On the number of components of random meandric systems

Ion Nechita
(CNRS, LPT Toulouse)
joint work with M. Fukuda

- and -

Alexandru Nica
(University of Waterloo)
joint work with I. Goulden, D. Puder

I Number of components of meanaric systems

Notation $\operatorname{NC}(n):=$ set of all non-crossing partitions of $\{1, \ldots, n\}$

- $N C_{2}(2 n):=$ set of all non-crossing pair-partitions of $\{1, \ldots, 2 n\}$
- Have $|N C(n)|=\left|N C_{2}(2 n)\right|=$ Cat $_{n}=\frac{(2 n)!}{n!(n+1)!}$
(n-th Catalan number)
- For every $(\sigma, 6) \in N C_{2}(2 n)^{2}$ we can draw a meandric system, denoted as $M_{\sigma, 6}$
$(0, \sigma) \in N C_{2}(2 n)^{2} \cdots$ meandric system $M_{\sigma_{1}, b}$
Denote $\#\left(M_{\sigma, 6}\right):=$ number of connected Components of $M_{\sigma, \sigma}$

$\left[\begin{array}{l}\text { A meandric system on } 10 \text { points, } \\ \text { which has } 3 \text { connected components }\end{array}\right]$
$(\sigma, \sigma) \in N C_{2}(2 n)^{2} \leadsto m$ meandric system $M_{\sigma_{1}, 6}$
Denote $\#\left(M_{\sigma, 6}\right):=$ number of connected Components of $M_{\sigma, \sigma}$

[A meandric system on 10 points, which has 3 connected components]
$(\sigma, \sigma) \in N C_{2}(2 n)^{2} \leadsto$ meandric system $M_{\sigma, 6}$
Denote \#($\left.M_{\sigma, \sigma}\right):=$ number of connected Components of $M_{0,6}$
 $\left[\begin{array}{l}\text { A meandric system on } 10 \text { points, } \\ \text { which has } 3 \text { connected components }\end{array}\right]$
$(0,6) \in N C_{2}(2 n)^{2} \leadsto$ meandric system $M_{0,6}$
Denote $\#\left(M_{\sigma_{1} \sigma}\right):=$ number of connected components of $M_{\sigma, 7}$

$\left[\begin{array}{l}\text { A meandric system on } 10 \text { points, } \\ \text { which has } 3 \text { connected components }\end{array}\right]$

An interesting sequence of random variables:

$$
X_{n}: N C_{2}(2 n)^{2} \rightarrow\{1, \ldots, n\}, \bar{X}_{n}(\pi, \rho)=\#(M, \rho)
$$

Have old open problem about

$$
P\left(\bar{X}_{n}=1\right)=\frac{\left|\left\{(\sigma, 6) \in N C_{2}(2 n)^{2} \mid \#\left(M_{\sigma, 6}\right)=1\right\}\right|}{C_{a t}^{2}}
$$

asking:

$$
\lim \left[P\left(x_{m}=1\right)\right]^{1 / n}=?
$$

limit believed to exist numerics give $\approx \frac{12.26}{16}$

Much more basic (but also open): $E\left(X_{n}\right)=$?
(Obvious: $1 \leq E\left(x_{n}\right) \leq n, \quad \forall n \in \mathbb{Q}$.)

Conjecture: $\lim _{n \rightarrow \infty} \frac{E\left(x_{n}\right)}{n}$ exists, and is ≈ 0.23
Simulations
Cam prove:
Theorem 1 (Goulden-Nica-Puder, arXiv:1708.05188)

$$
\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} \frac{\inf }{n} \geqslant 0.17 \\
\operatorname{limsin}_{n \rightarrow \infty} \frac{E\left(x_{n}\right)}{n} \leq 0.5
\end{array}\right.
$$

II Equivalent framework: Hasse diagram of $N C(n)$
This is an undirected graph associated to the partial order by reverse refinement On NC (n).

Vertices of graph $\leadsto N C(n)$
Edges of graph? \leadsto show on an example

For $\pi, \rho \in N C(n)$, will denote
$d_{H}(\pi, \rho):=$ geodesic distance between Π and ρ in the Hasse diagram of $N C(n)$.

Example: the Hasse dia gram of NC(4) (19)
(iv) io
(4) \square 120 19•9 129°

Example: the Hasse diagram of NC (4)

Example: the Hasse diagram of NC (4)

Facts: (1) One has a natural bijection

$$
N C(n) \ni \pi \mapsto \sigma \in N C_{2}(2 n),
$$

where σ is called the "fattening" of Π
(2) [Result of Hall, Savitt, 2006.]

Let $\pi, \rho \in N C(n)$ and let $\pi_{1}, \sigma \in N C_{2}(2 n)$ be the fattenings of Π and ρ. Then

$$
\#\left(M_{\sigma, \pi}\right)=n-d_{H}(\pi, s)
$$

Consequence: The rr. \bar{X}_{n} from part I has

$$
\begin{gathered}
E\left(X_{n}\right)=n-E\left(Y_{n}\right), \\
\text { where }\left\{\begin{array}{l}
Y_{n}: N C(n)^{2} \rightarrow\{0,1, \ldots, n-1\} \\
Y_{n}(\pi, \rho)=d_{H}(\pi, \rho)
\end{array}\right.
\end{gathered}
$$

$$
E\left(\bar{X}_{n}\right)=n-E\left(Y_{n}\right), \quad \forall n \in \mathbb{N} .
$$

The conjecture about $E\left(X_{n}\right)$ then becomes:

Conjecture': $\lim _{n \rightarrow \infty} \frac{E\left(Y_{n}\right)}{n}$ exists and is ≈ 0.77

The related Theorem 1 becomes:
Theorem 1'

$$
\left\{\begin{array}{l}
\liminf _{n \rightarrow \infty} \frac{E\left(Y_{n}\right)}{n} \geqslant 0.5 \\
\limsup _{n \rightarrow \infty} \frac{E\left(Y_{n}\right)}{n} \leqslant 0.83
\end{array}\right.
$$

Explain the constants in Theorem 1^{\prime}
$\liminf _{n \rightarrow \infty} \frac{E\left(Y_{n}\right)}{n} \geqslant 0.5$ follows easily from the

Jop-down symmetry of the Hasse diagram:
for every $n \in \mathbb{N}$ and $\pi, \rho \in N C(n)$, one has

$$
d_{H}(\pi, \rho)+d_{H}\left(\pi, \rho^{c}\right) \geqslant d_{H}\left(\rho, \rho^{c}\right)=n-1
$$

Kreweras
complement of ρ

Sum over π, ρ to get $E\left(Y_{n}\right) \geqslant \frac{n-1}{2}, \forall n \in \mathbb{N}$.

For $\limsup _{n \rightarrow \infty} \frac{E\left(Y_{n}\right)}{n} \leqslant 0.83$ we use a lecky reduction, Via the inequality

$$
d_{H}(\pi, \rho) \leqslant|\pi|+|\rho|-2|\pi v \rho|\left(=d_{H}(\pi, \pi v \rho)+d_{H}(\pi v \rho, \rho)\right)
$$

ξ
holds with equality when
one of π, ρ is an interval-partition.

Hence $E\left(Y_{n}\right) \leqslant E(1 \pi 1)+E(191)-2 E(1 \pi \vee \rho 1)$

$$
=\frac{n^{2}+1}{2}+\frac{n+1}{2}-2 E\left(Z_{n}^{2}\right)
$$

$$
\text { for }\left\{\begin{array}{l}
Z_{n}: N C(n)^{2} \rightarrow\{1, \ldots, n\} \\
Z_{n}(\pi, \rho)=|\pi v \rho|
\end{array}\right.
$$

$$
\frac{E\left(Y_{n}\right) \leq n+1-2 E\left(Z_{n}\right)}{\|}
$$

$\lim _{n \rightarrow \infty} \frac{E\left(Y_{n}\right)}{n} \leqslant 1-2 \lim _{n \rightarrow \infty} \frac{E\left(Z_{n}\right)}{n}$

$$
\begin{aligned}
& \left(\frac{O}{\pi} 1-2 \cdot \frac{16-5 \pi}{16-4 \pi}=\frac{3 \pi-8}{8-2 \pi}<0.83\right. \\
& \text { on } E\left(z_{n}\right)^{\prime \prime} \\
& \text { Lackboard Here } \pi=3.141592 \ldots
\end{aligned}
$$

by "Proposition on $E\left(Z_{n}\right)$ " written on beackboard

III Approach to "Proposition on E(Zn)" Via \pm-powers

Lemma. 1. $\mu: \mathbb{C}[\bar{x}] \rightarrow \mathbb{C}$ linear, with $\mu(1)=1$.
Let $U(t, z):=\sum_{n=1}^{\infty}(\underbrace{\text { in }^{\prime}}_{\text {polynomial }} \underbrace{\mu^{\boxplus t}}\left(-x^{n}\right)) z^{n} \in \mathbb{C}[t][[z]]$.
Then Us satisfies

$$
t \cdot \frac{\partial U}{\partial t}=U+\frac{z \cdot U \cdot \frac{\partial U}{\partial z}}{1+U}
$$

Proof Take $\frac{\partial}{\partial t}, \frac{\partial}{\partial z}$ in the functional equation for the R-transform of $\mu^{(\boxplus t}$, then do suitable algebra.

Remark when in Lemma 1 we evaluate
$U J, \frac{\partial U}{\partial t}, \frac{\partial U}{\partial z}$ at $t=1$, we get:

$$
U(1, z)=M_{\mu}(z)=\sum_{n=1}^{\infty} \mu\left(x^{n}\right) z^{n}, \quad \frac{\partial v}{\partial z}(1, z)=M_{\mu}^{\prime}(z),
$$

and
(*) $\left.\quad \frac{\partial U}{\partial t}\right|_{t=1}(z)=M_{\mu}(z)+\frac{z M_{\mu}(z) M_{\mu}^{\prime}(z)}{1+M_{\mu}(z)}$

We will use (*) for $\mu: \mathbb{C}[\bar{X}] \rightarrow \mathbb{C}$. defined by asking that $\mu\left(\bar{X}^{n}\right)=\operatorname{Cat}^{2}, \forall n \in \mathbb{N}$.

Lemma 2. $\mu: \mathbb{C}[x] \rightarrow \mathbb{C}$ with $\mu\left(X^{n}\right)=C$ at ${ }_{n}^{2}, \forall n \in \mathbb{D}$.
Then for every $t>0$ and $n \in \mathbb{I}$ we have

$$
\mu^{\boxplus t}\left(X^{n}\right)=\sum_{\pi, S \in N C(n)} t^{\left|\pi v_{\rho}\right|}
$$

Proof. Follows from the explicit description of the free cumulants of μ given by Biane-Dehornoy 2014.

For μ in Lemma 2 we get $J(t, z)=\sum_{n=1}^{\infty}\left(\sum_{\pi_{1}, \& \in C(n)} t^{(\pi v 81)}\right) z^{n}$,
hence

$$
\text { (**) }\left.\frac{\partial U}{\partial t}\right|_{t=1}(z)=\sum_{n=1}^{\infty}\left(\sum_{\pi_{1} s \in N C(n)}|\pi r \rho|\right) z^{n}
$$

This is $\cot _{n}^{2} \cdot E\left(Z_{n}\right)$

For μ of Lemma 2 we obtained:

$$
\begin{aligned}
\left.(*) \frac{\partial U}{\partial t}\right|_{t=1}(z) & \left.=M_{\mu}(z)+\frac{z M_{\mu}(z) M_{\mu}^{\prime}(z)}{1+M_{\mu}(z)}\right) \\
& =f(z)+\frac{z f(z) f^{\prime}(z)}{1+f(z)} \text { for } f(z)=\sum_{n=1}^{\infty} \operatorname{cat}_{n}^{2} z^{n}
\end{aligned}
$$

asymptotics for coefficients can be calculated explicitly

$$
\left.(* *) \quad \frac{\partial U}{\partial t}\right|_{t=1}(z)=\sum_{n=1}^{\infty}\left(\operatorname{Cat}_{n}^{2} \cdot E\left(Z_{n}\right)\right) z^{n}
$$

When comparing the right-hand sides of $(*)$ and $(* *)$, one gets a formula for $E\left(Z_{n}\right)$ which leads fo the stated limit for $\frac{E\left(Z_{n}\right)}{n}$.

The random variable X_{n}

Recall that X_{n} is the number of components of a random meandric system on $2 n$ points.

$$
\begin{equation*}
\mathbb{P}\left(X_{n}=1\right)=\frac{\# \text { meanders }}{\text { Cat }_{n}^{2}} \tag{hard}
\end{equation*}
$$

The random variable X_{n}

Recall that X_{n} is the number of components of a random meandric system on $2 n$ points.

$$
\begin{equation*}
\mathbb{P}\left(X_{n}=1\right)=\frac{\# \text { meanders }}{\text { Cat }_{n}^{2}} \tag{hard}
\end{equation*}
$$

$$
\mathbb{P}\left(X_{n}=n\right)=\frac{\text { Cat }_{n}}{\operatorname{Cat}_{n}^{2}} \quad(\text { easy }, \pi=\rho)
$$

The random variable X_{n}

Recall that X_{n} is the number of components of a random meandric system on $2 n$ points.

$$
\begin{equation*}
\mathbb{P}\left(X_{n}=1\right)=\frac{\# \text { meanders }}{\text { Cat }_{n}^{2}} \tag{hard}
\end{equation*}
$$

$$
\begin{array}{rr}
\mathbb{P}\left(X_{n}=n-r\right)=? & r \text { fixed } \\
\mathbb{P}\left(X_{n}=n\right)=\frac{\text { Cat }_{n}}{\text { Cat }_{n}^{2}} & (\text { easy }, \pi=\rho)
\end{array}
$$

Generating series

- Define

$$
\begin{aligned}
M_{n, r} & :=\left\{(\pi, \rho) \in N C(n): d_{H}(\pi, \rho)=r\right\} \\
M(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|M_{n, r}\right|
\end{aligned}
$$

Generating series

- Define

$$
\begin{aligned}
M_{n, r} & :=\left\{(\pi, \rho) \in N C(n): d_{H}(\pi, \rho)=r\right\} \\
M(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|M_{n, r}\right|
\end{aligned}
$$

- Compute

$$
M(X, Y)=\sum_{n \geq 1} X^{n} \sum_{\pi, \rho \in N C(n)} Y^{d_{H}(\pi, \rho)}
$$

Generating series

- Define

$$
\begin{aligned}
M_{n, r} & :=\left\{(\pi, \rho) \in N C(n): d_{H}(\pi, \rho)=r\right\} \\
M(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|M_{n, r}\right|
\end{aligned}
$$

- Compute

$$
\begin{aligned}
M(X, Y) & =\sum_{n \geq 1} X^{n} \sum_{\pi, \rho \in N C(n)} Y^{d_{H}(\pi, \rho)} \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n)} \sum_{\substack{\pi, \rho \in N C(n) \\
\pi \vee \rho=\omega}} Y^{d_{H}(\pi, \rho)}
\end{aligned}
$$

Generating series

- Define

$$
\begin{aligned}
M_{n, r} & :=\left\{(\pi, \rho) \in N C(n): d_{H}(\pi, \rho)=r\right\} \\
M(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|M_{n, r}\right|
\end{aligned}
$$

- Compute

$$
\begin{aligned}
M(X, Y) & =\sum_{n \geq 1} X^{n} \sum_{\pi, \rho \in N C(n)} Y^{d_{H}(\pi, \rho)} \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n)} \sum_{\substack{\pi, \rho \in N C(n) \\
\pi \vee \rho=\omega}} Y^{d_{H}(\pi, \rho)} \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n) b} \prod_{b} \sum_{\substack{\text { block of } \omega \pi, \rho \in N C(|b|) \\
\pi \vee \rho=1|b|}} Y^{d_{H}(\pi, \rho)}
\end{aligned}
$$

Generating series

- Define

$$
\begin{aligned}
M_{n, r} & :=\left\{(\pi, \rho) \in N C(n): d_{H}(\pi, \rho)=r\right\} \\
M(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|M_{n, r}\right|
\end{aligned}
$$

- Compute

$$
\begin{aligned}
M(X, Y) & =\sum_{n \geq 1} X^{n} \sum_{\pi, \rho \in N C(n)} Y^{d_{H}(\pi, \rho)} \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n)} \sum_{\substack{\pi, \rho \in N C(n) \\
\pi \vee \rho=\omega}} Y^{d_{H}(\pi, \rho)} \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n) b \text { block of } \omega \pi, \rho \in N C(|b|)} \sum_{\substack{\pi \vee \rho=1|b|}} Y^{d_{H}(\pi, \rho)} \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n) b \text { block of } \omega} \operatorname{FUNCTION}(|b|, Y)
\end{aligned}
$$

Generating series

- Define

$$
\begin{aligned}
M_{n, r} & :=\left\{(\pi, \rho) \in N C(n): d_{H}(\pi, \rho)=r\right\} \\
M(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|M_{n, r}\right|
\end{aligned}
$$

- Compute

$$
\begin{aligned}
M(X, Y) & =\sum_{n \geq 1} X^{n} \sum_{\pi, \rho \in N C(n)} Y^{d_{H}(\pi, \rho)} \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n)} \sum_{\substack{\pi, \rho \in N C(n) \\
\pi \vee \rho=\omega}} Y^{d_{H}(\pi, \rho)} \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n)} \prod_{b} \sum_{\substack{\text { block of } \omega \\
\omega, \rho \in N C(|b|) \\
\pi \vee \rho=1|b|}} Y^{d_{H}(\pi, \rho)} \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n)} \prod_{b \text { block of } \omega} \text { FUNCTION }(|b|, Y) .
\end{aligned}
$$

- \rightsquigarrow recognize moment - free cumulant formula

Moment - free cumulant transformations

- Put

$$
\begin{aligned}
K_{n, r} & :=\left\{(\pi, \rho) \in N C(n): \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\} \\
K(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|K_{n, r}\right| .
\end{aligned}
$$

Moment - free cumulant transformations

- Put

$$
\begin{aligned}
K_{n, r} & :=\left\{(\pi, \rho) \in N C(n): \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\} \\
K(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|K_{n, r}\right| .
\end{aligned}
$$

- The series M and K are related by the moment - free cumulant formula

$$
M(X, Y)=K(X(1+M(X, Y)), Y) .
$$

Moment - free cumulant transformations

- Put

$$
\begin{aligned}
K_{n, r} & :=\left\{(\pi, \rho) \in N C(n): \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\} \\
K(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|K_{n, r}\right| .
\end{aligned}
$$

- The series M and K are related by the moment - free cumulant formula

$$
M(X, Y)=K(X(1+M(X, Y)), Y)
$$

- Using a similar reduction and a Kreweras complement, we can go deeper: if
$I_{n, r}:=\left\{(\pi, \rho) \in N C(n): \pi \wedge \rho=0_{n}, \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\}$
$I(X, Y):=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|I_{n, r}\right|$
then

$$
K(X, Y)=I(X(1+K(X, Y)), Y)
$$

Moment - free cumulant transformations

- Recall

$$
\begin{aligned}
& M_{n, r}=\left\{(\pi, \rho) \in N C(n): d_{H}(\pi, \rho)=r\right\} \\
& K_{n, r}=\left\{(\pi, \rho) \in N C(n): \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\} \\
& I_{n, r}=\left\{(\pi, \rho) \in N C(n): \pi \wedge \rho=0_{n}, \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\}
\end{aligned}
$$

and let M, K, I the respective generating series.

Moment - free cumulant transformations

- Recall

$$
\begin{aligned}
& M_{n, r}=\left\{(\pi, \rho) \in N C(n): d_{H}(\pi, \rho)=r\right\} \\
& K_{n, r}=\left\{(\pi, \rho) \in N C(n): \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\} \\
& I_{n, r}=\left\{(\pi, \rho) \in N C(n): \pi \wedge \rho=0_{n}, \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\}
\end{aligned}
$$

and let M, K, I the respective generating series.

- If \mathcal{F} is the operation transforming free cumulant generating series into moment generating series, we conclude

$$
I \stackrel{\mathcal{F}_{X}}{\longmapsto} K \stackrel{\mathcal{F}_{X}}{\longmapsto} M
$$

Moment - free cumulant transformations

- Recall

$$
\begin{aligned}
& M_{n, r}=\left\{(\pi, \rho) \in N C(n): d_{H}(\pi, \rho)=r\right\} \\
& K_{n, r}=\left\{(\pi, \rho) \in N C(n): \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\} \\
& I_{n, r}=\left\{(\pi, \rho) \in N C(n): \pi \wedge \rho=0_{n}, \pi \vee \rho=1_{n}, d_{H}(\pi, \rho)=r\right\}
\end{aligned}
$$

and let M, K, I the respective generating series.

- If \mathcal{F} is the operation transforming free cumulant generating series into moment generating series, we conclude

$$
I \stackrel{\mathcal{F}_{X}}{\longmapsto} K \stackrel{\mathcal{F}_{X}}{\longmapsto} M
$$

- Morally, the sets $I_{n, r}$ should be easier to enumerate...

Key technical lemma

Lemma

For fixed r, the series I has finite support in n. More precisely, $I_{n, r}=\emptyset$, unless $r+1 \leq n \leq 2 r+\mathbf{1}_{r=0}$.

Key technical lemma

Lemma

For fixed r, the series I has finite support in n. More precisely, $I_{n, r}=\emptyset$, unless $r+1 \leq n \leq 2 r+\mathbf{1}_{r=0}$.

For $r=1, I_{2,1}=\left\{(\lfloor, \square),(\square,!!)\}\right.$, and all the other $I_{n, 1}$ are empty.

Key technical lemma

Lemma

For fixed r, the series I has finite support in n. More precisely, $I_{n, r}=\emptyset$, unless $r+1 \leq n \leq 2 r+\mathbf{1}_{r=0}$.

For $r=1, I_{2,1}=\left\{(\lfloor, \square),(\square,!!)\}\right.$, and all the other $I_{n, 1}$ are empty.

Figure: All meanders in $I_{n, r=2}$. We have $\left[Y^{2}\right] I(X, Y)=8 X^{3}+4 X^{4}$.

The main theorem

Recall that $M_{n}^{(s)}=\operatorname{Cat}_{n}^{2} \cdot \mathbb{P}\left(X_{n}=s\right)$ is the number of meandric systems on $2 n$ points with s components.

Theorem

For any fixed $r \geq 1$ there exists a polynomial \tilde{P}_{r} of degree at most $3 r-3$ such that the generating function of the number of meanders on $2 n$ points with $n-r$ components

$$
F_{r}(t)=\sum_{n=r+1}^{\infty} M_{n}^{(n-r)} t^{n}=\sum_{n=r+1}^{\infty} \mathbb{P}\left(X_{n}=n-r\right) \operatorname{Cat}_{n}^{2} t^{n}
$$

with the change of variables $t=w /(1+w)^{2}$, reads

$$
F_{r}(t)=\frac{w^{r+1}(1+w)}{(1-w)^{2 r-1}} \tilde{P}_{r}(w)
$$

Exact results and asymptotics

With the help of a computer, we can enumerate $I_{n, r}$ for $1 \leq r \leq 6$ (we just have to look at $N C(\leq 12)$ to do this) to find

$$
\begin{aligned}
& \tilde{P}_{1}(w)=2 \\
& \tilde{P}_{2}(w)=4 w^{3}-12 w^{2}+4 w+8 \\
& \tilde{P}_{3}(w)=18 w^{6}-92 w^{5}+134 w^{4}+8 w^{3}-146 w^{2}+52 w+42
\end{aligned}
$$

Exact results and asymptotics

With the help of a computer, we can enumerate $I_{n, r}$ for $1 \leq r \leq 6$ (we just have to look at $N C(\leq 12)$ to do this) to find

$$
\begin{aligned}
& \tilde{P}_{1}(w)=2 \\
& \tilde{P}_{2}(w)=4 w^{3}-12 w^{2}+4 w+8 \\
& \tilde{P}_{3}(w)=18 w^{6}-92 w^{5}+134 w^{4}+8 w^{3}-146 w^{2}+52 w+42
\end{aligned}
$$

Corollary

For any fixed $r \geq 1$, assuming that $\tilde{P}_{r}(1) \neq 0$ (this holds at least for $1 \leq r \leq 6$), the number of meandric systems on $2 n$ points having $n-r$ components has the following asymptotic behavior:

$$
M_{n}^{(n-r)} \sim \frac{\tilde{P}_{r}(1)}{2^{2 r-2} \Gamma((2 r-1) / 2)} 4^{n} n^{(2 r-3) / 2}
$$

Equivalently, $\mathbb{P}\left(X_{n}=n-r\right) \sim c_{r} 4^{-n} n^{(2 r+3) / 2}$.

Thank you!

1. Di Francesco, Golinelli, Guitter - Meander, folding, and arch statistics Math. Comput. Modelling, 26 (1997) - arXiv:hep-th/9506030
2. Hall - Meanders in a Cayley graph - arXiv:math/0606170
3. Savitt - Polynomials, meanders, and paths in the lattice of noncrossing partitions - Trans. of the AMS 361 (2009) - arXiv:math/0606169
4. Biane, Dehornoy - Dual Garside structure of braids and free cumulants of products - Sém. Loth. de Comb. B72b (2014) - arXiv:1407.1604
5. Nica - Free probability aspect of irreducible meandric systems, and some related observations about meanders - Inf. Dim. Anal., Q. Prob. and Rel. Topics, 1650011 (2016) - arXiv:1506. 01345
6. Goulden, Nica, Puder - Asymptotics for a class of meandric systems, via the Hasse diagram of $N C(n)$ - to appear in IMRN - arXiv:1708.05188
7. Fukuda, Nechita - Enumerating meandric systems with large number of loops - to appear in Ann. de l'Inst. H. Poincaré D - arXiv:1609.02756
