Block-modified Wishart matrices and applications to entanglement theory

Ion Nechita

CNRS, Université de Toulouse

joint work with Teodor Banica (Cergy)

Bedlewo, September 29, 2011

 Quantum states with *d* degrees of freedom are described by density matrices

$$\rho \in \mathcal{M}^{1,+}(\mathbb{C}^d); \quad \operatorname{Tr} \rho = 1 \text{ and } \rho \geqslant 0.$$

 Quantum states with *d* degrees of freedom are described by density matrices

$$\rho \in \mathcal{M}^{1,+}(\mathbb{C}^d); \quad \text{Tr}\rho = 1 \text{ and } \rho \ge 0.$$

• Two quantum systems: $\rho_{12} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}).$

 Quantum states with *d* degrees of freedom are described by density matrices

$$ho \in \mathcal{M}^{1,+}(\mathbb{C}^d); \qquad \mathrm{Tr}
ho = 1 ext{ and }
ho \geqslant \mathbf{0}.$$

- Two quantum systems: $\rho_{12} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}).$
- A state ρ₁₂ is called separable if it can be written as a convex combination of product states

$$\rho_{12} \in \mathcal{SEP} \iff \rho_{12} = \sum_i t_i \rho_1(i) \otimes \rho_2(i),$$

where $t_i \ge 0$, $\sum_i t_i = 1$, $\rho_1(i) \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1})$, $\rho_2(i) \in \mathcal{M}^{1,+}(\mathbb{C}^{d_2})$.

 Quantum states with *d* degrees of freedom are described by density matrices

$$ho \in \mathcal{M}^{1,+}(\mathbb{C}^d); \qquad \mathrm{Tr}
ho = 1 ext{ and }
ho \geqslant \mathbf{0}.$$

- Two quantum systems: $\rho_{12} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}).$
- A state ρ₁₂ is called separable if it can be written as a convex combination of product states

$$\rho_{12} \in \mathcal{SEP} \iff \rho_{12} = \sum_i t_i \rho_1(i) \otimes \rho_2(i),$$

where $t_i \ge 0$, $\sum_i t_i = 1$, $\rho_1(i) \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1})$, $\rho_2(i) \in \mathcal{M}^{1,+}(\mathbb{C}^{d_2})$. • Equivalently, $S\mathcal{EP} = \operatorname{conv} \left[\mathcal{M}^{1,+}(\mathbb{C}^{d_1}) \otimes \mathcal{M}^{1,+}(\mathbb{C}^{d_2}) \right]$.

 Quantum states with *d* degrees of freedom are described by density matrices

$$ho \in \mathcal{M}^{1,+}(\mathbb{C}^d); \qquad \operatorname{Tr}
ho = 1 \text{ and }
ho \geqslant 0.$$

- Two quantum systems: $\rho_{12} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}).$
- A state ρ₁₂ is called separable if it can be written as a convex combination of product states

$$\rho_{12} \in \mathcal{SEP} \iff \rho_{12} = \sum_i t_i \rho_1(i) \otimes \rho_2(i),$$

where $t_i \ge 0$, $\sum_i t_i = 1$, $\rho_1(i) \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1})$, $\rho_2(i) \in \mathcal{M}^{1,+}(\mathbb{C}^{d_2})$.

- Equivalently, $\mathcal{SEP} = \operatorname{conv} \left[\mathcal{M}^{1,+}(\mathbb{C}^{d_1}) \otimes \mathcal{M}^{1,+}(\mathbb{C}^{d_2}) \right].$
- Non-separable states are called entangled.

• Separable rank one states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.

- Separable rank one states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.
- Bell state or maximally entangled state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \ni \operatorname{Bell} = \frac{1}{\sqrt{2}} (e_1 \otimes f_1 + e_2 \otimes f_2) \neq x \otimes y.$$

- Separable rank one states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.
- Bell state or maximally entangled state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \ni \operatorname{Bell} = \frac{1}{\sqrt{2}} (e_1 \otimes f_1 + e_2 \otimes f_2) \neq x \otimes y.$$

Entanglement is essential to the exponential speed-up of some quantum algorithms, such as Shor's factoring algorithm, which has en exponential speed-up over classical algorithms: O(log³ N) vs O(exp(log^{1/3} N)).

- Separable rank one states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.
- Bell state or maximally entangled state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \ni \operatorname{Bell} = \frac{1}{\sqrt{2}} (e_1 \otimes f_1 + e_2 \otimes f_2) \neq x \otimes y.$$

- Entanglement is essential to the exponential speed-up of some quantum algorithms, such as Shor's factoring algorithm, which has en exponential speed-up over classical algorithms: O(log³ N) vs O(exp(log^{1/3} N)).
- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].

- Separable rank one states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.
- Bell state or maximally entangled state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \ni \operatorname{Bell} = \frac{1}{\sqrt{2}} (e_1 \otimes f_1 + e_2 \otimes f_2) \neq x \otimes y.$$

- Entanglement is essential to the exponential speed-up of some quantum algorithms, such as Shor's factoring algorithm, which has en exponential speed-up over classical algorithms: O(log³ N) vs O(exp(log^{1/3} N)).
- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].
- For rank one quantum states, entanglement can be detected and quantified by the von Neumann entropy

$$H(P_x) = S(\mathrm{sv}(x)) = -\sum_i s_i(x) \log s_i(x), x \in \mathbb{C}^{d_1} \otimes \mathcal{C}^{d_2} \cong \mathcal{M}_{d_1 \times d_2}(\mathbb{C}).$$

- Separable rank one states $\rho_{12} = P_{e \otimes f} = P_e \otimes P_f$.
- Bell state or maximally entangled state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2 \otimes \mathbb{C}^2 \ni \operatorname{Bell} = \frac{1}{\sqrt{2}} (e_1 \otimes f_1 + e_2 \otimes f_2) \neq x \otimes y.$$

- Entanglement is essential to the exponential speed-up of some quantum algorithms, such as Shor's factoring algorithm, which has en exponential speed-up over classical algorithms: O(log³ N) vs O(exp(log^{1/3} N)).
- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].
- For rank one quantum states, entanglement can be detected and quantified by the von Neumann entropy

$$H(P_x) = S(\mathrm{sv}(x)) = -\sum_i s_i(x) \log s_i(x), x \in \mathbb{C}^{d_1} \otimes \mathcal{C}^{d_2} \cong \mathcal{M}_{d_1 \times d_2}(\mathbb{C}).$$

▶ Detecting entanglement for general states C² ⊗ C² and C² ⊗ C³ is trivial via the PPT criterion [Horodecki].

- A map $f: \mathcal{M}(\mathbb{C}^d) \to \mathcal{M}(\mathbb{C}^d)$ is called
 - positive if $A \ge 0 \implies f(A) \ge 0$;
 - completely positive if $id_k \otimes f$ is positive for all $k \ge 1$.

- A map $f : \mathcal{M}(\mathbb{C}^d) \to \mathcal{M}(\mathbb{C}^d)$ is called
 - positive if $A \ge 0 \implies f(A) \ge 0$;
 - completely positive if $id_k \otimes f$ is positive for all $k \ge 1$.
- Let f : M(C^{d₂}) → M(C^{d₂}) be a completely positive map. Then, For every state ρ₁₂ ∈ M^{1,+}(C^{d₁} ⊗ C^{d₂}), one has [id_{d₁} ⊗ f](ρ₁₂) ≥ 0.

- A map $f : \mathcal{M}(\mathbb{C}^d) \to \mathcal{M}(\mathbb{C}^d)$ is called
 - positive if $A \ge 0 \implies f(A) \ge 0$;
 - completely positive if $id_k \otimes f$ is positive for all $k \ge 1$.
- Let f : M(C^{d₂}) → M(C^{d₂}) be a completely positive map. Then, For every state ρ₁₂ ∈ M^{1,+}(C^{d₁} ⊗ C^{d₂}), one has [id_{d₁} ⊗ f](ρ₁₂) ≥ 0.
- ▶ Let $f : \mathcal{M}(\mathbb{C}^{d_2}) \to \mathcal{M}(\mathbb{C}^{d_2})$ be a positive map. Then, for every separable state $\rho_{12} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2})$, one has $[\mathrm{id}_{d_1} \otimes f](\rho_{12}) \ge 0$.

- A map $f : \mathcal{M}(\mathbb{C}^d) \to \mathcal{M}(\mathbb{C}^d)$ is called
 - positive if $A \ge 0 \implies f(A) \ge 0$;
 - completely positive if $id_k \otimes f$ is positive for all $k \ge 1$.
- Let f : M(C^{d₂}) → M(C^{d₂}) be a completely positive map. Then, For every state ρ₁₂ ∈ M^{1,+}(C^{d₁} ⊗ C^{d₂}), one has [id_{d₁} ⊗ f](ρ₁₂) ≥ 0.
- Let f : M(C^{d₂}) → M(C^{d₂}) be a positive map. Then, for every separable state ρ₁₂ ∈ M^{1,+}(C^{d₁} ⊗ C^{d₂}), one has [id_{d₁} ⊗ f](ρ₁₂) ≥ 0.
- The transposition map t is positive, but not CP. Define the convex set

$$\mathcal{PPT} = \{\rho_{12} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}) \mid [\mathrm{id}_{d_1} \otimes \mathrm{t}_{d_2}](\rho_{12}) \ge 0\}.$$

- A map $f : \mathcal{M}(\mathbb{C}^d) \to \mathcal{M}(\mathbb{C}^d)$ is called
 - positive if $A \ge 0 \implies f(A) \ge 0$;
 - completely positive if $id_k \otimes f$ is positive for all $k \ge 1$.
- Let f : M(C^{d₂}) → M(C^{d₂}) be a completely positive map. Then, For every state ρ₁₂ ∈ M^{1,+}(C^{d₁} ⊗ C^{d₂}), one has [id_{d₁} ⊗ f](ρ₁₂) ≥ 0.
- Let f : M(C^{d₂}) → M(C^{d₂}) be a positive map. Then, for every separable state ρ₁₂ ∈ M^{1,+}(C^{d₁} ⊗ C^{d₂}), one has [id_{d₁} ⊗ f](ρ₁₂) ≥ 0.
- The transposition map t is positive, but not CP. Define the convex set

$$\mathcal{PPT} = \{\rho_{12} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}) \mid [\mathrm{id}_{d_1} \otimes \mathrm{t}_{d_2}](\rho_{12}) \ge 0\}.$$

For (d₁, d₂) ∈ {(2,2), (2,3)} we have SEP = PPT. In other dimensions, the inclusion SEP ⊂ PPT is strict.

• Recall the Bell state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2\otimes\mathbb{C}^2
i \operatorname{Bell}=rac{1}{\sqrt{2}}(e_1\otimes f_1+e_2\otimes f_2).$$

• Recall the Bell state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2\otimes\mathbb{C}^2
i \operatorname{Bell}=rac{1}{\sqrt{2}}(e_1\otimes f_1+e_2\otimes f_2).$$

 \blacktriangleright Written as a matrix in $\mathcal{M}^{1,+}(\mathbb{C}^4)$

$$\rho_{12} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

• Recall the Bell state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2\otimes\mathbb{C}^2
i \operatorname{Bell}=rac{1}{\sqrt{2}}(e_1\otimes f_1+e_2\otimes f_2).$$

 \blacktriangleright Written as a matrix in $\mathcal{M}^{1,+}(\mathbb{C}^4)$

$$\rho_{12} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

Partial transposition: transpose each block B_{ij}:

$$\rho_{12}^{\mathsf{\Gamma}} = [\mathrm{id}_2 \otimes \mathrm{t}_2](\rho_{12}) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• Recall the Bell state $\rho_{12} = P_{Bell}$, where

$$\mathbb{C}^2\otimes\mathbb{C}^2
i \operatorname{Bell}=rac{1}{\sqrt{2}}(e_1\otimes f_1+e_2\otimes f_2).$$

• Written as a matrix in $\mathcal{M}^{1,+}(\mathbb{C}^4)$

$$\rho_{12} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}.$$

Partial transposition: transpose each block B_{ij}:

$$\rho_{12}^{\Gamma} = [\mathrm{id}_2 \otimes \mathrm{t}_2](\rho_{12}) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• This matrix is no longer positive \implies the state is entangled.

Three convex sets

- States in *PPT* \ *SEP* are called bound entangled: no "maximal" entangled can be distilled from them.
- ► All these sets contain an open ball around the identity.

The problem we consider

$$\mathcal{M}^{1,+}(\mathbb{C}^{d_1d_2}) = \{\rho \mid \mathrm{Tr}\rho = 1 \text{ and } \rho \ge 0\}$$
$$\mathcal{SEP} = \left\{\sum_i t_i \rho_1(i) \otimes \rho_2(i)\right\} = \mathrm{conv} \left[\mathcal{M}^{1,+}(\mathbb{C}^{d_1}) \otimes \mathcal{M}^{1,+}(\mathbb{C}^{d_2})\right]$$
$$\mathcal{PPT} = \{\rho_{12} \in \mathcal{M}^{1,+}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}) \mid [\mathrm{id}_{d_1} \otimes \mathrm{t}_{d_2}](\rho_{12}) \ge 0\}.$$

Problem Compare the convex sets

$$\mathcal{SEP} \subset \mathcal{PPT} \subset \mathcal{M}^{1,+}(\mathbb{C}^{d_1d_2}).$$

Probability measures on $\mathcal{M}^{1,+}_d(\mathbb{C})$

Let X ∈ M_{d×s}(C) a rectangular d × s matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$W_{d,s} = XX^* \text{ and } \mathcal{M}^{1,+}(\mathbb{C}^d) \ni \rho_{d,s} = \frac{XX^*}{\operatorname{Tr}(XX^*)} = \frac{W_{d,s}}{\operatorname{Tr}W_{d,s}}.$$

Probability measures on $\mathcal{M}^{1,+}_d(\mathbb{C})$

Let X ∈ M_{d×s}(C) a rectangular d × s matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$W_{d,s} = XX^* \text{ and } \mathcal{M}^{1,+}(\mathbb{C}^d)
i
ho_{d,s} = rac{XX^*}{\operatorname{Tr}(XX^*)} = rac{W_{d,s}}{\operatorname{Tr}W_{d,s}}$$

The random matrix W_{d,s} is called a Wishart matrix and the distribution of ρ_{d,s} is called the induced measure of parameters (d, s) and is noted μ_{d,s}.

Probability measures on $\mathcal{M}^{1,+}_d(\mathbb{C})$

Let X ∈ M_{d×s}(C) a rectangular d × s matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$W_{d,s} = XX^* \text{ and } \mathcal{M}^{1,+}(\mathbb{C}^d)
i
ho_{d,s} = rac{XX^*}{\operatorname{Tr}(XX^*)} = rac{W_{d,s}}{\operatorname{Tr}W_{d,s}}$$

- The random matrix W_{d,s} is called a Wishart matrix and the distribution of ρ_{d,s} is called the induced measure of parameters (d, s) and is noted μ_{d,s}.
- Almost surely, $\rho_{d,s}$ has full rank iff $s \ge d$.

Probability measures on $\mathcal{M}_d^{1,+}(\mathbb{C})$

Let X ∈ M_{d×s}(C) a rectangular d × s matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$W_{d,s} = XX^* \text{ and } \mathcal{M}^{1,+}(\mathbb{C}^d)
i
ho_{d,s} = rac{XX^*}{\operatorname{Tr}(XX^*)} = rac{W_{d,s}}{\operatorname{Tr}W_{d,s}}$$

- The random matrix W_{d,s} is called a Wishart matrix and the distribution of ρ_{d,s} is called the induced measure of parameters (d, s) and is noted μ_{d,s}.
- Almost surely, $\rho_{d,s}$ has full rank iff $s \ge d$.
- The measure $\mu_{d,s}$ is unitarily invariant: there exist a probability measure $\nu_{d,s}$ on the probability simples $\Delta_d = \{\lambda \in \mathbb{R}^d \mid \lambda_i \ge 0, \sum \lambda_i = 1\}$ such that if $\lambda \sim \nu_{d,s}$ and U is a Haar unitary matrix independent of λ ,

$$U$$
diag $(\lambda)U^* \sim \mu_{d,s}$.

Eigenvalues for induced measures

Figure: Induced measure eigenvalue distribution for (d = 3, s = 3), (d = 3, s = 5), (d = 3, s = 7) and (d = 3, s = 10).

Volume of convex sets under the induced measures

▶ Let $C \subset \mathcal{M}^{1,+}(\mathbb{C}^d)$ a convex body, with $\mathrm{I}_d/d \in C^\circ$. Then

$$\lim_{s\to\infty}\mu_{d,s}(C)=1.$$

Volume of convex sets under the induced measures

▶ Let $C \subset \mathcal{M}^{1,+}(\mathbb{C}^d)$ a convex body, with $I_d/d \in C^\circ$. Then

$$\lim_{s\to\infty}\mu_{d,s}(C)=1.$$

Definition

A pair of functions $s_0(d), s_1(d)$ are called a threshold for a family of convex sets $\{C_d\}_{d \ge 2}$ if both conditions below hold

• If $s(d) \lesssim s_0(d)$, then

$$\lim_{d\to\infty}\mu_{d,s(d)}(C_d)=0;$$

• If $s(d) \gtrsim s_1(d)$, then

$$\lim_{d\to\infty}\mu_{d,s(d)}(C_d)=1.$$

Threshold for \mathcal{SEP}

Theorem (Aubrun, Szarek, Ye - 2011)

There exists a constant C such that the pair $s_0 = Cd^{3/2}$, $s_1 = Cd^{3/2} \log^2 d$ is a threshold for $S\mathcal{EP}$. In other words, if $s < Cd^{3/2}$, then

$$\lim_{d\to\infty}\mu_{d,s}(\{\rho \text{ is entangled}\})=1$$

and if $s > Cd^{3/2} \log^2 d$, then

$$\lim_{d\to\infty}\mu_{d,s}(\{\rho \text{ is separable}\})=1.$$

Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters (dn, dm). Then, with $d \to \infty$, the empirical spectral distribution of mW^{Γ} converges in moments to a free difference of free Poisson distributions of respective parameters $m(n \pm 1)/2$.

Corollary

The limiting measure in the previous theorem has positive support iff

$$n \leqslant rac{m}{4} + rac{1}{m}$$
 and $m \geqslant 2$.

Threshold for \mathcal{PPT} , unbalanced & balanced case

Theorem (unbalanced case, Banica, N.)

In the unbalanced case $d_1 = d \to \infty$, $d_2 = n$ fixed, the lower bound of a threshold for \mathcal{PPT} is given by $s_0 = \left[2 + 2\sqrt{1 - n^{-2}}\right] d$.

Threshold for \mathcal{PPT} , unbalanced & balanced case

Theorem (unbalanced case, Banica, N.)

In the unbalanced case $d_1 = d \to \infty$, $d_2 = n$ fixed, the lower bound of a threshold for \mathcal{PPT} is given by $s_0 = \left[2 + 2\sqrt{1 - n^{-2}}\right] d$.

► Most likely, in this case, s₁ = s₀. Results about the convergence of the norm of random matrices are needed to conclude. The recent results in [Collins, Male] seem to apply here directly.

Threshold for \mathcal{PPT} , unbalanced & balanced case

Theorem (unbalanced case, Banica, N.)

In the unbalanced case $d_1 = d \to \infty$, $d_2 = n$ fixed, the lower bound of a threshold for \mathcal{PPT} is given by $s_0 = \begin{bmatrix} 2 + 2\sqrt{1 - n^{-2}} \end{bmatrix} d$.

► Most likely, in this case, s₁ = s₀. Results about the convergence of the norm of random matrices are needed to conclude. The recent results in [Collins, Male] seem to apply here directly.

Theorem (balanced case, Aubrun - 2010)

In the balanced case $d_1 = d_2 = d \rightarrow \infty$, a threshold pair for \mathcal{PPT} is given by $s_0 = s_1 = 4d$.

Generalizing partial transposition

Replace the transposition map t with an arbitrary, hermiticity preserving linear map φ : M(C^d) → M(C^d).

Generalizing partial transposition

- Replace the transposition map t with an arbitrary, hermiticity preserving linear map φ : M(ℂ^d) → M(ℂ^d).
- Define the Choi matrix Λ of φ

$$\varphi(A) = (\operatorname{Tr} \otimes id)[(\operatorname{t} \otimes \operatorname{id}) \wedge \cdot (A \otimes 1)]$$

Generalizing partial transposition

- Replace the transposition map t with an arbitrary, hermiticity preserving linear map φ : M(ℂ^d) → M(ℂ^d).
- Define the Choi matrix Λ of φ

$$\varphi(A) = (\operatorname{Tr} \otimes id)[(\operatorname{t} \otimes \operatorname{id}) \wedge \cdot (A \otimes 1)]$$

Problem

Compute the asymptotic spectrum of

$$\tilde{W} = (\mathrm{id} \otimes \varphi)W,$$

where W is a Wishart random matrix, $d \rightarrow \infty$ and n is fixed.

•
$$\varphi(A) = Tr(BA)C$$
, in the case $C = c1$.
• $\Lambda = B^{\top} \otimes C$.

•
$$\varphi(A) = BAC$$
, for any B, C .
• $\Lambda = |B\rangle\langle C|$,

- $\varphi(A) = BA^t C$, in the case BC = c1.
- ► $\Lambda = SWAP_{BC}$,

- $\varphi(A) = xA^{\delta}$, in the case x = c1.
- $\Lambda = \operatorname{Center}_x$,

Our result

Theorem (Banica, N. - work in progress) Let $\tilde{W} = (id \otimes \varphi)W$, where W is a complex Wishart matrix of parameters (dn, dm), and where $\varphi : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a self-adjoint linear map, coming from a matrix $\Lambda \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C})$. Then, under suitable "planar" assumptions on φ , we have $\delta m \tilde{W} \sim \pi_{mn\rho} \boxtimes \nu$, with $\rho = law(\Lambda)$, $\nu = law(D)$, $\delta = tr(D)$, where $D = \varphi(1)$

Our result

Theorem (Banica, N. - work in progress) Let $\tilde{W} = (id \otimes \varphi)W$, where W is a complex Wishart matrix of parameters (dn, dm), and where $\varphi : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a self-adjoint linear map, coming from a matrix $\Lambda \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C})$. Then, under suitable "planar" assumptions on φ , we have $\delta m \tilde{W} \sim \pi_{mn\rho} \boxtimes \nu$, with $\rho = law(\Lambda)$, $\nu = law(D)$, $\delta = tr(D)$, where $D = \varphi(1)$

Idea of the proof

$$\lim_{d\to\infty} (\mathbb{E}\circ\mathrm{tr})((m\tilde{W})^p) = \sum_{\pi\in\mathsf{NC}(p)} (mn)^{\#\pi}\mathrm{tr}_{(\pi,\gamma)}(\Lambda).$$

Our result

Theorem (Banica, N. - work in progress) Let $\tilde{W} = (id \otimes \varphi)W$, where W is a complex Wishart matrix of parameters (dn, dm), and where $\varphi : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a self-adjoint linear map, coming from a matrix $\Lambda \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C})$. Then, under suitable "planar" assumptions on φ , we have $\delta m \tilde{W} \sim \pi_{mn\rho} \boxtimes \nu$, with $\rho = law(\Lambda)$, $\nu = law(D)$, $\delta = tr(D)$, where $D = \varphi(1)$

Idea of the proof

$$\lim_{d\to\infty} (\mathbb{E}\circ\mathrm{tr})((m\tilde{W})^p) = \sum_{\pi\in \mathsf{NC}(p)} (mn)^{\#\pi} \mathrm{tr}_{(\pi,\gamma)}(\Lambda).$$

 Identify the free cumulants, if the general term in the sum above is multiplicative. Why does this fail for general φ ?

Why does this fail for general φ ?

We want

Thank you !

http://arxiv.org/abs/1105.2556 + work in progress