Block-modified Wishart matrices and applications to entanglement theory

Ion Nechita
CNRS, Université de Toulouse
joint work with Teodor Banica (Cergy)
Joint EMS-RMSE Mathematical Weekend
Bilbao, October 7, 2011

Entanglement in Quantum Information Theory

- Quantum states with d degrees of freedom are described by density matrices

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

- Two quantum systems: $\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$.
- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)
$$

where $t_{i} \geqslant 0, \sum_{i} t_{i}=1, \rho_{1}(i) \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}}\right), \rho_{2}(i) \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{2}}\right)$.

- Equivalently, $\mathcal{S E P}=\operatorname{conv}\left[\mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}}\right) \otimes \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{2}}\right)\right]$.
- Non-separable states are called entangled.

More on entanglement

- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].
- For rank one quantum states, entanglement can be detected and quantified by the von Neumann entropy

$$
H\left(P_{x}\right)=S(\operatorname{sv}(x))=-\sum_{i} s_{i}(x) \log s_{i}(x), x \in \mathbb{C}^{d_{1}} \otimes C^{d_{2}} \cong \mathcal{M}_{d_{1} \times d_{2}}(\mathbb{C})
$$

- Detecting entanglement for general states $\mathbb{C}^{2} \otimes C^{2}$ and $\mathbb{C}^{2} \otimes C^{3}$ is trivial via the PPT criterion [Horodecki].

More on entanglement

- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].
- For rank one quantum states, entanglement can be detected and quantified by the von Neumann entropy $H\left(P_{x}\right)=S(\operatorname{sv}(x))=-\sum_{i} s_{i}(x) \log s_{i}(x), x \in \mathbb{C}^{d_{1}} \otimes C^{d_{2}} \cong \mathcal{M}_{d_{1} \times d_{2}}(\mathbb{C})$.
- Detecting entanglement for general states $\mathbb{C}^{2} \otimes C^{2}$ and $\mathbb{C}^{2} \otimes C^{3}$ is trivial via the PPT criterion [Horodecki].
- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $\mathrm{id}_{k} \otimes f$ is positive for all $k \geqslant 1$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{2}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{2}}\right)$ is $C P$, then for every state ρ_{12} one has $\left[\mathrm{id}_{d_{1}} \otimes f\right]\left(\rho_{12}\right) \geqslant 0$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{2}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{2}}\right)$ is only positive, then for every separable state ρ_{12}, one has $\left[\mathrm{id}_{d_{1}} \otimes f\right]\left(\rho_{12}\right) \geqslant 0$.

More on entanglement

- Deciding if a given ρ_{12} is separable is NP-hard [Gurvitz].
- For rank one quantum states, entanglement can be detected and quantified by the von Neumann entropy
$H\left(P_{x}\right)=S(\operatorname{sv}(x))=-\sum_{i} s_{i}(x) \log s_{i}(x), x \in \mathbb{C}^{d_{1}} \otimes C^{d_{2}} \cong \mathcal{M}_{d_{1} \times d_{2}}(\mathbb{C})$.
- Detecting entanglement for general states $\mathbb{C}^{2} \otimes C^{2}$ and $\mathbb{C}^{2} \otimes C^{3}$ is trivial via the PPT criterion [Horodecki].
- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $\mathrm{id}_{k} \otimes f$ is positive for all $k \geqslant 1$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{2}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{2}}\right)$ is $C P$, then for every state ρ_{12} one has $\left[\mathrm{id}_{d_{1}} \otimes f\right]\left(\rho_{12}\right) \geqslant 0$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{2}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{2}}\right)$ is only positive, then for every separable state ρ_{12}, one has $\left[\mathrm{id}_{d_{1}} \otimes f\right]\left(\rho_{12}\right) \geqslant 0$.
- The transposition map t is positive, but not CP. Put

$$
\mathcal{P} \mathcal{P} \mathcal{T}=\left\{\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right) \mid\left[\mathrm{id}_{d_{1}} \otimes \mathrm{t}_{d_{2}}\right]\left(\rho_{12}\right) \geqslant 0\right\} .
$$

Three convex sets

- For $\left(d_{1}, d_{2}\right) \in\{(2,2),(2,3)\}$ we have $\mathcal{S E P}=\mathcal{P P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P} \mathcal{P} \mathcal{T}$ is strict.
- States in $\mathcal{P} \mathcal{P} \mathcal{T} \backslash \mathcal{S E P}$ are called bound entangled: no "maximal" entangled can be distilled from them.
- All these sets contain an open ball around the identity.

The problem we consider

$$
\begin{aligned}
& \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1} d_{2}}\right)=\{\rho \mid \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0\} \\
& \mathcal{S E P}=\left\{\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)\right\}=\operatorname{conv}\left[\mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}}\right) \otimes \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{2}}\right)\right] \\
& \mathcal{P P} \mathcal{T}=\left\{\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right) \mid\left[\mathrm{id}_{d_{1}} \otimes \mathrm{t}_{d_{2}}\right]\left(\rho_{12}\right) \geqslant 0\right\} .
\end{aligned}
$$

Problem
Compare the convex sets

$$
\mathcal{S E P} \subset \mathcal{P P \mathcal { T }} \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1} d_{2}}\right) .
$$

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}}
$$

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}}
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is called the induced measure of parameters (d, s) and is noted $\mu_{d, s}$.

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}}
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is called the induced measure of parameters (d, s) and is noted $\mu_{d, s}$.
- Almost surely, $\rho_{d, s}$ has full rank iff $s \geqslant d$.

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}}
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is called the induced measure of parameters (d, s) and is noted $\mu_{d, s}$.
- Almost surely, $\rho_{d, s}$ has full rank iff $s \geqslant d$.
- The measure $\mu_{d, s}$ is unitarily invariant: there exist a probability measure $\nu_{d, s}$ on the probability simples
$\Delta_{d}=\left\{\lambda \in \mathbb{R}^{d} \mid \lambda_{i} \geqslant 0, \sum \lambda_{i}=1\right\}$ such that if $\lambda \sim \nu_{d, s}$ and U is a Haar unitary matrix independent of λ,

$$
U \operatorname{diag}(\lambda) U^{*} \sim \mu_{d, s}
$$

Eigenvalues for induced measures

Figure: Induced measure eigenvalue distribution for $(d=3, s=3)$, $(d=3, s=5),(d=3, s=7)$ and $(d=3, s=10)$.

Volume of convex sets under the induced measures

- Let $C \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ a convex body, with $\mathrm{I}_{d} / d \in C^{\circ}$. Then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}(C)=1
$$

Volume of convex sets under the induced measures

- Let $C \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ a convex body, with $\mathrm{I}_{d} / d \in C^{\circ}$. Then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}(C)=1
$$

Definition

A pair of functions $s_{0}(d), s_{1}(d)$ are called a threshold for a family of convex sets $\left\{C_{d}\right\}_{d \geqslant 2}$ if both conditions below hold

- If $s(d) \lesssim s_{0}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(C_{d}\right)=0
$$

- If $s(d) \gtrsim s_{1}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(C_{d}\right)=1
$$

Threshold for $\mathcal{S E P}$

Theorem (Aubrun, Szarek, Ye - 2011)
Guillaume's talk tomorrow

Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters $(d n, d m)$. Then, with $d \rightarrow \infty$, the empirical spectral distribution of $m W^{\Gamma}$ converges in moments to a free difference of free Poisson distributions of respective parameters $m(n \pm 1) / 2$.

Corollary

The limiting measure in the previous theorem has positive support iff

$$
n \leqslant \frac{m}{4}+\frac{1}{m} \text { and } m \geqslant 2 \text {. }
$$

What is a free difference of free Poison measures?

- Free additive convolution (or free sum) of two compactly supported probability distributions $\mu_{1,2}$: sample $X_{1,2} \in \mathbb{R}^{n}$ from $\mu_{1,2}$ and consider

$$
A=U_{1} \operatorname{diag}\left(X_{1}\right) U_{1}^{*}+U_{2} \operatorname{diag}\left(X_{2}\right) U_{2}^{*},
$$

where $U_{1,2}$ are $n \times n$ independent Haar unitary rotations. Then, as $n \rightarrow \infty$, the spectrum of A has distribution $\mu_{1} \boxplus \mu_{2}$.

What is a free difference of free Poison measures ?

- Free additive convolution (or free sum) of two compactly supported probability distributions $\mu_{1,2}$: sample $X_{1,2} \in \mathbb{R}^{n}$ from $\mu_{1,2}$ and consider

$$
A=U_{1} \operatorname{diag}\left(X_{1}\right) U_{1}^{*}+U_{2} \operatorname{diag}\left(X_{2}\right) U_{2}^{*}
$$

where $U_{1,2}$ are $n \times n$ independent Haar unitary rotations. Then, as $n \rightarrow \infty$, the spectrum of A has distribution $\mu_{1} \boxplus \mu_{2}$.

- The free Poisson distribution of parameter $c>0$:
$\pi_{c}=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}(x) d x$.

What is a free difference of free Poison measures ?

- Free additive convolution (or free sum) of two compactly supported probability distributions $\mu_{1,2}$: sample $X_{1,2} \in \mathbb{R}^{n}$ from $\mu_{1,2}$ and consider

$$
A=U_{1} \operatorname{diag}\left(X_{1}\right) U_{1}^{*}+U_{2} \operatorname{diag}\left(X_{2}\right) U_{2}^{*}
$$

where $U_{1,2}$ are $n \times n$ independent Haar unitary rotations. Then, as $n \rightarrow \infty$, the spectrum of A has distribution $\mu_{1} \boxplus \mu_{2}$.

- The free Poisson distribution of parameter $c>0$:
$\pi_{c}=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}(x) d x$.
- One has a free Poisson Central Limit Theorem:

$$
\lim _{n \rightarrow \infty}\left[\left(1-\frac{c}{n}\right) \delta_{0}+\frac{c}{n} \delta_{1}\right]^{\boxplus n}=\pi_{c}
$$

What is a free difference of free Poison measures ?

- Free additive convolution (or free sum) of two compactly supported probability distributions $\mu_{1,2}$: sample $X_{1,2} \in \mathbb{R}^{n}$ from $\mu_{1,2}$ and consider

$$
A=U_{1} \operatorname{diag}\left(X_{1}\right) U_{1}^{*}+U_{2} \operatorname{diag}\left(X_{2}\right) U_{2}^{*}
$$

where $U_{1,2}$ are $n \times n$ independent Haar unitary rotations. Then, as $n \rightarrow \infty$, the spectrum of A has distribution $\mu_{1} \boxplus \mu_{2}$.

- The free Poisson distribution of parameter $c>0$:
$\pi_{c}=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}(x) d x$.
- One has a free Poisson Central Limit Theorem:

$$
\lim _{n \rightarrow \infty}\left[\left(1-\frac{c}{n}\right) \delta_{0}+\frac{c}{n} \delta_{1}\right]^{\boxplus n}=\pi_{c} .
$$

- Moreover, π_{c} is the limit eigenvalue distribution of a rescaled density matrix from the induced ensemble $\rho_{d, c d}$ (d large).

Threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$, unbalanced \& balanced case

Theorem (unbalanced case, Banica, N.)
In the unbalanced case $d_{1}=d \rightarrow \infty, d_{2}=n$ fixed, the lower bound of a threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$ is given by $s_{0}=\left[2+2 \sqrt{1-n^{-2}}\right] d$.

Threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$, unbalanced \& balanced case

Theorem (unbalanced case, Banica, N.)
In the unbalanced case $d_{1}=d \rightarrow \infty, d_{2}=n$ fixed, the lower bound of a threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$ is given by $s_{0}=\left[2+2 \sqrt{1-n^{-2}}\right] d$.

- Most likely, in this case, $s_{1}=s_{0}$. Results about the convergence of the norm of random matrices are needed to conclude. Recent results in [Haagerup-Thorbjørnsen, Male, Collins-Male] seem to apply here directly.

Threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$, unbalanced \& balanced case

Theorem (unbalanced case, Banica, N.)
In the unbalanced case $d_{1}=d \rightarrow \infty, d_{2}=n$ fixed, the lower bound of a threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$ is given by $s_{0}=\left[2+2 \sqrt{1-n^{-2}}\right] d$.

- Most likely, in this case, $s_{1}=s_{0}$. Results about the convergence of the norm of random matrices are needed to conclude. Recent results in [Haagerup-Thorbjørnsen, Male, Collins-Male] seem to apply here directly.

Theorem (balanced case, Aubrun - 2010)
In the balanced case $d_{1}=d_{2}=d \rightarrow \infty$, a threshold pair for $\mathcal{P} \mathcal{P} \mathcal{T}$ is given by $s_{0}=s_{1}=4 d$.

Generalizing partial transposition

- Replace the transposition map t with an arbitrary, hermiticity preserving linear map $\varphi: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$.

Generalizing partial transposition

- Replace the transposition map t with an arbitrary, hermiticity preserving linear map $\varphi: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$.
- Define the Choi matrix Λ of φ

$$
\varphi(A)=(\operatorname{Tr} \otimes i d)[(\mathrm{t} \otimes \mathrm{id}) \wedge \cdot(A \otimes 1)]
$$

Generalizing partial transposition

- Replace the transposition map t with an arbitrary, hermiticity preserving linear map $\varphi: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$.
- Define the Choi matrix Λ of φ

$$
\begin{aligned}
& \varphi(A)=(\operatorname{Tr} \otimes i d)[(\mathrm{t} \otimes \mathrm{id}) \Lambda \cdot(A \otimes 1)] \\
& \varphi \varphi(A)=\Lambda^{\Gamma} \cdot A_{0}=
\end{aligned}
$$

Problem

Compute the asymptotic spectrum of

$$
\tilde{W}=(\operatorname{id} \otimes \varphi) W
$$

where W is a Wishart random matrix, $d \rightarrow \infty$ and n is fixed.

Some examples

- $\varphi(A)=\operatorname{Tr}(B A) C$, in the case $C=c 1$.
- $\Lambda=B^{\top} \otimes C$.

Some examples

- $\varphi(A)=B A C$, for any B, C.
- $\Lambda=|B\rangle\langle C|$,

Some examples

- $\varphi(A)=B A^{t} C$, in the case $B C=c 1$.
- $\Lambda=\operatorname{SWAP}_{B C}$,

Some examples

- $\varphi(A)=x A^{\delta}$, in the case $x=c 1$.
- $\Lambda=$ Center $_{x}$,

Our result

Theorem (Banica, N. - work in progress)
Let $\tilde{W}=(i d \otimes \varphi) W$, where W is a complex Wishart matrix of parameters $(d n, d m)$, and where $\varphi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is a self-adjoint linear map, coming from a matrix $\Lambda \in M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$. Then, under suitable "planar" assumptions on φ, we have $\delta m \tilde{W} \sim \pi_{m n \rho} \boxtimes \nu$, with $\rho=\operatorname{law}(\Lambda)$, $\nu=\operatorname{law}(D)$, $\delta=\operatorname{tr}(D)$, where $D=\varphi(1)$

Our result

Theorem (Banica, N. - work in progress)
Let $\tilde{W}=(i d \otimes \varphi) W$, where W is a complex Wishart matrix of parameters $(d n, d m)$, and where $\varphi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is a self-adjoint linear map, coming from a matrix
$\Lambda \in M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$. Then, under suitable "planar" assumptions on φ, we have $\delta m \tilde{W} \sim \pi_{m n \rho} \boxtimes \nu$, with $\rho=\operatorname{law}(\Lambda), \nu=\operatorname{law}(D)$, $\delta=\operatorname{tr}(D)$, where $D=\varphi(1)$

- Idea of the proof

$$
\lim _{d \rightarrow \infty}(\mathbb{E} \circ \operatorname{tr})\left((m \tilde{W})^{p}\right)=\sum_{\pi \in N C(p)}(m n)^{\# \pi} \operatorname{tr}_{(\pi, \gamma)}(\Lambda)
$$

Our result

Theorem (Banica, N. - work in progress)
Let $\tilde{W}=(i d \otimes \varphi) W$, where W is a complex Wishart matrix of parameters $(d n, d m)$, and where $\varphi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is a self-adjoint linear map, coming from a matrix
$\Lambda \in M_{n}(\mathbb{C}) \otimes M_{n}(\mathbb{C})$. Then, under suitable "planar" assumptions on φ, we have $\delta m \tilde{W} \sim \pi_{m n \rho} \boxtimes \nu$, with $\rho=\operatorname{law}(\Lambda), \nu=\operatorname{law}(D)$, $\delta=\operatorname{tr}(D)$, where $D=\varphi(1)$

- Idea of the proof

$$
\lim _{d \rightarrow \infty}(\mathbb{E} \circ \operatorname{tr})\left((m \tilde{W})^{p}\right)=\sum_{\pi \in N C(p)}(m n)^{\# \pi} \operatorname{tr}_{(\pi, \gamma)}(\Lambda)
$$

- Identify the free cumulants, if the general term in the sum above is multiplicative.

Why does this fail for general φ ?

- We have

Why does this fail for general φ ?

- We have

- We want

Thank you !

http://arxiv.org/abs/1105.2556 $+$
work in progress

