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» Quantum states with d degrees of freedom are described by
density matrices

p € MH(CY); Trp=1and p > 0.
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Two quantum systems: p1p € MLH(C% @ C%).
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A state p1o is called separable if it can be written as a convex
combination of product states

p12 € SEP <= p1o = Z tip1(i) @ p2(i),
where t; > 0, 3. t; = 1, p1(i) € MYH(CH), pa(i) € MLH(CR).
Equivalently, SEP = conv [MIT(C%) @ ML (C®)] .
Non-separable states are called entangled.
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> Separable rank one states p1p = Pegr = Pe ® Pr.
> Bell state or maximally entangled state p1o2 = Ppel1, Where

1
(C2®C2aBeH:ﬁ(e1®ﬁ+e2®f2)7éx®y.

» Entanglement is essential to the exponential speed-up of some
quantum algorithms, such as Shor's factoring algorithm, which
has en exponential speed-up over classical algorithms: O(Iog3 N)
vs O(exp(log!/3 N)).

» Deciding if a given pi2 is separable is NP-hard [Gurvitz].

» For rank one quantum states, entanglement can be detected and
quantified by the von Neumann entropy

H(Py) = S(sv(x)) = Zs,(x log 5i(x), x € CMRC® =2 My, g,(C).

i

» Detecting entanglement for general states C*> ® C? and C?> @ C3
is trivial via the PPT criterion [Horodecki.
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» A map f: M(C9) — M(C?) is called
» positive if A>20 = f(A) >0;
» completely positive if idx ® f is positive for all k > 1.
> Let f: M(C%) — M(C®) be a completely positive map. Then,
For every state p1o € MLH(C% @ C%), one has
lide, © f](p12) > 0.
> Let f: M(C%) — M(C®) be a positive map. Then, for every
separable state p;p € ML (C% @ C%), one has
lide; ® f](p12) = 0.
> The transposition map t is positive, but not CP. Define the
convex set

PPT = {p12 € MM (C" © C*)|[idy, ® ta,](p12) > 0}

» For (di,d2) € {(2,2),(2,3)} we have SEP = PPT. In other
dimensions, the inclusion SEP C PPT is strict.
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» This matrix is no longer positive = the state is entangled.



Three convex sets

Ml,+(cd)

\_

{ |

PPT SEP

» States in PPT \ SEP are called bound entangled: no “maximal”
entangled can be distilled from them.

> All these sets contain an open ball around the identity.



The problem we consider

MUH (%) = {p|Trp=1and p > 0}
SEP = {Z tip1(i) @ pa(i } = conv [Mlﬁ((cdl) @ MUT(C%)
PPT = {p12 € M*"(C" @ C*) | [idg, © ta,](p12) > 0}.

Problem
Compare the convex sets

SEP C PPT c MY+ (CHh®),
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Probability measures on M} (C)

> Let X € Myys(C) a rectangular d x s matrix with i.i.d. complex
standard Gaussian entries. Define the random variables

XX Wi s

Wys = XX* and MF(C? = = :
s and MET(CE)'= vas = 15y = T,

» The random matrix Wy s is called a Wishart matrix and the
distribution of py s is called the induced measure of parameters
(d,s) and is noted fiq 5.

» Almost surely, pg s has full rank iff s > d.

» The measure ji4 s is unitarily invariant: there exist a probability
measure V4 s on the probability simples
Ag={NeRI| N >0, )\ =1} such that if A\ ~ g5 and U is
a Haar unitary matrix independent of A,

Udiag(A\)U* ~ pig s.



Eigenvalues for induced measures

. @@ .
- g oy

Figure: Induced measure eigenvalue distribution for (d = 3,s = 3),
(d=3,5s=5),(d=3,s=7)and (d =3,s = 10).
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Volume of convex sets under the induced measures

» Let C ¢ MLT(CY) a convex body, with I4/d € C°. Then

SILrQo Md,s(C) =1

Definition
A pair of functions sp(d), s1(d) are called a threshold for a family
of convex sets { C4}4>2 if both conditions below hold

» If s(d) < so(d), then
i Cy4) =0;
Jm Id,s(d)(Cd) = 0;
» If s(d) 2 si(d), then

Jim 14,5(0)(Ca) = 1.



Threshold for SEP

Theorem (Aubrun, Szarek, Ye - 2011)

There exists a constant C such that the pair sy = Cd*/?,
s1 = Cd3/2log? d is a threshold for SEP.
In other words, if s < Cd3/2, then
lim ugs({p is entangled}) =1
d—oo
and if s > Cd3/? log? d, then

lim pgs({p is separable}) = 1.
d—o0



Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters (dn, dm).
Then, with d — oo, the empirical spectral distribution of mW"
converges in moments to a free difference of free Poisson
distributions of respective parameters m(n+1)/2.

Corollary |

The limiting measure in the \
previous theorem has positive “’\
support iff

N

1
n\T—i——andm}Z 2
4 m

L
10
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Theorem (unbalanced case, Banica, N.)

In the unbalanced case di = d — 0o, d» = n fixed, the lower bound
of a threshold for PPT is given by sp = {2 +2v1 — n—2} d.

> Most likely, in this case, s; = sp. Results about the convergence
of the norm of random matrices are needed to conclude. The
recent results in [Collins, Male] seem to apply here directly.

Theorem (balanced case, Aubrun - 2010)

In the balanced case di = d» = d — o0, a threshold pair for PPT
is given by sp = 51 = 4d.
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Generalizing partial transposition

> Replace the transposition map t with an arbitrary, hermiticity
preserving linear map ¢ : M(C?) — M(CY).
> Define the Choi matrix A of ¢

0(A) = (Tr @ id)[(t @ id)A - (A 1)]

Problem
Compute the asymptotic spectrum of

W = (id ® p)W,

where W is a Wishart random matrix, d — oo and n is fixed.
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Some examples

» p(A) = BA'C, in the case BC = cl.
» A= SWAPB(;,




Some examples

» o(A) = xA%, in the case x = cl.

» A = Centery,




Our result

Theorem (Banica, N. - work in progress)
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> Identify the free cumulants, if the general term in the sum above
is multiplicative.
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Why does this fail for general ¢ 7

» We have
i“& va n
» We want
m1(2) (2)

e
A

m1(2)



Thank you |

http://arxiv.org/abs/1105.2556
_|_
work in progress
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