Block-modified Wishart matrices and applications to entanglement theory

Ion Nechita

CNRS, Laboratoire de Physique Théorique, Toulouse
joint work with Teodor Banica (Cergy)

GDR IQFA Workshop

Paris, IHP, November 23, 2011

Entanglement in Quantum Information Theory

- Quantum states with d degrees of freedom are described by density matrices

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0 .
$$

- Two quantum systems: $\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right)$.
- A state ρ_{12} is called separable if it can be written as a convex combination of product states

$$
\rho_{12} \in \mathcal{S E P} \Longleftrightarrow \rho_{12}=\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)
$$

where $t_{i} \geqslant 0, \sum_{i} t_{i}=1, \rho_{1}(i) \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}}\right), \rho_{2}(i) \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{2}}\right)$.

- Equivalently, $\mathcal{S E P}=\operatorname{conv}\left[\mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}}\right) \otimes \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{2}}\right)\right]$.
- Non-separable states are called entangled.

More on entanglement

- Deciding if a given general ρ_{12} is separable is NP-hard [Gurvitz].
- For rank one quantum states, entanglement can be detected and quantified by the von Neumann entropy

$$
H\left(P_{x}\right)=S(\operatorname{sv}(x))=-\sum_{i} s_{i}(x) \log s_{i}(x), x \in \mathbb{C}^{d_{1}} \otimes C^{d_{2}} \cong \mathcal{M}_{d_{1} \times d_{2}}(\mathbb{C})
$$

- Separable rank one states

$$
\rho_{12}=P_{e \otimes f}=P_{e} \otimes P_{f}
$$

- Detecting entanglement for general states $\mathbb{C}^{2} \otimes C^{2}$ and $\mathbb{C}^{2} \otimes C^{3}$ is trivial via the PPT criterion [Horodecki].

More on entanglement

- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $\operatorname{id}_{k} \otimes f$ is positive for all $k \geqslant 1$.

More on entanglement

- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $\operatorname{id}_{k} \otimes f$ is positive for all $k \geqslant 1$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{2}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{2}}\right)$ is $C P$, then for every state ρ_{12} one has

$$
\left[\mathrm{id}_{d_{1}} \otimes f\right]\left(\rho_{12}\right) \geqslant 0
$$

- If $f: \mathcal{M}\left(\mathbb{C}^{d_{2}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{2}}\right)$ is only positive, then for every separable state ρ_{12}, one has

$$
\left[\mathrm{id}_{d_{1}} \otimes f\right]\left(\rho_{12}\right) \geqslant 0
$$

More on entanglement

- A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d}\right)$ is called
- positive if $A \geqslant 0 \Longrightarrow f(A) \geqslant 0$;
- completely positive if $\mathrm{id}_{k} \otimes f$ is positive for all $k \geqslant 1$.
- If $f: \mathcal{M}\left(\mathbb{C}^{d_{2}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{2}}\right)$ is $C P$, then for every state ρ_{12} one has

$$
\left[\mathrm{id}_{d_{1}} \otimes f\right]\left(\rho_{12}\right) \geqslant 0
$$

- If $f: \mathcal{M}\left(\mathbb{C}^{d_{2}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{2}}\right)$ is only positive, then for every separable state ρ_{12}, one has

$$
\left[\mathrm{id}_{d_{1}} \otimes f\right]\left(\rho_{12}\right) \geqslant 0
$$

- The transposition map t is positive, but not CP. Put

$$
\mathcal{P} \mathcal{P} \mathcal{T}=\left\{\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right) \mid\left[\operatorname{id}_{d_{1}} \otimes \mathrm{t}_{d_{2}}\right]\left(\rho_{12}\right) \geqslant 0\right\} .
$$

Three convex sets

- For $\left(d_{1}, d_{2}\right) \in\{(2,2),(2,3)\}$ we have $\mathcal{S E P}=\mathcal{P P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P} \mathcal{P} \mathcal{T}$ is strict.
- States in $\mathcal{P} \mathcal{P} \mathcal{T} \backslash \mathcal{S E P}$ are called bound entangled: no "maximal" entangled can be distilled from them.
- All these sets contain an open ball around the identity.

The problem we consider

$$
\begin{aligned}
& \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1} d_{2}}\right)=\{\rho \mid \operatorname{Tr} \rho=1 \text { and } \rho \geqslant 0\} \\
& \mathcal{S E P}=\left\{\sum_{i} t_{i} \rho_{1}(i) \otimes \rho_{2}(i)\right\}=\operatorname{conv}\left[\mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}}\right) \otimes \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{2}}\right)\right] \\
& \mathcal{P P} \mathcal{T}=\left\{\rho_{12} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right) \mid\left[\mathrm{id}_{d_{1}} \otimes \mathrm{t}_{d_{2}}\right]\left(\rho_{12}\right) \geqslant 0\right\} .
\end{aligned}
$$

Problem
Compare the convex sets

$$
\mathcal{S E P} \subset \mathcal{P P \mathcal { T }} \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{1} d_{2}}\right) .
$$

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}}
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is called the induced measure of parameters (d, s) and is noted $\mu_{d, s}$.

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ a rectangular $d \times s$ matrix with i.i.d. complex standard Gaussian entries. Define the random variables

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}}
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is called the induced measure of parameters (d, s) and is noted $\mu_{d, s}$.
- Open quantum systems point of view : let $x \in \mathbb{C}^{d} \otimes \mathbb{C}^{s}$ a unit norm vector (pure state).
- If x is distributed uniformly on the unit sphere of $\mathbb{C}^{d s}$, then its partial trace

$$
\rho_{d, s}=\operatorname{Tr}_{s} P_{x}
$$

has distribution $\mu_{d, s}$.

Eigenvalues for induced measures

Figure: Induced measure eigenvalue distribution for $(d=3, s=3)$, $(d=3, s=5),(d=3, s=7)$ and $(d=3, s=10)$.

Volume of convex sets under the induced measures

- Let $C \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ a convex body, with $\mathrm{I}_{d} / d \in C^{\circ}$. Then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}(C)=1
$$

Volume of convex sets under the induced measures

- Let $C \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ a convex body, with $\mathrm{I}_{d} / d \in C^{\circ}$. Then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}(C)=1
$$

Definition

A pair of functions $s_{0}(d), s_{1}(d)$ are called a threshold for a family of convex sets $\left\{C_{d}\right\}_{d \geqslant 2}$ if both conditions below hold

- If $s(d) \lesssim s_{0}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(C_{d}\right)=0
$$

- If $s(d) \gtrsim s_{1}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(C_{d}\right)=1
$$

Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters $(d n, d m)$. Then, with $d \rightarrow \infty$, the empirical spectral distribution of $m W^{\Gamma}$ converges in moments to a free difference of free Poisson distributions of respective parameters $m(n \pm 1) / 2$.

Corollary

The limiting measure in the previous theorem has positive support iff

$$
n \leqslant \frac{m}{4}+\frac{1}{m} \text { and } m \geqslant 2 \text {. }
$$

What is a free difference of free Poison measures ?

- Free additive convolution (or free sum) of two compactly supported probability distributions $\mu_{1,2}$: sample $X_{1,2} \in \mathbb{R}^{n}$ from $\mu_{1,2}$ and consider

$$
A=U_{1} \operatorname{diag}\left(X_{1}\right) U_{1}^{*}+U_{2} \operatorname{diag}\left(X_{2}\right) U_{2}^{*}
$$

where $U_{1,2}$ are $n \times n$ independent Haar unitary rotations. Then, as $n \rightarrow \infty$, the spectrum of A has distribution $\mu_{1} \boxplus \mu_{2}$.

What is a free difference of free Poison measures ?

- Free additive convolution (or free sum) of two compactly supported probability distributions $\mu_{1,2}$: sample $X_{1,2} \in \mathbb{R}^{n}$ from $\mu_{1,2}$ and consider

$$
A=U_{1} \operatorname{diag}\left(X_{1}\right) U_{1}^{*}+U_{2} \operatorname{diag}\left(X_{2}\right) U_{2}^{*}
$$

where $U_{1,2}$ are $n \times n$ independent Haar unitary rotations. Then, as $n \rightarrow \infty$, the spectrum of A has distribution $\mu_{1} \boxplus \mu_{2}$.

- The free Poisson distribution of parameter $c>0$:

$$
\pi_{c}=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}(x) d x
$$

- One has a free Poisson Central Limit Theorem:

$$
\lim _{n \rightarrow \infty}\left[\left(1-\frac{c}{n}\right) \delta_{0}+\frac{c}{n} \delta_{1}\right]^{\boxplus n}=\pi_{c} .
$$

- Moreover, π_{c} is the limit eigenvalue distribution of a rescaled density matrix from the induced ensemble $\rho_{d, c d}$ (d large).

Threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$, unbalanced \& balanced case

Theorem (unbalanced case, Banica, N.)
In the unbalanced case $d_{1}=d \rightarrow \infty, d_{2}=n$ fixed, the lower bound of a threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$ is given by $s_{0}=\left[2+2 \sqrt{1-n^{-2}}\right] d n$.

Threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$, unbalanced \& balanced case

Theorem (unbalanced case, Banica, N.)
In the unbalanced case $d_{1}=d \rightarrow \infty, d_{2}=n$ fixed, the lower bound of a threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$ is given by $s_{0}=\left[2+2 \sqrt{1-n^{-2}}\right] d n$.

- Most likely, in this case, $s_{1}=s_{0}$. Results about the convergence of the norm of random matrices are needed to conclude. Recent results in [Haagerup-Thorbjørnsen, Male, Collins-Male] may apply here directly.

Threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$, unbalanced \& balanced case

Theorem (unbalanced case, Banica, N.)
In the unbalanced case $d_{1}=d \rightarrow \infty, d_{2}=n$ fixed, the lower bound of a threshold for $\mathcal{P} \mathcal{P} \mathcal{T}$ is given by $s_{0}=\left[2+2 \sqrt{1-n^{-2}}\right] d n$.

- Most likely, in this case, $s_{1}=s_{0}$. Results about the convergence of the norm of random matrices are needed to conclude. Recent results in [Haagerup-Thorbjørnsen, Male, Collins-Male] may apply here directly.

Theorem (balanced case, Aubrun - 2010)
In the balanced case $d_{1}=d_{2}=d \rightarrow \infty$, a threshold pair for $\mathcal{P} \mathcal{P} \mathcal{T}$ is given by $s_{0}=s_{1}=4 d^{2}$.

Thank you !

http://arxiv.org/abs/1105.2556 $+$
work in progress

