Positivity in Quantum Information Theory

Ion Nechita
CNRS and University of Ottawa
Toronto, August 4th 2011

Entanglement in Quantum Information Theory

- Quantum states with d degrees of freedom are described by density matrices

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

Entanglement in Quantum Information Theory

- Quantum states with d degrees of freedom are described by density matrices

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

- Two quantum systems

$$
\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)
$$

Entanglement in Quantum Information Theory

- Quantum states with d degrees of freedom are described by density matrices

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

- Two quantum systems

$$
\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)
$$

- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i) .
$$

Entanglement in Quantum Information Theory

- Quantum states with d degrees of freedom are described by density matrices

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

- Two quantum systems

$$
\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)
$$

- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i) .
$$

- Equivalently,

$$
\mathcal{S E P}=\operatorname{conv}\left[\mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}}\right) \otimes \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{2}}\right)\right] .
$$

Entanglement in Quantum Information Theory

- Quantum states with d degrees of freedom are described by density matrices

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

- Two quantum systems

$$
\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)
$$

- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i) .
$$

- Equivalently,

$$
\mathcal{S E P}=\operatorname{conv}\left[\mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}}\right) \otimes \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{2}}\right)\right] .
$$

- Non-separable states are called entangled.

Entanglement in Quantum Information Theory

- Separable rank one states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.

Entanglement in Quantum Information Theory

- Separable rank one states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.
- Bell state or maximally entangled state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right) \neq x \otimes y
$$

Entanglement in Quantum Information Theory

- Separable rank one states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.

■ Bell state or maximally entangled state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right) \neq x \otimes y
$$

■ Separability / entanglement are defined wrt a fixed partition $\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}$. States separable wrt any partition are called absolutely separable

$$
\mathcal{A S E P}=\bigcap_{U \in \mathcal{U}_{d}} U \cdot \mathcal{S E P} \cdot U^{*} .
$$

Entanglement in Quantum Information Theory

- Separable rank one states $\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}$.
- Bell state or maximally entangled state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right) \neq x \otimes y
$$

- Separability / entanglement are defined wrt a fixed partition $\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}$. States separable wrt any partition are called absolutely separable

$$
\mathcal{A S E P}=\bigcap_{U \in \mathcal{U}_{d}} U \cdot \mathcal{S E P} \cdot U^{*}
$$

- Separability of ρ_{12} depends on the eigenvalues and eigenvectors of ρ_{12}; absolute separability depends only on the spectrum of ρ_{12}.

Deciding [absolute] separability

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]

Deciding [absolute] separability

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.

Deciding [absolute] separability

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
 algori Shor's quantum factoring algorithm
- Runs on a quantum computer with polynomial time $O\left(\log ^{3} N\right)$.
- Classical sieve algorithms run in sub-exponential time $O\left(\exp \left(\log ^{1 / 3} N\right)\right)$.
■ Entanglement is necessary for the exponential speed-up.
■ State of the art factorization : $15=3 \times 5$.

Deciding [absolute] separability

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given $\rho_{12} \in \mathcal{S E P}$ is NP-hard [Gurvitz].

Deciding [absolute] separability

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given $\rho_{12} \in \mathcal{S E P}$ is NP-hard [Gurvitz].
- There exist a finite number of inequalities that are equivalent to absolute separability [Hildebrand]; however, their number grows exponentially with the dimension.

Deciding [absolute] separability

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given $\rho_{12} \in \mathcal{S E P}$ is NP-hard [Gurvitz].
- There exist a finite number of inequalities that are equivalent to absolute separability [Hildebrand]; however, their number grows exponentially with the dimension.
- For rank one quantum states, entanglement can be detected and quantified by the von Neumann entropy

$$
H\left(P_{x}\right)=S(\operatorname{sv}(x))=-\sum_{i} s_{i}(x) \log s_{i}(x), \quad x \in \mathbb{C}^{d_{1}} \otimes C^{d_{2}} \cong \mathcal{M}_{d_{1} \times d_{2}}(\mathbb{C})
$$

Deciding [absolute] separability

- "I would not call entanglement one but rather the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical lines of thought." [Schrödinger]
- Entanglement is essential to the exponential speed-up of some quantum algorithms.
- Deciding if a given $\rho_{12} \in \mathcal{S E P}$ is NP-hard [Gurvitz].
- There exist a finite number of inequalities that are equivalent to absolute separability [Hildebrand]; however, their number grows exponentially with the dimension.
- For rank one quantum states, entanglement can be detected and quantified by the von Neumann entropy

$$
H\left(P_{x}\right)=S(\operatorname{sv}(x))=-\sum_{i} s_{i}(x) \log s_{i}(x), \quad x \in \mathbb{C}^{d_{1}} \otimes C^{d_{2}} \cong \mathcal{M}_{d_{1} \times d_{2}}(\mathbb{C})
$$

- Detecting entanglement in $\mathbb{C}^{2} \otimes C^{2}$ and $\mathbb{C}^{2} \otimes C^{3}$ is trivial via the PPT criterion [Horodecki].

Positive Partial Transpose matrices

- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $f \otimes \mathrm{id}_{k}$ is positive for all $k \geqslant 1$.

Positive Partial Transpose matrices

- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $f \otimes \mathrm{id}_{k}$ is positive for all $k \geqslant 1$.
- Let $f: \mathcal{M}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{1}}\right)$ be a completely positive map. Then, For every separable state $\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$, one has $f \otimes \operatorname{id}_{d_{2}}\left(\rho_{12}\right) \geqslant 0$.

Positive Partial Transpose matrices

- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;

■ completely positive if $f \otimes \mathrm{id}_{k}$ is positive for all $k \geqslant 1$.
■ Let $f: \mathcal{M}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{1}}\right)$ be a completely positive map. Then, For every separable state $\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$, one has $f \otimes \operatorname{id}_{d_{2}}\left(\rho_{12}\right) \geqslant 0$.

- Let $f: \mathcal{M}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{1}}\right)$ be a positive map. Then, for every separable state $\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$, one has $f \otimes \operatorname{id}_{d_{2}}\left(\rho_{12}\right) \geqslant 0$. Moreover, if there exists an entangled state σ_{12} such that $f \otimes \operatorname{id}_{d_{2}}\left(\sigma_{12}\right) \nsubseteq 0, f$ is called an entanglement witness.

Positive Partial Transpose matrices

- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $f \otimes \operatorname{id}_{k}$ is positive for all $k \geqslant 1$.

■ Let $f: \mathcal{M}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{1}}\right)$ be a completely positive map. Then, For every separable state $\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$, one has $f \otimes \operatorname{id}_{d_{2}}\left(\rho_{12}\right) \geqslant 0$.

- Let $f: \mathcal{M}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{1}}\right)$ be a positive map. Then, for every separable state $\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$, one has $f \otimes \operatorname{id}_{d_{2}}\left(\rho_{12}\right) \geqslant 0$. Moreover, if there exists an entangled state σ_{12} such that $f \otimes \operatorname{id}_{d_{2}}\left(\sigma_{12}\right) \nsubseteq 0, f$ is called an entanglement witness.
- The transposition map t is an entanglement witness. Define the convex set

$$
\mathcal{P P} \mathcal{T}=\left\{\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right) \mid \mathrm{t}_{d_{1}} \otimes \operatorname{id}_{d_{2}}\left(\rho_{12}\right) \geqslant 0\right\} .
$$

Positive Partial Transpose matrices

- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $f \otimes \operatorname{id}_{k}$ is positive for all $k \geqslant 1$.

■ Let $f: \mathcal{M}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{1}}\right)$ be a completely positive map. Then, For every separable state $\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$, one has $f \otimes \operatorname{id}_{d_{2}}\left(\rho_{12}\right) \geqslant 0$.

- Let $f: \mathcal{M}\left(\mathbb{C}^{d_{1}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{1}}\right)$ be a positive map. Then, for every separable state $\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$, one has $f \otimes \operatorname{id}_{d_{2}}\left(\rho_{12}\right) \geqslant 0$. Moreover, if there exists an entangled state σ_{12} such that $f \otimes \operatorname{id}_{d_{2}}\left(\sigma_{12}\right) \nsubseteq 0, f$ is called an entanglement witness.
- The transposition map t is an entanglement witness. Define the convex set

$$
\mathcal{P P} \mathcal{T}=\left\{\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right) \mid \mathrm{t}_{d_{1}} \otimes \operatorname{id}_{d_{2}}\left(\rho_{12}\right) \geqslant 0\right\} .
$$

- For $\left(d_{1}, d_{2}\right) \in\{(2,2),(2,3)\}$ we have $\mathcal{S E P}=\mathcal{P P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P P \mathcal { T }}$ is strict.

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

- Written as a matrix in $\mathcal{M}^{1,+}\left(\mathbb{C}^{4}\right)$

$$
\rho_{12}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

- Written as a matrix in $\mathcal{M}^{1,+}\left(\mathbb{C}^{4}\right)$

$$
\rho_{12}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

- Partial transposition: transpose the block matrix $B=\left(B_{i j}\right)$, keeping the blocks intact:

$$
\rho_{12}^{\Gamma}=\mathrm{t}_{2} \otimes \operatorname{id}_{2}\left(\rho_{12}\right)=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

The PPT criterion at work

- Recall the Bell state $\rho_{12}=P_{\text {Bell }}$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni \text { Bell }=\frac{1}{\sqrt{2}}\left(e_{1} \otimes f_{1}+e_{2} \otimes f_{2}\right)
$$

- Written as a matrix in $\mathcal{M}^{1,+}\left(\mathbb{C}^{4}\right)$

$$
\rho_{12}=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

- Partial transposition: transpose the block matrix $B=\left(B_{i j}\right)$, keeping the blocks intact:

$$
\rho_{12}^{\Gamma}=\mathrm{t}_{2} \otimes \operatorname{id}_{2}\left(\rho_{12}\right)=\frac{1}{2}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

- This matrix is no longer positive \Longrightarrow the state is entangled.

A family of convex sets

- States in $\mathcal{P} \mathcal{P} \mathcal{T} \backslash \mathcal{S E P}$ are called bound entangled: no "maximal" entangled can be distilled from them.
- All these sets contain an open ball around the identity.
- In order to compare the volumes of the sets $[\mathcal{A}] \mathcal{S E P},[\mathcal{A}] \mathcal{P P T}$, one needs a probability measure on the compact set $\mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ of positive, unit trace matrices.

Induced measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- In order to compare the volumes of the sets $[\mathcal{A}] \mathcal{S E P},[\mathcal{A}] \mathcal{P} \mathcal{P} \mathcal{T}$, one needs a probability measure on the compact set $\mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ of positive, unit trace matrices.
- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}}
$$

Induced measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- In order to compare the volumes of the sets $[\mathcal{A}] \mathcal{S E P},[\mathcal{A}] \mathcal{P} \mathcal{P}$, one needs a probability measure on the compact set $\mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ of positive, unit trace matrices.
- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}} .
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is called the induced measure of parameters (d, s) and is noted $\mu_{d, s}$.

Induced measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- In order to compare the volumes of the sets $[\mathcal{A}] \mathcal{S E P},[\mathcal{A}] \mathcal{P} \mathcal{P}$, one needs a probability measure on the compact set $\mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ of positive, unit trace matrices.
- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}} .
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is called the induced measure of parameters (d, s) and is noted $\mu_{d, s}$.
- Almost surely, $\rho_{d, s}$ has full rank iff $s \geqslant d$.

Induced measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- In order to compare the volumes of the sets $[\mathcal{A}] \mathcal{S E P},[\mathcal{A}] \mathcal{P} \mathcal{P} \mathcal{T}$, one needs a probability measure on the compact set $\mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ of positive, unit trace matrices.
- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}} .
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is called the induced measure of parameters (d, s) and is noted $\mu_{d, s}$.
- Almost surely, $\rho_{d, s}$ has full rank iff $s \geqslant d$.
- The measure $\mu_{d, s}$ is unitarily invariant: there exist a probability measure $\nu_{d, s}$ on the probability simples $\Delta_{d}=\left\{\lambda \in \mathbb{R}^{d} \mid \lambda_{i} \geqslant 0, \sum \lambda_{i}=1\right\}$ such that if $\lambda \sim \nu_{d, s}$ and U is a Haar unitary matrix independent of λ,

$$
U \operatorname{diag}(\lambda) U^{*} \sim \mu_{d, s}
$$

- In order to compare the volumes of the sets $[\mathcal{A}] \mathcal{S E P},[\mathcal{A}] \mathcal{P P} \mathcal{T}$, one needs a probabilitv measure on the combact set $\mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ of nositive. unit trace
matri Eigenvalues for induced measures
- Let X Gaus:
- The r $\rho_{d, s}$
- Almo
- The $r(d=3, s=3)$ and $(d=3, s=5)$.
 andard on th

Figure: Induced measure eigenvalue distribution for
$\lambda \sim l$
tion of $\mu_{d, s}$.
sure $\nu_{d, s}$ hat if

$$
U \operatorname{diag}(\lambda) U^{*} \sim \mu_{d, s} .
$$

Volume of convex sets under the induced measure

- Let $C \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ a convex body, with $\mathrm{I}_{d} / d \in C^{\circ}$. Then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}(C)=1
$$

Volume of convex sets under the induced measure

- Let $C \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ a convex body, with $\mathrm{I}_{d} / d \in C^{\circ}$. Then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}(C)=1
$$

Definition

A pair of functions $\left(s_{0}(d), s_{1}(d)\right)$ are called a threshold for a family of convex sets $\left\{C_{d}\right\}_{d \geqslant 2}$ if both conditions below hold

■ If $s \lesssim s_{0}(d)$, then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}\left(C_{d}\right)=0
$$

- If $s \gtrsim s_{1}(d)$, then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}\left(C_{d}\right)=1
$$

Threshold values for $[\mathcal{A}] \mathcal{S E P},[\mathcal{A}] \mathcal{P P T}$

Set	Balanced $\mathbb{C}^{d}=\mathbb{C}^{\sqrt{d}} \otimes C^{\sqrt{d}}$	Unbalanced $\mathbb{C}^{d}=\mathbb{C}^{p} \otimes C^{d / p}$
$\mathcal{S E P}$	$\begin{gathered} s_{0}=C d^{3 / 2} \\ s_{1}=C d^{3 / 2} \log ^{2} d \end{gathered}$ [Aubrun, Szarek, Ye]	$\begin{gathered} s_{0}=C p d \\ s_{1}=C p d \log ^{2} d \end{gathered}$ [Aubrun, Szarek, Ye]
$\mathcal{P} \mathcal{P} \mathcal{T}$	$s_{0}=s_{1}=4 d$ [Aubrun]	$s_{0}=\left[2+2 \sqrt{1-p^{-2}}\right] d$ Most likely $s_{1}=s_{0}$ [Banica, N.]
$\mathcal{A S E P}$?	?
	[Collins, N ., Ye, in progress]	[Collins, N., Ye, in progress]
$\mathcal{A P \mathcal { P }} \mathcal{T}$	$\begin{gathered} s_{0}=64 /\left(9 \pi^{2}\right) d^{2} \\ s_{1}=4 d^{2} \\ {[\text { Collins, } \mathrm{N} ., \mathrm{Ye]}} \end{gathered}$	$s_{0}=s_{1}=\left[p+\sqrt{p^{2}-1}\right]^{2} d$ [Collins, N., Ye]

$\mathcal{P} \mathcal{T}$, unbalanced case

Theorem (Banica, N. - arXiv:1105.2556)

Let W be a complex Wishart matrix of parameters (dn, dm). Then, with $d \rightarrow \infty$, the empirical spectral distribution of $m W^{\Gamma}$ converges in moments to a free difference of free Poisson distributions of respective parameters $m(n \pm 1) / 2$.

Corollary

The limiting measure in the previous theorem has positive support iff

$$
n \leqslant \frac{m}{4}+\frac{1}{m} \quad \text { and } \quad m \geqslant 2 .
$$

$\mathcal{P P} \mathcal{T}$, unbalanced case

What's a free difference of free Poisson distributions ?

Theor
Let W
$d \rightarrow \alpha$ free dit

Corolla
The lim theorem
$n \leqslant$

- The free Poisson distribution of parameter $c>0$:

$$
\begin{aligned}
& \pi_{c}= \max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \\
& \mathbf{1}_{[1+c-2 \sqrt{c}, 1+c+2 \sqrt{c}]}(x) d x .
\end{aligned}
$$

- Free additive convolution of two compactly supported probability distributions $\mu_{1,2}$: sample $X_{1,2} \in \mathbb{R}^{n}$ from $\mu_{1,2}$ and consider

$$
A=U_{1} \operatorname{diag}\left(X_{1}\right) U_{1}^{*}+U_{2} \operatorname{diag}\left(X_{2}\right) U_{2}^{*},
$$

where $U_{1,2}$ are $n \times n$ independent Haar unitary matrices. Then, almost surely when $n \rightarrow \infty$, the spectrum of A has distribution $\mu_{1} \boxplus \mu_{2}$.

$\mathcal{A P P T}$, unbalanced case

Theorem (Collins, N., Ye - soon on arXiv)

Let ρ be a random quantum state from the induced ensemble of parameters (d, s). Almost surely, when $d \rightarrow \infty$ and $s \sim c d$, one has:

- If $c>\left(p+\sqrt{p^{2}-1}\right)^{2}$, then ρ is $\mathcal{A P} \mathcal{P} \mathcal{T}$.

■ Conversely, if $c<\left(p+\sqrt{p^{2}-1}\right)^{2}$, then ρ is not $\mathcal{A P} \mathcal{P} \mathcal{T}$.

Theorem (Collins, N., Ye - soon on arXiv)

Let ρ be a random quantum state from the induced ensemble of parameters (d, s). Then, for all $\varepsilon>0$, almost surely, when $d \rightarrow \infty$ and $s>(4+\varepsilon) p^{2} d$, the quantum state ρ is $\mathcal{A P} \mathcal{P} \mathcal{T}$. The following converse holds:

- When $1 \ll p^{2} \ll d$ and $s<(4-\varepsilon) p^{2} d$, ρ is not $\mathcal{A P} \mathcal{P} \mathcal{T}$.

■ When $p^{2} \sim \tau d$ for a constant $\tau \in(0,1]$, there exists an explicitly computable constant C_{τ} such that whenever and $s<4\left(C_{\tau}-\varepsilon\right) p^{2} d, \rho$ is not $\mathcal{A P} \mathcal{P} \mathcal{T}$.

Concluding remarks

- Detecting and quantifying entanglement is important in Quantum Information Theory.

Concluding remarks

- Detecting and quantifying entanglement is important in Quantum Information Theory.
- Checking separability is NP-hard, so easier criteria are needed.

Concluding remarks

- Detecting and quantifying entanglement is important in Quantum Information Theory.
- Checking separability is NP-hard, so easier criteria are needed.
- The PPT criterion works for 2×2 and 2×3 systems, but fails in general for larger ones.

Concluding remarks

- Detecting and quantifying entanglement is important in Quantum Information Theory.
- Checking separability is NP-hard, so easier criteria are needed.
- The PPT criterion works for 2×2 and 2×3 systems, but fails in general for larger ones.
- Relative volumes of $\mathcal{S E P}$ and $\mathcal{P P \mathcal { T }}$ are a good indication of how well the PPT criterion performs.

Concluding remarks

- Detecting and quantifying entanglement is important in Quantum Information Theory.
- Checking separability is NP-hard, so easier criteria are needed.
- The PPT criterion works for 2×2 and 2×3 systems, but fails in general for larger ones.
- Relative volumes of $\mathcal{S E P}$ and $\mathcal{P P \mathcal { T }}$ are a good indication of how well the PPT criterion performs.
- Random matrix theory and free probability are the right tools to tackle this problem.

Concluding remarks

- Detecting and quantifying entanglement is important in Quantum Information Theory.
- Checking separability is NP-hard, so easier criteria are needed.
- The PPT criterion works for 2×2 and 2×3 systems, but fails in general for larger ones.
- Relative volumes of $\mathcal{S E P}$ and $\mathcal{P P \mathcal { T }}$ are a good indication of how well the PPT criterion performs.
- Random matrix theory and free probability are the right tools to tackle this problem.
- The "absolute" (basis independent) formulation of the problem are considered.

Merci!

