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◮ Deciding if a given ρ12 is separable is NP-hard [Gurvitz].
◮ For rank one quantum states, entanglement can be detected and

quantified by the von Neumann entropy

H(Px) = S(sv(x)) = −
∑

i

si (x) log si (x), x ∈ C
d1⊗Cd2 ∼= Md1×d2(C).

◮ Detecting entanglement for general states C2 ⊗ C 2 and C
2 ⊗ C 3

is trivial via the PPT criterion [Horodecki].
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separable state ρ12 ∈ M1,+(Cd1 ⊗ C

d2), one has
[idd1 ⊗ f ](ρ12) > 0.

◮ The transposition map t is positive, but not CP. Define the
convex set

PPT = {ρ12 ∈ M1,+(Cd1 ⊗ C
d2) | [idd1 ⊗ td2 ](ρ12) > 0}.

◮ For (d1, d2) ∈ {(2, 2), (2, 3)} we have SEP = PPT . In other
dimensions, the inclusion SEP ⊂ PPT is strict.
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◮ This matrix is no longer positive =⇒ the state is entangled.



Three convex sets

Id/d

M1,+(Cd)

PPT SEP

◮ States in PPT \ SEP are called bound entangled: no “maximal”
entangled can be distilled from them.

◮ All these sets contain an open ball around the identity.



The problem we consider

M1,+(Cd1d2) = {ρ |Trρ = 1 and ρ > 0}

SEP =

{

∑

i

tiρ1(i)⊗ ρ2(i)

}

= conv
[

M1,+(Cd1)⊗M1,+(Cd2)
]

PPT = {ρ12 ∈ M1,+(Cd1 ⊗ C
d2) | [idd1 ⊗ td2 ](ρ12) > 0}.

Problem
Compare the convex sets

SEP ⊂ PPT ⊂ M1,+(Cd1d2).
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XX ∗
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=

Wd ,s

TrWd ,s
.

◮ The random matrix Wd ,s is called a Wishart matrix and the
distribution of ρd ,s is called the induced measure of parameters
(d , s) and is noted µd ,s .

◮ Almost surely, ρd ,s has full rank iff s > d .

◮ The measure µd ,s is unitarily invariant: there exist a probability
measure νd ,s on the probability simples
∆d = {λ ∈ R

d |λi > 0,
∑

λi = 1} such that if λ ∼ νd ,s and U is
a Haar unitary matrix independent of λ,

Udiag(λ)U∗ ∼ µd ,s .



Eigenvalues for induced measures
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Figure: Induced measure eigenvalue distribution for (d = 3, s = 3),
(d = 3, s = 5), (d = 3, s = 7) and (d = 3, s = 10).
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◮ Let C ⊂ M1,+(Cd) a convex body, with Id/d ∈ C ◦. Then

lim
s→∞

µd ,s(C ) = 1.

Definition
A pair of functions s0(d), s1(d) are called a threshold for a family
of convex sets {Cd}d>2 if both conditions below hold

◮ If s(d) . s0(d), then

lim
d→∞

µd ,s(d)(Cd) = 0;

◮ If s(d) & s1(d), then

lim
d→∞

µd ,s(d)(Cd) = 1.



Threshold for SEP

Theorem (Aubrun, Szarek, Ye - 2011)

There exists a constant C such that the pair s0 = Cd3/2,

s1 = Cd3/2 log2 d is a threshold for SEP.

In other words, if s < Cd3/2, then

lim
d→∞

µd ,s({ρ is entangled}) = 1

and if s > Cd3/2 log2 d, then

lim
d→∞

µd ,s({ρ is separable}) = 1.



Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters (dn, dm).
Then, with d → ∞, the empirical spectral distribution of mW Γ

converges in moments to a free difference of free Poisson

distributions of respective parameters m(n ± 1)/2.

Corollary

The limiting measure in the

previous theorem has positive

support iff

n 6
m

4
+

1

m
and m > 2.

2 4 6 8 10
m

2

3

4

5

n
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In the unbalanced case d1 = d → ∞, d2 = n fixed, the lower bound

of a threshold for PPT is given by s0 =
[

2 + 2
√
1− n−2

]

d.

◮ Most likely, in this case, s1 = s0. Results about the convergence
of the norm of random matrices are needed to conclude. The
recent results in [Collins, Male] seem to apply here directly.

Theorem (balanced case, Aubrun - 2010)

In the balanced case d1 = d2 = d → ∞, a threshold pair for PPT
is given by s0 = s1 = 4d.
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Generalizing partial transposition

◮ Replace the transposition map t with an arbitrary, hermiticity
preserving linear map ϕ : M(Cd) → M(Cd).

◮ Define the Choi matrix Λ of ϕ

ϕ(A) = (Tr⊗ id)[(t⊗ id)Λ · (A⊗ 1)]

ΛΓ
A

A

Λ

ϕ(A) = =

Problem
Compute the asymptotic spectrum of

W̃ = (id⊗ ϕ)W ,

where W is a Wishart random matrix, d → ∞ and n is fixed.



Some examples

◮ ϕ(A) = Tr(BA)C , in the case C = c1.

◮ Λ = B⊤ ⊗ C .

Λ
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Some examples

◮ ϕ(A) = BAtC , in the case BC = c1.
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Some examples

◮ ϕ(A) = xAδ, in the case x = c1.

◮ Λ = Centerx ,

Λ x=



Our result

Theorem (Banica, N. - work in progress)
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self-adjoint linear map, coming from a matrix

Λ ∈ Mn(C)⊗Mn(C). Then, under suitable “planar” assumptions

on ϕ, we have δmW̃ ∼ πmnρ ⊠ ν, with ρ = law(Λ), ν = law(D),
δ = tr(D), where D = ϕ(1)



Our result

Theorem (Banica, N. - work in progress)

Let W̃ = (id ⊗ ϕ)W, where W is a complex Wishart matrix of

parameters (dn, dm), and where ϕ : Mn(C) → Mn(C) is a
self-adjoint linear map, coming from a matrix

Λ ∈ Mn(C)⊗Mn(C). Then, under suitable “planar” assumptions

on ϕ, we have δmW̃ ∼ πmnρ ⊠ ν, with ρ = law(Λ), ν = law(D),
δ = tr(D), where D = ϕ(1)

◮ Idea of the proof

lim
d→∞

(E ◦ tr)((mW̃ )p) =
∑

π∈NC(p)

(mn)#πtr(π,γ)(Λ).



Our result
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Let W̃ = (id ⊗ ϕ)W, where W is a complex Wishart matrix of

parameters (dn, dm), and where ϕ : Mn(C) → Mn(C) is a
self-adjoint linear map, coming from a matrix

Λ ∈ Mn(C)⊗Mn(C). Then, under suitable “planar” assumptions

on ϕ, we have δmW̃ ∼ πmnρ ⊠ ν, with ρ = law(Λ), ν = law(D),
δ = tr(D), where D = ϕ(1)

◮ Idea of the proof

lim
d→∞

(E ◦ tr)((mW̃ )p) =
∑

π∈NC(p)

(mn)#πtr(π,γ)(Λ).

◮ Identify the free cumulants, if the general term in the sum above
is multiplicative.
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◮ We have

Λ Λ Λ· · ·

π(2)

γ

π

π
−1(2)

◮ We want

Λ Λ Λ· · ·
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π

π

π
−1(2)

π(2)π
−1(2)



Thank you !

http://arxiv.org/abs/1105.2556

+
work in progress
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