p)-

ED = D(a,5 We(d,ap™?).
o,
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Example: |E Tr(Z2) - finite rank case

e We have to compute a sum over all pairings of 4 “U" boxes with 4 “U" boxes.
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Example: |E Tr(Z2) - finite rank case

e We have to compute a sum over all pairings of 4 “U" boxes with 4 “U" boxes.

o Diagrams associated to pairings are indexed by 2 permutations («, ) € S3.
Consider the permutation 6 = (14) (23) € S4.

The wiring for « = § = 4.

Contribution: n? - k? - (tnk)* - Wg(id).
e Contributions of diagrams ~» counting the loops ~» statistics over
permutations.
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Sketch of the proof

e We want to compute, for all p > 1, ETr(ZP).

* One needs to compute the contribution of each diagram D(, ), where
o, ﬂ S Szp.

® D(q,p) is a collection of loops associated to vector spaces of dimensions n, k
and tnk.

e Asymptotic for Weingarten weights (o € S,):

Wg(d, o) = d~PHl7D(Mob(c) + O(d~?)).

e The case of independent channels is simpler, since “U" boxes cannot be paired
to “V” boxes; pairings are indexed by quadruples (ay, Bu, av,Byv) € S:.

e The unbounded rank case for conjugate channels is more delicate, since the
n? — 1 smaller eigenvalues are one order of magnitude below the largest
eigenvalue. When computing moments of the matrix Z, only the large
(~ n~1) eigenvalue gives a contribution. One needs to consider the
eigenspace compression QZQ, where Q@ = | —E, and finally apply interlacing
results for eigenvalues.
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e Depending on the asymptotic regime, one has to identify asymptotically
dominating terms. Computations for fixed n are intractable due to the
complexity of the Weingarten function.

e After doing the loop combinatorics, one is left with maximizing over 522p
quantities such as

#(y o) + #(aTIB) + #(B710) or
#(a) + #(y 7 a) + #(B710) + 2#(aB™),

where v and § are permutations coding the initial wiring of U/U boxes and
#(-) is the number of cycles function.

e Geodesic problems in symmetric groups = non-crossing partitions = free
probability.

e The free Poisson distribution is characterized by its moments:

/xp drc(x) = Z cte,

a€S,
#at#(y a)=p+1

27

Sketch of the proof
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Concluding remarks

e Graphical calculus for random matrices

e Powerful and intuitive reinterpretation of the Weingarten formula

e Adapted to tensor products and partial traces

e Almost sure asymptotic eigenvalues for product conjugate channels

e Almost sure asymptotic eigenvalues for product of independent channels
e Improved bounds for MOE of product channels

e Importance of lower eigenvalues

e Other applications to QIT (with K. Zyczkowsski: structured random states
associated to graphs which encode their entanglement)
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Thank you !
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