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Random density matrices

— asymptotics —



Random pure states and the induced ensemble

• Induced ensemble : partial trace a random pure state on a composite system
H⊗K:

ρ = TrK |ψ〉〈ψ|,
where |ψ〉 is a random pure state on C

N ⊗ C
K .

• The random matrix ρ has the same distribution as a rescaled Wishart matrix
W /TrW , where W = XX ∗ with X a Ginibre (i.i.d. Gaussian entries) matrix
from MN×K (C).

• The eigenvalue density of ρ is given by

(λ1, . . . , λN) 7→ CN,K exp

(

−
N
∑

i=1

λi

)

N
∏

i=1

λK−N
i ∆(λ)2,

where CN,K is the constant
[

∏N−1
j=0 Γ(N + 1− j)Γ(K − j)

]−1

and

∆(λ) =
∏

16i<j6N

(λi − λj).
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Random density matrices - asymptotics

• In the limit N → ∞, K ∼ cN, for a fixed constant c > 0, the empirical
spectral distribution of the rescaled eigenvalues

LN =
1

N

N
∑

i=1

δcNλi
,

converges almost surely to the Marchenko-Pastur distribution π
(1)
c .

• The Marchenko-Pastur (or free Poisson) distribution is defined by

π(1)
c = max{1− c , 0}δ0 +

√

(x − a)(b − x)

2πx
1[a,b](x)dx ,

where a = (
√
c − 1)2 and b = (

√
c + 1)2.
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Random density matrices - asymptotics
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Figure: Empirical and limit measures for (N = 1000,K = 1000), (N = 1000,K = 2000)
and (N = 1000,K = 10000).
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Random graph states

— definition and examples —



Pure states associated to graphs

• Consider an undirected graph Γ consisting of m edges (or bonds) B1, . . . ,Bm

and k vertices V1, . . .Vk .
• We associate to Γ a pure state |Ψ̃〉〈Ψ̃| ∈ H = H1 ⊗ · · · ⊗ H2m:

|Ψ̃〉 =
⊗

{i,j} edge

|Φ+
i,j〉,

where |Φ+
i,j〉 denotes a maximally entangled state:

|Φ+
ij 〉 =

1√
diN

diN
∑

x=1

|ex〉 ⊗ |fx〉,

• dimHi = diN, with di fixed parameters and N → ∞. For each edge {i , j},
we have di = dj .

• At each vertex, a Haar unitary matrix acts on the subsystems

n=2m
⊗

i=1

Hi ∋ |ΨΓ〉 =

(

⊗

C vertex

UC

)

|Ψ̃〉

• The random unitary matrices U1, . . . ,Uk are independent.
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Pure states associated to graphs - examples

V1

(a)

H2H1

V1

|Φ+

12〉

(b)

V1 V2

(c)

H2H1

V2V1
|Φ+

12〉

(d)

Figure: Graphs with one edge: a loop on one vertex, in simplified notation (a) and in the
standard notation (b), and two vertices connected by one edge, in simplified notation (c)
and in the standard notation (d).
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Pure states associated to graphs - examples

V1 V3V2

(a)

V2V1 V3

H2H1 H3 H4

|Φ+

12〉 |Φ+

34〉

(b)

V1 V3V2

(c)

V2V1

V3

H2H1 H3

H4

|Φ+

12〉 |Φ+

34〉 |Φ+

56〉

H5

H6

(d)

Figure: A linear 2-edge graph, in the simplified notation (a) and in the standard notation
(b). Graph consisting of 3 vertices and 3 bonds (c), one of which is connected to the
same vertex so it forms a loop; (d) the corresponding ensemble of random pure states
defined in a Hilbert space composed of 6 subspaces represented by dark dots.
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Marginals of graph states

— moments and entropy —



Partial tracing random pure graph states

• Non-local properties of the random graph state |Ψ〉 ; partition of the set of
all 2m subsystems into two groups, {S ,T}.

• Total Hilbert space can be decomposed as a tensor product, H = HT ⊗HS .
• Reduced density operator

ρS = TrT |Ψ〉〈Ψ|.
• Graphically, partial traces are denoted at the graph by“crossing” the spaces
Hi which are being traced out.

V4

V1 V2 V3

H1 H2 H3

H4 H5 H6

|Φ+

14〉 |Φ+

25〉 |Φ+

36〉

Figure: The random pure state supported on n = 6 subspaces is partial traced over the
subspace HT defined by the set T = {2, 4, 6}, represented by crosses.The reduced state
ρS supported on subspaces corresponding to the set S = {1, 3, 5}.
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Moments

• Use the method of moments: compute limN→∞ ETr(X p) for a random
matrix X .

• Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and i = (i1, . . . , ip), i
′ = (i ′1, . . . , i

′
p), j = (j1, . . . , jp),

j′ = (j ′1, . . . , j
′
p) be p-tuples of positive integers from {1, 2, . . . , d}. Then

∫

U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′

1
· · ·Ui ′p j

′

p
dU =

∑

α,β∈Sp

δi1i ′α(1)
. . . δip i ′α(p)

δj1j′β(1)
. . . δjp j′β(p)

Wg(d , αβ−1).

If p 6= p′ then
∫

U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′

1
· · ·Ui ′

p′
j′
p′
dU = 0.
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Network associated to a marginal

• Using the Weingarten formula, one has to find the dominating term in a sum
indexed by permutations of p objects.

• This optimization problem is equivalent to finding the maximum flow in a
network.

V2V1

V3

H2H1 H3

H4

|Φ+

12〉 |Φ+

34〉 |Φ+

56〉

H5

H6

β1 β2 β3

id

γ

2

2

1

1 1

1
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Network associated to a marginal

• Network (V, E ,w) with vertex set V, edge set E and edge capacities w .

• The vertex set V = {id, γ, β1, . . . , βk}, with two distinguished vertices: the
source id and the sink γ.

• The edges in E are oriented and they are of three types:

E = {(id, βi ) ; |Ti | > 0} ⊔ {(βi , γ) ; |Si | > 0} ⊔ {(βi , βj), (βj , βi ) ; |Eij | > 0},

where Si , Ti is are the surviving and traced out subsystems at vertex i and
Eij are the edges from vertex i to vertex j .

• The capacities of the edges are given by:

w(id, βi ) = |Ti | > 0

w(βi , γ) = |Si | > 0

w(βi , βj) = w(βj , βi ) = |Eij | > 0.
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Main theorem

Theorem

Asymptotically, as N → ∞, the p-th moment of the reduced density matrix

behaves as

ETr(ρpS) ∼N−X (p−1) · [ combinatorial term + o(1)],

where X is the maximum flow in the network associated to the marginal. The

combinatorial part can be expressed in terms of the residual network obtained after

removing the capacities of the edges that appear in the maximum flow solution.
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Fuss-Catalan limit distributions



Definition

• Matrix model: π(s) is the limit eigenvalue distribution of the random matrix
Xs = Gs · · ·G2G1G

∗
1 G

∗
2 · · ·G∗

s , with i.i.d. Gaussian matrices Gi .
• Combinatorics: moments given by

∫

xp dπ(s)(x) =
1

sp + 1

(

sp + p

p

)

= |{0̂p 6 σ1 6 σ2 6 · · · 6 σs 6 1̂p ∈ NC (p)}|.

• Free probability: π(s) =
(

π(1)
)⊠s

, where π(1) is the free Poisson (or
Marchenko-Pastur) distribution (of parameter c = 1).
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Graph marginals with limit Fuss-Catalan distribution, s = 1

V1

(a)

V1

(b)

β1id γ

(c)

Figure: A vertex with one loop (a) and a marginal (b) having as a limit eigenvalue
distribution the Marchenko-Pastur law π(1). In the network (c), both edges have capacity
one.

• This is the simplest graph state having the Marchenko-Pastur asymptotic
distribution.

• The reduced matrix is obtained by partial tracing an uniformly distributed
pure state, hence it is an element of the induced ensemble.
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Graph marginals with limit Fuss-Catalan distribution, s = 2

V1 V2

(a)

V1 V2

(b)

β1 β2

id

γ

2

2

(c)

Figure: A graph (a) and a marginal (b) having as a limit eigenvalue distribution the
Fuss-Catalan law π(2). In the network (c), non-labeled edges have capacity one. A
maximum flow of 3 can be sent from the source id to the sink γ: one unit through each
path id → βi → γ, i = 1, 2 and one unit through the path id → β1 → β2 → γ. In this
way, the residual network is empty and the only constraint on the geodesic permutations
β1, β2 is 0̂p 6 [β1] 6 [β2] 6 1̂p, i.e. [β1] and [β2] form a 2-chain in NC(p)
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Graph marginals with limit Fuss-Catalan distribution, s > 2

V1 VsV2 Vs−1V3

(a)

V1 VsV2 Vs−1V3

(b)

β1 βsβ2

id

γ

2

1

1

1
1

2

1 1 1

(c)

Figure: An example of a graph state (a) with a marginal (b) having as a limit eigenvalue
distribution the s-th Fuss-Catalan probability measure π(s). The associated network (c)
has a maximal flow of s + 1, obtained by sending a unit of flow through each βi and a
unit through the path id → β1 → · · · → βs → γ. The linear chain condition
[β1] 6 · · · 6 [βs ] follows.
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Area laws



Area law holds for adapted marginals of graph states

• Setting: quantum many-body problem with local interactions

• “Area law” : the entanglement entropy of ground states grows like the
boundary area of the subregion

• Non-extensive behavior for the entanglement entropy.

• A marginal ρS is called adapted if the number of traced out systems in each
vertex is either zero or maximal.

Theorem

Let ρS be an adapted marginal of a graph state |Ψ〉〈Ψ|. Then

H(ρS) = |∂S | logN

for all N. The boundary ∂S contains all the edges between the“traced out”

vertices and the“surviving”vertices.
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Area law holds for adapted marginals of graph states

V3

V1

V5

V4

V2

(a)

V3

V5

V2

V4

V1

(b)

Figure: An example of a graph state (a) with an adapted marginal (b). The green
dashed line represents the boundary between the traced and the surviving subsystems.

23 / 37



Area law holds for adapted marginals of graph states

β1

β3

β2

id γ

β5

β4

4

5

5

2

4
2

2

Figure: The network associated to an adapted marginal. Nodes cannot be connected to
both the source and the sink. The maximum flow equals the minimum cut in the
network which is the number of edges in the boundary ∂S .
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Proof techniques

— graphical Weingarten calculus —



Method of moments & unitary integration

• Recall the main Theorem

Theorem

Asymptotically, as N → ∞, the p-th moment of the reduced density matrix

behaves as

ETr(ρpS) ∼N−X (p−1) · [ combinatorial term + o(1)],

where X is the maximum flow in the network associated to the marginal. The

combinatorial part can be expressed in terms of the residual network obtained after

removing the capacities of the edges that appear in the maximum flow solution.

• Use the method of moments: compute limN→∞ ETr(ρpS) for a random graph
state ρS .

• Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.

26 / 37



Boxes & wires

• Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.
• Tensors ; decorated boxes.

M

V ∗

1

V ∗

2

V2

V3

V1

M ∈ V1 ⊗ V2 ⊗ V3 ⊗ V ∗

1
⊗ V ∗

2

x

x ∈ V1

ϕ

ϕ ∈ V ∗

1

• Tensor contractions (or traces) V ⊗ V ∗ → C ; wires.

AB = A B
C D

Tr(C) TrV1
(D)

• Bell state Φ+ =
∑dimV1

i=1 ei ⊗ ei ∈ V1 ⊗ V1

Φ
+ =
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Graphical representation of random graph states

V2V1

V3

H2H1 H3

H4

|Φ+

12〉 |Φ+

34〉 |Φ+

56〉

H5

H6

1

=ρS 1

N3

U1

U∗

1

2 3

U2

U∗

2

4 5

U3

U∗

3

61 2 3 4 5 6

Figure: A graph state and its graphical representation.
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Graphical representation of random graph states

V2V1

V3

H2H1 H3

H4

|Φ+

12〉 |Φ+

34〉 |Φ+

56〉

H5

H6

1

=ρS

2 3 6

1

N3

U1

U∗

1

2 3

U2

U∗

2

4 5

U3

U∗

3

6

Figure: A marginal ρS of a graph state and its graphical representation.
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Recall the Weingarten formula

Theorem (Weingarten formula)

Let d be a positive integer and i = (i1, . . . , ip), i
′ = (i ′1, . . . , i

′
p), j = (j1, . . . , jp),

j′ = (j ′1, . . . , j
′
p) be p-tuples of positive integers from {1, 2, . . . , d}. Then

∫

U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′

1
· · ·Ui ′p j

′

p
dU =

∑

α,β∈Sp

δi1i ′α(1)
. . . δip i ′α(p)

δj1j′β(1)
. . . δjp j′β(p)

Wg(d , αβ−1).

If p 6= p′ then
∫

U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′

1
· · ·Ui ′

p′
j′
p′
dU = 0.

• There is a graphical way of reading this formula on the diagrams !
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“Graphical”Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and U∗.
Apply the following removal procedure:

1 Start by replacing U∗ boxed by U boxes (by reversing decoration shading).

2 By the (algebraic) Weingarten formula, if the number p of U boxes is
different from the number of U boxes, then ED = 0.

3 Otherwise, choose a pair of permutations (α, β) ∈ S2
p . These permutations

will be used to pair decorations of U/U boxes.

4 For all i = 1, . . . , p, add a wire between each white decoration of the i-th U

box and the corresponding white decoration of the α(i)-th U box. In a similar
manner, use β to pair black decorations.

5 Erase all U and U boxes. The resulting diagram is denoted by D(α,β).

Theorem (Collins, N. - CMP ’10)

ED =
∑

α,β

D(α,β) Wg(d , αβ−1).
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First example

• Compute E|uij |2 =
∫

U(N)
|uij |2 dU.
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First example

• Compute E|uij |2 =
∫

U(N)
|uij |2 dU.

U|j〉 〈i|

U∗|i〉 〈j|

Figure: Diagram for |uij |
2 = Uij · (U

∗)ji .
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First example

• Compute E|uij |2 =
∫

U(N)
|uij |2 dU.

U|j〉 〈i|

Ū|j〉 〈i|

Figure: The U∗ box replaced by an Ū box.
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First example

• Compute E|uij |2 =
∫

U(N)
|uij |2 dU.

U|j〉 〈i|

Ū|j〉 〈i|

Figure: Erase U and Ū boxes.

32 / 37



First example

• Compute E|uij |2 =
∫

U(N)
|uij |2 dU.

U|j〉 〈i|

Ū|j〉 〈i|

Figure: Pair white decorations (red wires) and black decorations (blue wires); only one
possible pairing : α = (1) and β = (1).
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First example

• Compute E|uij |2 =
∫

U(N)
|uij |2 dU.

|j〉 〈i|

|j〉 〈i|

= 1

Figure: The only diagram Dα=(1),β=(1) = 1.
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First example

• Compute E|uij |2 =
∫

U(N)
|uij |2 dU.

|j〉 〈i|

|j〉 〈i|

= 1

Figure: The only diagram Dα=(1),β=(1) = 1.

• Conclusion :
E|uij |2 =

∫

|uij |2 dU = Dα=(1),β=(1) ·Wg(N, (1)) = 1 · 1/N = 1/N.
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Second example

• Compute E|uij |4 =
∫

U(N)
|uij |4 dU.
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Second example

• Compute E|uij |4 =
∫

U(N)
|uij |4 dU.

U|j〉 〈i|

U∗|i〉 〈j|

U|j〉 〈i|

U∗|i〉 〈j|

Figure: Diagram for |uij |
2 = Uij · (U

∗)ji .
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Second example

• Compute E|uij |4 =
∫

U(N)
|uij |4 dU.

U|j〉 〈i|

Ū|j〉 〈i|

U|j〉 〈i|

Ū|j〉 〈i|

Figure: The U∗ box replaced by an Ū box.
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Second example

• Compute E|uij |4 =
∫

U(N)
|uij |4 dU.

U|j〉 〈i|

Ū|j〉 〈i|

U|j〉 〈i|

Ū|j〉 〈i|

Figure: Erase U and Ū boxes.
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Second example

• Compute E|uij |4 =
∫

U(N)
|uij |4 dU.

U|j〉 〈i|

Ū|j〉 〈i|

U|j〉 〈i|

Ū|j〉 〈i|

Figure: Pair white decorations (red wires) and black decorations (blue wires); first
pairing : α = (1)(2) and β = (1)(2).
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Second example

• Compute E|uij |4 =
∫

U(N)
|uij |4 dU.

U|j〉 〈i|

Ū|j〉 〈i|

U|j〉 〈i|

Ū|j〉 〈i|

Figure: Second pairing : α = (1)(2) and β = (12).
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Second example

• Compute E|uij |4 =
∫

U(N)
|uij |4 dU.

U|j〉 〈i|

Ū|j〉 〈i|

U|j〉 〈i|

Ū|j〉 〈i|

Figure: Third pairing : α = (12) and β = (1)(2).
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Second example

• Compute E|uij |4 =
∫

U(N)
|uij |4 dU.

U|j〉 〈i|

Ū|j〉 〈i|

U|j〉 〈i|

Ū|j〉 〈i|

Figure: Fourth pairing : α = (12) and β = (12).
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Second example

• Compute E|uij |4 =
∫

U(N)
|uij |4 dU.

• Conclusion :

E|uij |4 =
∫

|uij |4 dU =

D(1)(2),(1)(2) ·Wg(N, (1)(2))+

D(1)(2),(12) ·Wg(N, (12))+

D(12),(1)(2) ·Wg(N, (12))+

D(12),(12) ·Wg(N, (1)(2))

= Wg(N, (1)(2)) +Wg(N, (12)) +Wg(N, (12)) +Wg(N, (1)(2))

=
2

N2 − 1
− 2

N(N2 − 1)
=

2

N(N + 1)
.
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Third example : twirling

• Consider a fixed matrix A ∈ MN(C). Compute
∫

U(N)
U∗AU dU.
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Third example : twirling

• Consider a fixed matrix A ∈ MN(C). Compute
∫

U(N)
U∗AU dU.

AU U∗

Figure: Diagram for U∗AU.
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Third example : twirling

• Consider a fixed matrix A ∈ MN(C). Compute
∫

U(N)
U∗AU dU.

AU Ū

Figure: The U∗ box replaced by an Ū box.
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Third example : twirling

• Consider a fixed matrix A ∈ MN(C). Compute
∫

U(N)
U∗AU dU.

AU Ū

Figure: Erase U and Ū boxes.
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Third example : twirling

• Consider a fixed matrix A ∈ MN(C). Compute
∫

U(N)
U∗AU dU.

AU Ū

Figure: Pair white decorations (red wires) and black decorations (blue wires); only one
possible pairing : α = (1) and β = (1).
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Third example : twirling

• Consider a fixed matrix A ∈ MN(C). Compute
∫

U(N)
U∗AU dU.

A

Figure: The only diagram Dα=(1),β=(1) = Tr(A) IN .

34 / 37



Third example : twirling

• Consider a fixed matrix A ∈ MN(C). Compute
∫

U(N)
U∗AU dU.

A

Figure: The only diagram Dα=(1),β=(1) = Tr(A) IN .

• Conclusion :
∫

U(N)
U∗AU dU = Dα=(1),β=(1) ·Wg(N, (1)) = Tr(A)

N
IN .
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Conclusion and perspectives



Conclusion and perspectives

• Study lattice graphs.

• Other examples of physically and graph-theoretical motivated random states.

• Exotic limit distributions.

• Connection with free probability: classical and free multiplicative convolution
semigroups.

• More general area laws.

• Dual graphs: vertices are GHZ states and edges represent unitary coupling.
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Thank you !

Collins, N., Życzkowski Random graph states, maximal flow and Fuss-Catalan

distributions- J. Phys. A: Math. Theor. 43 (2010), 275303,
http://arxiv.org/abs/1003.3075
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