A permutation model for free random variables

Ion Nechita

Institut Camille Jordan, Université Lyon 1

joint work with Florent Benaych-Georges (Paris 6)

Ottawa, September 3, 2008

Freeness and random matrices

The model of permutations

A classical probability analogue

Some combinatorics

Conclusion & perspectives

Voiculescu's definition

Free probability theory

=

Non-commutative probability theory

+

Free independence

Non-commutative probability spaces

Definition

A non-commutative probability space (ncps) is a couple (\mathcal{A}, φ) where \mathcal{A} is a unital algebra and $\varphi : \mathcal{A} \to \mathbb{C}$ is a linear functional with $\varphi(1) = 1$.

Elements $x \in \mathcal{A}$ are called random variables.

Examples

- $\blacktriangleright (L^{\infty}(\Omega, \mathbb{P}), \mathbb{E});$
- $ightharpoonup L^{\infty-}(\Omega,\mathbb{P})=\bigcap_{1\leqslant p<\infty}L^p(\Omega,\mathbb{P});$
- $ightharpoonup \mathcal{M}_n(\mathbb{C})$ with the normalized trace $\operatorname{tr}_n(A) = \frac{1}{n}\operatorname{Tr}(A)$;
- ▶ The group algebra $\mathbb{C}[G]$ with the state

$$\varphi\left(\sum_{g\in G}x_gg\right)=x_e,$$

where e is the neutral element of G.

Free independence

Definition

Let (A, φ) be a ncps. Unital subalgebras A_1, \dots, A_n, \dots are called freely independent (or free), if

$$\varphi(a_1a_2\cdots a_k)=0$$

whenever we have

- $ightharpoonup a_j \in \mathcal{A}_{i(j)}$ for all $j = 1, \ldots, k$;
- $ightharpoonup \varphi(a_j) = 0$ for all $j = 1, \ldots, k$;
- $i(1) \neq i(2), i(2) \neq i(3), ..., i(k-1) \neq i(k).$

Random variables (x_i) in A are called free if their generated unital algebras are free.

Free independence

Free independence is a rule for computing mixed moments.

Examples

▶ If a and b are free random variables, then

$$\varphi\left[(a-\varphi(a)1)(b-\varphi(b)1)\right]=0,$$

which implies

$$\varphi(ab)=\varphi(a)\varphi(b).$$

▶ Similarly, if the families $\{a_1, a_2\}$ and $\{b_1, b_2\}$ are free, then

$$\varphi(a_1b_1a_2b_2) = \varphi(a_1a_2)\varphi(b_1)\varphi(b_2) + \varphi(a_1)\varphi(a_2)\varphi(b_1b_2) \\
- \varphi(a_1)\varphi(a_2)\varphi(b_1)\varphi(b_2).$$

Convergence in distribution and the free CLT

Definition

Let $(\mathcal{A}_n, \varphi_n)_{n \in \mathbb{N}}$ and (\mathcal{A}, φ) be ncps and consider random variables $a_n \in \mathcal{A}_n$ and $a \in \mathcal{A}$. We say that a_n converges in distribution towards a, and we write $a_n \stackrel{\mathrm{d}}{\to} a$, if $\lim_{n \to \infty} \varphi_n(a_n^k) = \varphi(a^k)$ for all $k \geqslant 1$.

Theorem (free Central Limit Theorem)

Let $(a_n)_n$ be a sequence of free, identically distributed random variables such that $\varphi(a_n) = 0$ and $\varphi(a_n^2) = 1$. Then

$$\frac{a_1+\cdots+a_n}{\sqrt{n}}\stackrel{d}{\to} s,$$

where s is a standard semicircular random variable. s has distribution

$$\varphi(s^n) = \int_{-2}^2 t^n \frac{1}{2\pi} \sqrt{4 - t^2} dt.$$

Gaussian random matrices

Definition

A Gaussian random matrix is a matrix $A=(a_{ij})\in\mathcal{M}_n(\mathbb{C})$ with random elements such that

- ▶ A is self-adjoint: $a_{ij} = \overline{a}_{ji}$ for all i, j;
- ▶ $\{a_{ii}\}_{1 \leq i \leq n}$ are independent real Gaussian random variables with mean 0 and variance 1/n;
- ▶ $\{\Re a_{ij}\}_{1\leqslant i < j\leqslant n}$ and $\{\Im a_{ij}\}_{1\leqslant i < j\leqslant n}$ are independent real Gaussian random variables with mean 0 and variance 1/2n.

Gaussian random matrices can be seen as random variables in the ncps $(\mathcal{M}_n(L^{\infty-}(\Omega,\mathbb{P})),\operatorname{tr}\otimes\mathbb{E})$, where

$$\operatorname{tr} \otimes \mathbb{E}(A) = \mathbb{E}[\operatorname{tr}(A)] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[a_{ii}].$$

Voiculescu's theorem

Theorem

Let (A_n) and (B_n) be independent sequences of Gaussian random matrices. Then

$$(A_n, B_n) \stackrel{d}{\rightarrow} (s_1, s_2),$$

where s_1 and s_2 are free standard semicircular random variables. In particular, we say that independent Gaussian random matrices are asymptotically free.

How about non-random (deterministic) matrices? Can one construct deterministic matrices $(A_n, B_n, C_n, ...)$ which

are asymptotically free ?

P. Biane ('95): Yes, on the group algebra of the symmetric group.

The set-up

Consider the group $\mathcal S$ of finitely supported permutations on the set of nonnegative integers $\mathbb N=\{0,1,\ldots\}.$

The ncps we shall work with is the group algebra $\mathbb{C}[S]$ together with its canonical trace

$$\varphi\left(\sum_{\sigma} x_{\sigma}\sigma\right) = x_{e},$$

where e is the identity permutation.

For all $r, n \ge 1$ and $t \in [0, \infty)$, define the random variables

$$M_r(n,t) = \frac{1}{n^{r/2}} \sum_{\substack{\text{designs the cycle} \\ 0 \to a_1 \to a_2 \to \cdots \to a_r \to 0}} (0a_1a_2 \cdots a_r),$$

where the sum runs over all r-uplets (a_1, \ldots, a_r) of pairwise distinct integers of [1, nt].

The result

Theorem

The non-commutative distribution of the family $(M_r(n,t))_{r\geqslant 1,t\in[0,+\infty)}$ converges, as n goes to infinity, to the one of a family $(M_r(t))_{r\geqslant 1,t\in[0,+\infty)}$ such that

- ▶ $(M_1(t))_{t \in [0,+\infty)}$ is a free Brownian motion (Biane's result);
- for all r, t, one has

$$M_r(t) = t^{\frac{r}{2}} U_r(t^{-1/2} M_1(t)),$$

where the U_r 's are the Chebyshev polynomials of second kind.

The free Brownian motion

Definition

Let (A, φ) be a ncps. A family of random variables $(B_t)_{t \ge 0}$ is called a free Brownian motion if

- ► $B_0 = 0$;
- ▶ For all $s \leq t$, $B_t B_s$ is free with the unital algebra generated by $\{B_u, u \leq s\}$;
- ▶ For all $s \le t$, $B_t B_s$ has a semicircular distribution with mean 0 and variance t s.

Chebyshev polynomials of second kind

- $U_0(x) = 1$, $U_1(x) = x$, $U_2(x) = x^2 1$, $U_3(x) = x^3 2x$, etc.
- $ightharpoonup U_n$ is a degree n polynomial defined by

$$U_n(2\cos\theta) = \frac{\sin(n+1)\theta}{\sin\theta}, \quad \forall n \geqslant 0.$$

They satisfy the recurrence relation

$$U_1(x)U_n(x) = U_{n-1}(x) + U_{n+1}(x), \quad \forall n \geqslant 1.$$

► They are orthogonal on [-2,2] with respect to the semicircular (!) weight

$$w(x) = \frac{1}{2\pi} \sqrt{4 - x^2}.$$

Asymptotically free deterministic matrices

Fix r = 1 and consider the elements

$$A(n) = \frac{1}{\sqrt{n}} \sum_{a=1}^{n} (0a)$$
 and $B(n) = \frac{1}{\sqrt{n}} \sum_{b=n+1}^{2n} (0b)$.

By the main theorem, the family (A(n), B(n)) converges in distribution to a free family $(s_1 = B_1, s_2 = B_2 - B_1)$ of standard semicircular elements. Hence, A(n) and B(n) are asymptotically free.

A(n) and B(n) act by right multiplication on the group algebra $\mathbb{C}[S]$. The (finite-dimensional) matrices of these operators have the same joint distribution as (A(n), B(n)).

Classical vs. Free probability

Free probability has been constructed in a deep analogy with classical probability theory. There is a "dictionary" between the objects of the two theories:

Classical Probability	Free Probability
classical (or tensor) independence	free independence
Gaussian distribution	semicircular distribution
(general) partitions	non-crossing partitions
classical cumulants	free cumulants, etc.

Does our model of permutations have a classical-probability analogue ?

The classical model

Recall the definition of the random variables used in the free setting

$$M_r(n,t) = \frac{1}{n^{r/2}} \sum (0a_1a_2\cdots a_r)$$

Idea: replace permutations by sets:

$$L_r(n,t) = \frac{1}{n^{r/2}} \sum \{a_1, a_2, \dots, a_r\}$$

The classical model

Let $\mathcal G$ be the group of finite sets of positive integers endowed with the symmetric difference operation Δ . Consider the commutative ncps $(\mathbb C[\mathcal G],\psi)$, where ψ is the canonical trace defined by

$$\psi\left(\sum_{A}x_{A}A\right)=x_{\emptyset}.$$

For all $r, n \ge 1$ and $t \in [0, \infty)$, define the random variables

$$L_r(n,t) = \frac{1}{n^{r/2}} \sum \{a_1, a_2, \dots, a_r\},$$

where the sum runs over all r-uplets (a_1, \ldots, a_r) of pairwise distinct integers of [1, nt].

The main theorem in the classical case

Theorem

The (non-commutative) distribution of the family $(L_r(n,t))_{r\geqslant 1,t\in[0,+\infty)}$ converges, as n goes to infinity, to the one of a family $(L_r(t))_{r\geqslant 1,t\in[0,+\infty)}$ such that

- ▶ $(L_1(t))_{t \in [0,+\infty)}$ is a (classical) Brownian motion;
- for all r, t, one has

$$L_r(t) = t^{\frac{r}{2}} H_r(t^{-1/2} L_1(t)),$$

where the H_r 's are the Hermite polynomials.

Remark: The Hermite polynomials are orthogonal with respect to the Gaussian distribution.

Combinatorics and free probability

▶ $M_{r=1}(t=1)$ is a standard semicircular random variable; $L_{r=1}(t=1)$ is a standard Gaussian. Their moments are given by

$$\varphi(M_1(1)^{2n}) = C_n = \frac{1}{n+1} \binom{2n}{n}$$

and,

$$\psi(L_1(1)^{2n}) = (2n)!! = 1 \cdot 3 \cdot 5 \cdots (2n-1).$$

- ▶ What about the moments of $M_r(1)$ and $L_r(1)$ for $r \ge 2$?
- Combinatorial approach to free probability: free cumulants, non-crossing partitions, etc.

Some insight from classical probability

Let X and Y be two independent classical random variables. What are the moments of X + Y?

$$\mathbb{E}\left[(X+Y)^n\right] = \sum_{k=0}^n \binom{n}{k} \mathbb{E}[X^k Y^{n-k}] = \sum_{k=0}^n \binom{n}{k} \mathbb{E}[X^k] \mathbb{E}[Y^{n-k}].$$

Idea: use Fourier transform!

$$\mathcal{F}_{X+Y}(t) = \mathcal{F}_{X}(t) \cdot \mathcal{F}_{Y}(t).$$

Write $\log \mathcal{F}_Z(t) = \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} c_n(Z)$. If X and Y are independent, then

$$c_n(X+Y)=c_n(X)+c_n(Y).$$

The quantities c_n are called classical cumulants.

Free cumulants

The free cumulants κ_n are multilinear functionals $\kappa_n:\mathcal{A}^n\to\mathbb{C}$ defined by

$$\varphi(a_1a_2\cdots a_n)=\sum_{\sigma\in NC(n)}\kappa_{\sigma}(a_1,a_2,\ldots,a_n),$$

where

- ▶ NC(n) is the lattice of non-crossing partitions of $\{1, \ldots, n\}$. A partition π is non-crossing if there are no i < j < k < l such that $i \stackrel{\pi}{\sim} k$ and $j \stackrel{\pi}{\sim} l$.
- \triangleright κ_{σ} is defined as a product over the blocks of σ .

Theorem

If a and b are free random variables, then

$$\kappa_n(a+b,\ldots,a+b) = \kappa_n(a,\ldots,a) + \kappa_n(b,\ldots,b) \quad \forall n \geqslant 1$$

Notation: $NC_2(n)$ is the set of non-crossing pairings of n.

Moments and free cumulants of the family M_r

Fix t=1 and let $M_r=M_r(1)$. Let $\vec{r}=(r_1,\ldots,r_p)$ be a vector of positive integers and put $|\vec{r}|=r_1+\ldots+r_p$. Consider the following sets of non-crossing pairings:

$$NC_2(\vec{r}) = \{ \pi \in NC_2(|\vec{r}|) \mid \pi \land \hat{1}_{\vec{r}} = \hat{0}_{|\vec{r}|} \} \text{ and } NC_2^*(\vec{r}) = \{ \pi \in NC_2(\vec{r}) \mid \pi \lor \hat{1}_{\vec{r}} = \hat{1}_{|\vec{r}|} \}.$$

Theorem

The distribution of the family $(M_r)_{r\geqslant 1}$ is characterized by the fact that its mixed moments are given by

$$\varphi(M_{r_1}M_{r_2}\cdots M_{r_p})=\#NC_2(\vec{r})$$

and its free cumulants are given by

$$\kappa_{p}(M_{r_{1}}, M_{r_{2}}, \ldots, M_{r_{p}}) = \#NC_{2}^{*}(\vec{r}).$$

Moments and classical cumulants of the family L_r

Fix t=1 and let $L_r=L_r(1)$. Let $\Pi_2(\vec{r})$ be the set of general (i.e. possibly crossing) pairings π of $\{1,\ldots,|\vec{r}|\}$ such that $\pi\wedge \hat{1}_{\vec{r}}=\hat{0}_{|\vec{r}|}$ and $\Pi_2^*(\vec{r})=\{\pi\in\Pi_2(\vec{r})|\pi\vee\hat{1}_{\vec{r}}=\hat{1}_{|\vec{r}|}\}.$

Theorem

The distribution of the family $(L_r)_{r\geqslant 1}$ is characterized by the fact that its mixed moments are given by

$$\psi(L_{r_1}L_{r_2}\cdots L_{r_p})=\#\Pi_2(\vec{r})$$

and its classical cumulants are given by

$$c_p(L_{r_1}, L_{r_2}, \ldots, L_{r_p}) = \#\Pi_2^*(\vec{r}).$$

Conclusion

- We generalized Biane's result beyond transpositions
- Constructed a classical-probability analogue of the model
- More lines added to the "dictionary":

Classical Probability	Free Probability
• • •	•••
subsets, Δ	symmetric group
$L_r(t)$	$M_r(t)$
Hermite polynomials	Chebyshev 2 nd kind

▶ Some interesting combinatorics

Perspectives

- ▶ Recently, we noticed that $L_r(t)$ is the r-th multiple stochastic integral of a Brownian motion. Michael Anshelevich studied similar questions in the free case (work in progress).
- ► Are there analogous models for other types of independence in non-commutative probability theory (boolean, monotone)?
- ▶ The moments of the random variables M_r count some particular semi-standard Young tableaux. Is there a connection with representation theory ?

Thank you!

http://arxiv.org/abs/0801.4229