
Block-modified Wishart matrices and applications
to entanglement theory

Ion Nechita

CNRS, Laboratoire de Physique Théorique, Toulouse
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Entanglement in Quantum Information Theory

I Quantum states with d degrees of freedom are described by
density matrices

ρ ∈M1,+(Cd); Trρ = 1 and ρ > 0.

I Two quantum systems: ρ12 ∈M1,+(Cd1 ⊗ Cd2).

I A state ρ12 is called separable if it can be written as a convex
combination of product states

ρ12 ∈ SEP ⇐⇒ ρ12 =
∑
i

tiρ1(i)⊗ ρ2(i),

where ti > 0,
∑

i ti = 1, ρ1(i) ∈M1,+(Cd1), ρ2(i) ∈M1,+(Cd2).

I Equivalently, SEP = conv
[
M1,+(Cd1)⊗M1,+(Cd2)

]
.

I Non-separable states are called entangled.



More on entanglement

I Deciding if a given general ρ12 is separable is NP-hard [Gurvitz].

I For rank one quantum states, entanglement can be detected and
quantified by the von Neumann entropy

H(Px) = S(sv(x)) = −
∑
i

si (x) log si (x), x ∈ Cd1⊗Cd2 ∼=Md1×d2(C).

I Separable rank one states

ρ12 = Pe⊗f = Pe ⊗ Pf .

I Detecting entanglement for general states C2 ⊗ C 2 and C2 ⊗ C 3

is trivial via the PPT criterion [Horodecki].



More on entanglement

I A map f :M(Cd)→M(Cd) is called
I positive if A > 0 =⇒ f (A) > 0;
I completely positive if idk ⊗ f is positive for all k > 1.

I If f :M(Cd2)→M(Cd2) is CP, then for every state ρ12 one has

[idd1 ⊗ f ](ρ12) > 0.

I If f :M(Cd2)→M(Cd2) is only positive, then for every
separable state ρ12, one has

[idd1 ⊗ f ](ρ12) > 0.

I The transposition map t is positive, but not CP. Put

PPT = {ρ12 ∈M1,+(Cd1 ⊗ Cd2) | [idd1 ⊗ td2 ](ρ12) > 0}.
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Three convex sets

Id/d

M1,+(Cd)

PPT SEP

I For (d1, d2) ∈ {(2, 2), (2, 3)} we have SEP = PPT . In other
dimensions, the inclusion SEP ⊂ PPT is strict.

I States in PPT \ SEP are called bound entangled: no “maximal”
entangled can be distilled from them.

I All these sets contain an open ball around the identity.



The problem we consider

M1,+(Cd1d2) = {ρ |Trρ = 1 and ρ > 0}

SEP =

{∑
i

tiρ1(i)⊗ ρ2(i)

}
= conv

[
M1,+(Cd1)⊗M1,+(Cd2)

]
PPT = {ρ12 ∈M1,+(Cd1 ⊗ Cd2) | [idd1 ⊗ td2 ](ρ12) > 0}.

Problem
Compare the convex sets

SEP ⊂ PPT ⊂M1,+(Cd1d2).



Probability measures on M1,+
d (C)

I Let X ∈Md×s(C) a rectangular d × s matrix with i.i.d. complex
standard Gaussian entries. Define the random variables

Wd ,s = XX ∗ and M1,+(Cd) 3 ρd ,s =
XX ∗

Tr(XX ∗)
=

Wd ,s

TrWd ,s
.

I The random matrix Wd ,s is called a Wishart matrix and the
distribution of ρd ,s is called the induced measure of parameters
(d , s) and is noted µd ,s .

I Open quantum systems point of view : let x ∈ Cd ⊗ Cs a unit
norm vector (pure state).

I If x is distributed uniformly on the unit sphere of Cds , then its
partial trace

ρd ,s = TrsPx

has distribution µd ,s .



Probability measures on M1,+
d (C)

I Let X ∈Md×s(C) a rectangular d × s matrix with i.i.d. complex
standard Gaussian entries. Define the random variables

Wd ,s = XX ∗ and M1,+(Cd) 3 ρd ,s =
XX ∗

Tr(XX ∗)
=

Wd ,s

TrWd ,s
.

I The random matrix Wd ,s is called a Wishart matrix and the
distribution of ρd ,s is called the induced measure of parameters
(d , s) and is noted µd ,s .

I Open quantum systems point of view : let x ∈ Cd ⊗ Cs a unit
norm vector (pure state).

I If x is distributed uniformly on the unit sphere of Cds , then its
partial trace

ρd ,s = TrsPx

has distribution µd ,s .



Eigenvalues for induced measures
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Figure: Induced measure eigenvalue distribution for (d = 3, s = 3),
(d = 3, s = 5), (d = 3, s = 7) and (d = 3, s = 10).



Volume of convex sets under the induced measures

I Let C ⊂M1,+(Cd) a convex body, with Id/d ∈ C ◦. Then

lim
s→∞

µd ,s(C ) = 1.

Definition
A pair of functions s0(d), s1(d) are called a threshold for a family
of convex sets {Cd}d>2 if both conditions below hold

I If s(d) . s0(d), then

lim
d→∞

µd ,s(d)(Cd) = 0;

I If s(d) & s1(d), then

lim
d→∞

µd ,s(d)(Cd) = 1.
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Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters (dn, dm).
Then, with d →∞, the empirical spectral distribution of mW Γ

converges in moments to a free difference of free Poisson
distributions of respective parameters m(n ± 1)/2.

Corollary

The limiting measure in the
previous theorem has positive
support iff
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What is a free difference of free Poison measures ?

I Free additive convolution (or free sum) of two compactly
supported probability distributions µ1,2: sample X1,2 ∈ Rn from
µ1,2 and consider

A = U1diag(X1)U∗1 + U2diag(X2)U∗2 ,

where U1,2 are n × n independent Haar unitary rotations. Then,
as n→∞, the spectrum of A has distribution µ1 � µ2.

I The free Poisson distribution of parameter c > 0 :

πc = max(1− c , 0)δ0 +

√
4c − (x − 1− c)2

2πx
1[(1−

√
c)2,(1+

√
c)2](x) dx .

I One has a free Poisson Central Limit Theorem:

lim
n→∞

[(
1− c

n

)
δ0 +

c

n
δ1

]�n
= πc .

I Moreover, πc is the limit eigenvalue distribution of a rescaled
density matrix from the induced ensemble ρd ,cd (d large).
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Threshold for PPT , unbalanced & balanced case

Theorem (unbalanced case, Banica, N.)

In the unbalanced case d1 = d →∞, d2 = n fixed, the lower bound

of a threshold for PPT is given by s0 =
[
2 + 2

√
1− n−2

]
dn.

I Most likely, in this case, s1 = s0. Results about the convergence
of the norm of random matrices are needed to conclude. Recent
results in [Haagerup-Thorbjørnsen, Male, Collins-Male] may apply
here directly.

Theorem (balanced case, Aubrun - 2010)

In the balanced case d1 = d2 = d →∞, a threshold pair for PPT
is given by s0 = s1 = 4d2.
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Thank you !

http://arxiv.org/abs/1105.2556

+
work in progress


	Entanglement in QIT

