### Random density matrices

Ion Nechita<sup>1</sup>

<sup>1</sup>Institut Camille Jordan, Université Lyon 1

Lyon, 27 October 2006

# Random density matrices

# Why random density matrices?

- Density matrices are central objects in quantum information theory, quantum computing, quantum communication protocols, etc.
- We would like to characterize the properties of typical density matrices 
   ⇒ we need a probability measure on the set of density matrices
- Compute averages over the important quantities, such as von Neumann entropy, moments, etc.
- Random matrix theory: after all, density matrices are positive, trace one complex matrices

# Why random density matrices?

- Density matrices are central objects in quantum information theory, quantum computing, quantum communication protocols, etc.
- We would like to characterize the properties of typical density matrices 
   ⇒ we need a probability measure on the set of density matrices
- Compute averages over the important quantities, such as von Neumann entropy, moments, etc.
- Random matrix theory: after all, density matrices are positive, trace one complex matrices

# Why random density matrices ?

- Density matrices are central objects in quantum information theory, quantum computing, quantum communication protocols, etc.
- We would like to characterize the properties of typical density matrices 
   ⇒ we need a probability measure on the set of density matrices
- Compute averages over the important quantities, such as von Neumann entropy, moments, etc.
- Random matrix theory: after all, density matrices are positive, trace one complex matrices

# Why random density matrices?

- Density matrices are central objects in quantum information theory, quantum computing, quantum communication protocols, etc.
- We would like to characterize the properties of typical density matrices 
   ⇒ we need a probability measure on the set of density matrices
- Compute averages over the important quantities, such as von Neumann entropy, moments, etc.
- Random matrix theory: after all, density matrices are positive, trace one complex matrices

# There are two main classes of probability measures on the set of density matrices of size *n*:

 Metric measures: define a distance on the set of density matrices and consider the measure that assigns equal masses to balls of equal radii. Example: the Bures distance

$$d(\rho,\sigma) = 2\arccos \operatorname{Tr}(\rho^{1/2}\sigma\rho^{1/2})^{1/2}.$$

- *Induced* measures: density matrices are obtained by partial tracing a random pure state of larger size
  - ⇒ We study the induced measures



There are two main classes of probability measures on the set of density matrices of size *n*:

 Metric measures: define a distance on the set of density matrices and consider the measure that assigns equal masses to balls of equal radii. Example: the Bures distance

$$d(\rho, \sigma) = 2 \arccos \operatorname{Tr}(\rho^{1/2} \sigma \rho^{1/2})^{1/2}.$$

- Induced measures: density matrices are obtained by partial tracing a random pure state of larger size
  - ⇒ We study the induced measures



There are two main classes of probability measures on the set of density matrices of size *n*:

 Metric measures: define a distance on the set of density matrices and consider the measure that assigns equal masses to balls of equal radii. Example: the Bures distance

$$d(\rho, \sigma) = 2 \arccos \operatorname{Tr}(\rho^{1/2} \sigma \rho^{1/2})^{1/2}.$$

 Induced measures: density matrices are obtained by partial tracing a random pure state of larger size

 $\Rightarrow$  We study the induced measures



There are two main classes of probability measures on the set of density matrices of size *n*:

 Metric measures: define a distance on the set of density matrices and consider the measure that assigns equal masses to balls of equal radii. Example: the Bures distance

$$d(\rho, \sigma) = 2 \arccos \operatorname{Tr}(\rho^{1/2} \sigma \rho^{1/2})^{1/2}.$$

- Induced measures: density matrices are obtained by partial tracing a random pure state of larger size
  - ⇒ We study the induced measures



• In physics, a pure state of a quantum state is a norm one vector  $|\psi\rangle$  of a complex Hilbert space  ${\cal H}$  with an undetermined phase:

$$|e^{i\theta}\psi\rangle = |\psi\rangle \quad \theta \in \mathbb{R}$$

• We introduce an equivalent definition

#### Definition

A pure state  $|\psi\rangle$  is an element of  $\mathcal{E}_n = \mathcal{H} \setminus \{0\}/\sim$ , where  $\sim$  is the equivalence relation defined by

$$x \sim y \Leftrightarrow \exists \lambda \in \mathbb{C}^* \text{ s.t. } x = \lambda y.$$



• In physics, a pure state of a quantum state is a norm one vector  $|\psi\rangle$  of a complex Hilbert space  ${\cal H}$  with an undetermined phase:

$$|e^{i\theta}\psi\rangle = |\psi\rangle \quad \theta \in \mathbb{R}$$

• We introduce an equivalent definition

#### Definition

A pure state  $|\psi\rangle$  is an element of  $\mathcal{E}_n = \mathcal{H} \setminus \{0\}/\sim$ , where  $\sim$  is the equivalence relation defined by

$$x \sim y \Leftrightarrow \exists \lambda \in \mathbb{C}^* \text{ s.t. } x = \lambda y.$$



- Consider a quantum system  $\mathcal H$  in interaction with another system  $\mathcal K$ . The Hilbert space of the compound system is given by the tensor poduct  $\mathcal H\otimes\mathcal K$ .
- One typical situation is that we have access to the system  $\mathcal{H}$  only, for several possible reasons:  $\mathcal{K}$  may not be accessible (e.g.  $\mathcal{H}$  and  $\mathcal{K}$  are in distant galaxies) or it can be too complicated to study (an unknown environemnt, a heat bath, a noisy channel, etc.).
- If the state of the compound system is pure, what can be said about the  $\mathcal{H}$ -part of  $\mathcal{H} \otimes \mathcal{K}$  ?
  - ⇒ density matrices



- Consider a quantum system  $\mathcal H$  in interaction with another system  $\mathcal K$ . The Hilbert space of the compound system is given by the tensor poduct  $\mathcal H\otimes\mathcal K$ .
- One typical situation is that we have access to the system  $\mathcal{H}$  only, for several possible reasons:  $\mathcal{K}$  may not be accessible (e.g.  $\mathcal{H}$  and  $\mathcal{K}$  are in distant galaxies) or it can be too complicated to study (an unknown environemnt, a heat bath, a noisy channel, etc.).
- If the state of the compound system is pure, what can be said about the  $\mathcal{H}$ -part of  $\mathcal{H} \otimes \mathcal{K}$  ?

⇒ density matrices



- Consider a quantum system  $\mathcal H$  in interaction with another system  $\mathcal K$ . The Hilbert space of the compound system is given by the tensor poduct  $\mathcal H\otimes\mathcal K$ .
- One typical situation is that we have access to the system  $\mathcal{H}$  only, for several possible reasons:  $\mathcal{K}$  may not be accessible (e.g.  $\mathcal{H}$  and  $\mathcal{K}$  are in distant galaxies) or it can be too complicated to study (an unknown environemnt, a heat bath, a noisy channel, etc.).
- If the state of the compound system is pure, what can be said about the  $\mathcal{H}$ -part of  $\mathcal{H}\otimes\mathcal{K}$  ?

⇒ density matrices



- Consider a quantum system  $\mathcal H$  in interaction with another system  $\mathcal K$ . The Hilbert space of the compound system is given by the tensor poduct  $\mathcal H\otimes\mathcal K$ .
- One typical situation is that we have access to the system  $\mathcal{H}$  only, for several possible reasons:  $\mathcal{K}$  may not be accessible (e.g.  $\mathcal{H}$  and  $\mathcal{K}$  are in distant galaxies) or it can be too complicated to study (an unknown environemnt, a heat bath, a noisy channel, etc.).
- If the state of the compound system is pure, what can be said about the  $\mathcal{H}$ -part of  $\mathcal{H}\otimes\mathcal{K}$  ?
  - $\Rightarrow$  density matrices



# Partial tracing

- One can measure for instance an observable X on  $\mathcal{H}$ , i.e. measure  $X \otimes I_{\mathcal{K}}$  on the whole system.
- We can compute the probability of obtaining the result  $\lambda_i$  knowing that the state of  $\mathcal{H} \otimes \mathcal{K}$  is  $|\psi\rangle$ :

$$Prob(X = \lambda_i) = \langle \psi | P_i \otimes I_{\mathcal{K}} | \psi \rangle = Tr(|\psi\rangle \langle \psi | (P_i \otimes I_{\mathcal{K}})) = Tr(\rho P_i),$$

where  $\lambda_i$  is the eigenvalue corresponding to the eigenspace  $P_i$  and  $\rho = \text{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|)$  is the partial trace of the pure system  $|\psi\rangle$  over  $\mathcal{K}$ .

• The observer of  $\mathcal{H}$  will not "see"  $|\psi\rangle$ , but only its partial trace  $\rho$ , the density matrix corresponding to  $\mathcal{H}$ .

# Partial tracing

- One can measure for instance an observable X on  $\mathcal{H}$ , i.e. measure  $X \otimes I_{\mathcal{K}}$  on the whole system.
- We can compute the probability of obtaining the result  $\lambda_i$  knowing that the state of  $\mathcal{H} \otimes \mathcal{K}$  is  $|\psi\rangle$ :

$$Prob(X = \lambda_i) = \langle \psi | P_i \otimes I_{\mathcal{K}} | \psi \rangle = Tr(|\psi\rangle \langle \psi | (P_i \otimes I_{\mathcal{K}})) = Tr(\rho P_i),$$

where  $\lambda_i$  is the eigenvalue corresponding to the eigenspace  $P_i$  and  $\rho = \text{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|)$  is the partial trace of the pure system  $|\psi\rangle$  over  $\mathcal{K}$ .

• The observer of  $\mathcal{H}$  will not "see"  $|\psi\rangle$ , but only its partial trace  $\rho$ , the density matrix corresponding to  $\mathcal{H}$ .

# Partial tracing

- One can measure for instance an observable X on  $\mathcal{H}$ , i.e. measure  $X \otimes I_{\mathcal{K}}$  on the whole system.
- We can compute the probability of obtaining the result  $\lambda_i$  knowing that the state of  $\mathcal{H} \otimes \mathcal{K}$  is  $|\psi\rangle$ :

$$Prob(X = \lambda_i) = \langle \psi | P_i \otimes I_{\mathcal{K}} | \psi \rangle = Tr(|\psi\rangle \langle \psi | (P_i \otimes I_{\mathcal{K}})) = Tr(\rho P_i),$$

where  $\lambda_i$  is the eigenvalue corresponding to the eigenspace  $P_i$  and  $\rho = \text{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|)$  is the partial trace of the pure system  $|\psi\rangle$  over  $\mathcal{K}$ .

• The observer of  $\mathcal H$  will not "see"  $|\psi\rangle$ , but only its partial trace  $\rho$ , the density matrix corresponding to  $\mathcal H$ .

# Density matrices and partial tracing

#### Definition

A density matrix on a Hilbert space  $\mathcal{H}$  is a positive and unit trace matrix of size  $n = \dim \mathcal{H}$ . We note the convex set of density matrices of size n with  $\mathcal{D}_n$ .

We consider the partial trace map

$$T_{n,k}: \mathcal{E}_{nk} \longrightarrow \mathcal{D}_n$$
  
 $|\psi\rangle \longmapsto \operatorname{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|).$ 

If we write  $\psi$   $(\|\psi\|=1)$  in a basis  $e_i\otimes f_j$  of  $\mathcal{H}\otimes\mathcal{K}$ , then

$$T_{n,k}(|\psi\rangle)_{i,j} = \sum_{s=1}^{k} \psi_{is} \overline{\psi_{js}},$$



# Density matrices and partial tracing

#### Definition

A density matrix on a Hilbert space  $\mathcal{H}$  is a positive and unit trace matrix of size  $n = \dim \mathcal{H}$ . We note the convex set of density matrices of size n with  $\mathcal{D}_n$ .

We consider the partial trace map

$$T_{n,k}: \mathcal{E}_{nk} \longrightarrow \mathcal{D}_n$$
$$|\psi\rangle \longmapsto \mathsf{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|).$$

If we write  $\psi$  ( $\|\psi\|=1$ ) in a basis  $e_i\otimes f_j$  of  $\mathcal{H}\otimes\mathcal{K}$ , then

$$\mathcal{T}_{n,k}(|\psi\rangle)_{i,j} = \sum_{s=1}^{k} \psi_{is} \overline{\psi_{js}},$$



# Density matrices and partial tracing

#### Definition

A density matrix on a Hilbert space  $\mathcal{H}$  is a positive and unit trace matrix of size  $n = \dim \mathcal{H}$ . We note the convex set of density matrices of size n with  $\mathcal{D}_n$ .

We consider the partial trace map

$$T_{n,k}: \mathcal{E}_{nk} \longrightarrow \mathcal{D}_n$$
  
 $|\psi\rangle \longmapsto \operatorname{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|).$ 

If we write  $\psi$  ( $\|\psi\| = 1$ ) in a basis  $e_i \otimes f_j$  of  $\mathcal{H} \otimes \mathcal{K}$ , then

$$T_{n,k}(|\psi\rangle)_{i,j} = \sum_{s=1}^{k} \psi_{is} \overline{\psi_{js}},$$



# Random pure states

- One would like to endow  $\mathcal{E}_n$  with an uniform probability measure  $\nu_n$ . But what does *uniform* mean ?
- As there is no preferred basis for this space, we will ask that the uniform probability measure  $\nu_n$  should be invariant under any change of basis. As basis changes are realized via unitary matrices,  $\nu_n$  should be invariant under the action of the unitary group  $\mathcal{U}(n)$ .

#### Definition

We call a measure  $\nu_n$  on  $\mathcal{E}_n$  unitarily invariant if

$$\nu_n(UA) = \nu_n(A),$$

for all unitary U and for all Borel subset  $A \subset \mathcal{E}_n$ .



# Random pure states

- One would like to endow  $\mathcal{E}_n$  with an uniform probability measure  $\nu_n$ . But what does *uniform* mean ?
- As there is no preferred basis for this space, we will ask that the uniform probability measure  $\nu_n$  should be invariant under any change of basis. As basis changes are realized via unitary matrices,  $\nu_n$  should be invariant under the action of the unitary group  $\mathcal{U}(n)$ .

#### Definition

We call a measure  $u_n$  on  $\mathcal{E}_n$  unitarily invariant if

$$\nu_n(UA) = \nu_n(A),$$

for all unitary U and for all Borel subset  $A \subset \mathcal{E}_n$ 



### Random pure states

- One would like to endow  $\mathcal{E}_n$  with an uniform probability measure  $\nu_n$ . But what does *uniform* mean ?
- As there is no preferred basis for this space, we will ask that the uniform probability measure  $\nu_n$  should be invariant under any change of basis. As basis changes are realized via unitary matrices,  $\nu_n$  should be invariant under the action of the unitary group  $\mathcal{U}(n)$ .

#### Definition

We call a measure  $\nu_n$  on  $\mathcal{E}_n$  unitarily invariant if

$$\nu_n(UA) = \nu_n(A),$$

for all unitary U and for all Borel subset  $A \subset \mathcal{E}_n$ .



# Existence and unicity - the general result

#### Definition

Let G be a topological group acting on a topological space X. We call the action

- transitive if for all  $x, y \in X$ , there is  $g \in G$  such that  $y = g \cdot x$
- proper if for all  $g \in G$ , the application  $X \ni x \mapsto g \cdot x$  is proper, i.e. the pre-image of a compact set is compact

#### Theorem

Let G be a topological group that acts transitively and properly on a topological space X. Suppose that both G and X are locally compact and separable. Then there exists an unique (up to a constant) measure  $\nu$  on X which is G-invariant.

#### **Theorem**

The action of U(n) on  $\mathcal{E}_n$  is transitive and proper and thus there exists an unique unitarily invariant probability measure  $\nu_n$  on  $\mathcal{E}_n$ .

- ① Let X be a random complex vector of law  $\mathcal{N}^n_{\mathbb{C}}(0,1)$ . Then the class  $|X\rangle$  of X is distributed along  $\nu_n$ .
- ② Let U be a random unitary matrix distributed along the Haar measure on  $\mathcal{U}(n)$  and let Y be the first column of U. Then the class  $|Y\rangle$  has law  $\nu_n$ .

#### **Theorem**

The action of U(n) on  $\mathcal{E}_n$  is transitive and proper and thus there exists an unique unitarily invariant probability measure  $\nu_n$  on  $\mathcal{E}_n$ .

- ① Let X be a random complex vector of law  $\mathcal{N}^n_{\mathbb{C}}(0,1)$ . Then the class  $|X\rangle$  of X is distributed along  $\nu_n$ .
- ② Let U be a random unitary matrix distributed along the Haar measure on  $\mathcal{U}(n)$  and let Y be the first column of U. Then the class  $|Y\rangle$  has law  $\nu_n$ .

#### **Theorem**

The action of U(n) on  $\mathcal{E}_n$  is transitive and proper and thus there exists an unique unitarily invariant probability measure  $\nu_n$  on  $\mathcal{E}_n$ .

- Let X be a random complex vector of law  $\mathcal{N}^n_{\mathbb{C}}(0,1)$ . Then the class  $|X\rangle$  of X is distributed along  $\nu_n$ .
- ② Let U be a random unitary matrix distributed along the Haar measure on  $\mathcal{U}(n)$  and let Y be the first column of U. Then the class  $|Y\rangle$  has law  $\nu_n$ .

#### **Theorem**

The action of U(n) on  $\mathcal{E}_n$  is transitive and proper and thus there exists an unique unitarily invariant probability measure  $\nu_n$  on  $\mathcal{E}_n$ .

- Let X be a random complex vector of law  $\mathcal{N}^n_{\mathbb{C}}(0,1)$ . Then the class  $|X\rangle$  of X is distributed along  $\nu_n$ .
- ② Let U be a random unitary matrix distributed along the Haar measure on  $\mathcal{U}(n)$  and let Y be the first column of U. Then the class  $|Y\rangle$  has law  $\nu_n$ .

### The induced measure

Choose a pure state on  $\mathcal{H} \otimes \mathcal{K}$  distributed accordingly to the uniform measure  $\nu_{nk}$ . The density matrix obtained by taking a partial trace is distributed along the image measure

$$\mu_{n,k} = T_{n,k\#}\nu_{nk},$$

where  $T_{n,k}$  is the partial trace over the k-dimensional system.

#### Definition

We call  $\mu_{n,k}$  the induced measure on  $\mathcal{D}_n$  by partial tracing over an environment of size k.

• From now on, we will focus on the measures  $\mu_{n,k}$  and their properties.



### The induced measure

Choose a pure state on  $\mathcal{H} \otimes \mathcal{K}$  distributed accordingly to the uniform measure  $\nu_{nk}$ . The density matrix obtained by taking a partial trace is distributed along the image measure

$$\mu_{n,k} = T_{n,k\#}\nu_{nk},$$

where  $T_{n,k}$  is the partial trace over the k-dimensional system.

#### Definition

We call  $\mu_{n,k}$  the induced measure on  $\mathcal{D}_n$  by partial tracing over an environment of size k.

• From now on, we will focus on the measures  $\mu_{n,k}$  and their properties.



### The induced measure

Choose a pure state on  $\mathcal{H} \otimes \mathcal{K}$  distributed accordingly to the uniform measure  $\nu_{nk}$ . The density matrix obtained by taking a partial trace is distributed along the image measure

$$\mu_{n,k} = T_{n,k\#}\nu_{nk},$$

where  $T_{n,k}$  is the partial trace over the k-dimensional system.

#### Definition

We call  $\mu_{n,k}$  the induced measure on  $\mathcal{D}_n$  by partial tracing over an environment of size k.

• From now on, we will focus on the measures  $\mu_{n,k}$  and their properties.



Wishart random matrices Probability density function Numerical simulations

# Results at fixed size

### Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in  $\mathbb{C}^{nk}$  then the class  $|Z\rangle$  is uniformly distributed on  $\mathcal{E}_{nk}$ .
- Thus, if we set  $\rho = \text{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$ , we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

• Equivalently, if we arrange the components of Z in a  $n \times k$  matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\mathsf{Tr}(X \cdot X^*)}.$$

 Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries

⇒ the Wishart ensemble



### Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in  $\mathbb{C}^{nk}$  then the class  $|Z\rangle$  is uniformly distributed on  $\mathcal{E}_{nk}$ .
- Thus, if we set  $\rho = \text{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$ , we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

• Equivalently, if we arrange the components of Z in a  $n \times k$  matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\mathsf{Tr}(X \cdot X^*)}.$$

 Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries

⇒ the Wishart ensemble



## Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in  $\mathbb{C}^{nk}$  then the class  $|Z\rangle$  is uniformly distributed on  $\mathcal{E}_{nk}$ .
- Thus, if we set  $\rho = \text{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$ , we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

• Equivalently, if we arrange the components of Z in a  $n \times k$  matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\mathsf{Tr}(X \cdot X^*)}.$$

 Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries

⇒ the Wishart ensemble



## Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in  $\mathbb{C}^{nk}$  then the class  $|Z\rangle$  is uniformly distributed on  $\mathcal{E}_{nk}$ .
- Thus, if we set  $\rho = \text{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$ , we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

• Equivalently, if we arrange the components of Z in a  $n \times k$  matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\mathsf{Tr}(X \cdot X^*)}.$$

 Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries





## Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in  $\mathbb{C}^{nk}$  then the class  $|Z\rangle$  is uniformly distributed on  $\mathcal{E}_{nk}$ .
- Thus, if we set  $\rho = \text{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$ , we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

• Equivalently, if we arrange the components of Z in a  $n \times k$  matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\mathsf{Tr}(X \cdot X^*)}.$$

 Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries

⇒ the Wishart ensemble



#### Definition

Let X be a  $n \times k$  complex matrix such that the entries are i.i.d.  $\mathcal{N}_{\mathbb{C}}(0,1)$  random variables. The  $n \times n$  matrix  $W = X \cdot X^*$  is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{\text{Tr } W}$$



#### Definition

Let X be a  $n \times k$  complex matrix such that the entries are i.i.d.  $\mathcal{N}_{\mathbb{C}}(0,1)$  random variables. The  $n \times n$  matrix  $W = X \cdot X^*$  is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{\text{Tr } W}$$



#### Definition

Let X be a  $n \times k$  complex matrix such that the entries are i.i.d.  $\mathcal{N}_{\mathbb{C}}(0,1)$  random variables. The  $n \times n$  matrix  $W = X \cdot X^*$  is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{\text{Tr } W}$$



#### Definition

Let X be a  $n \times k$  complex matrix such that the entries are i.i.d.  $\mathcal{N}_{\mathbb{C}}(0,1)$  random variables. The  $n \times n$  matrix  $W = X \cdot X^*$  is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{\text{Tr } W}$$



#### Definition

Let X be a  $n \times k$  complex matrix such that the entries are i.i.d.  $\mathcal{N}_{\mathbb{C}}(0,1)$  random variables. The  $n \times n$  matrix  $W = X \cdot X^*$  is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{\text{Tr } W}$$



# The eigenvalues of Wishart matrices

#### Theorem

The distribution of the (unordered) eigenvalues  $\lambda_1(W), \ldots, \lambda_n(W)$  has density with respect to the Lebesgue measure on  $\mathbb{R}^n_+$  given by

$$\Phi_{n,k}^{(w)}(\lambda_1,\ldots,\lambda_n)=C_{n,k}^{(w)}\exp(-\sum_{i=1}^n\lambda_i)\prod_{i=1}^n\lambda_i^{k-n}\Delta(\lambda)^2,$$

where

$$C_{n,k}^{(w)} = \left[\prod_{j=0}^{n-1} \Gamma(n+1-j)\Gamma(k-j)\right]^{-1}$$

and

$$\Delta(\lambda) = \prod_{1 \le i \le j \le n} (\lambda_i - \lambda_j).$$

# The eigenvalues of Wishart matrices

#### Theorem

The distribution of the (unordered) eigenvalues  $\lambda_1(W), \ldots, \lambda_n(W)$  has density with respect to the Lebesgue measure on  $\mathbb{R}^n_+$  given by

$$\Phi_{n,k}^{(w)}(\lambda_1,\ldots,\lambda_n)=C_{n,k}^{(w)}\exp(-\sum_{i=1}^n\lambda_i)\prod_{i=1}^n\lambda_i^{k-n}\Delta(\lambda)^2,$$

where

$$C_{n,k}^{(w)} = \left[ \prod_{j=0}^{n-1} \Gamma(n+1-j) \Gamma(k-j) \right]^{-1}$$

and

$$\Delta(\lambda) = \prod_{1 \le i < j \le n} (\lambda_i - \lambda_j).$$

#### Generalities

- One would like to know the distribution of the eigenvalues  $(\tilde{\lambda}_1, \dots, \tilde{\lambda}_n)$  of a random density matrix of law  $\mu_{n,k}$ .
- As the trace of a density matrix equals one, the (random) vector  $(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_n)$  is confined on the (n-1)-dimensional probability simplex

$$\Sigma_{n-1} = \{(x_1, \dots, x_n) \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}.$$

• Recall that if W is a Wishart matrix of parameters n and k, then  $\rho = W/\operatorname{Tr}(W)$  has distribution  $\mu_{n,k}$ . It follows that if  $(\lambda_1,\ldots,\lambda_n)$  are the eigenvalues of W and  $(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_n)$  are those of  $\rho$ , then we have

$$\tilde{\lambda}_i = \frac{\lambda_i}{\sum_{i=1}^n \lambda_i} \quad \forall 1 \le i \le n.$$

### Generalities

- One would like to know the distribution of the eigenvalues  $(\tilde{\lambda}_1, \dots, \tilde{\lambda}_n)$  of a random density matrix of law  $\mu_{n,k}$ .
- As the trace of a density matrix equals one, the (random) vector  $(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_n)$  is confined on the (n-1)-dimensional probability simplex

$$\Sigma_{n-1} = \{(x_1, \dots, x_n) \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}.$$

• Recall that if W is a Wishart matrix of parameters n and k, then  $\rho = W/\operatorname{Tr}(W)$  has distribution  $\mu_{n,k}$ . It follows that if  $(\lambda_1,\ldots,\lambda_n)$  are the eigenvalues of W and  $(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_n)$  are those of  $\rho$ , then we have

$$\tilde{\lambda}_i = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j} \quad \forall 1 \le i \le n$$



## Generalities

- One would like to know the distribution of the eigenvalues  $(\tilde{\lambda}_1, \dots, \tilde{\lambda}_n)$  of a random density matrix of law  $\mu_{n,k}$ .
- As the trace of a density matrix equals one, the (random) vector  $(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_n)$  is confined on the (n-1)-dimensional probability simplex

$$\Sigma_{n-1} = \{(x_1, \cdots, x_n) \in \mathbb{R}_+^n : \sum_{i=1}^n x_i = 1\}.$$

• Recall that if W is a Wishart matrix of parameters n and k, then  $\rho = W/\operatorname{Tr}(W)$  has distribution  $\mu_{n,k}$ . It follows that if  $(\lambda_1,\ldots,\lambda_n)$  are the eigenvalues of W and  $(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_n)$  are those of  $\rho$ , then we have

$$\tilde{\lambda}_i = \frac{\lambda_i}{\sum_{i=1}^n \lambda_i} \quad \forall 1 \leq i \leq n.$$



# The density function

#### Theorem

The distribution of the (unordered) eigenvalues  $\tilde{\lambda}_1(\rho), \ldots, \tilde{\lambda}_{n-1}(\rho)$  has density with respect to the Lebesgue measure on  $\Sigma_{n-1}$  given by

$$\Phi_{n,k}(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_{n-1})=C_{n,k}\prod_{i=1}^n(\tilde{\lambda}_i)^{k-n}\Delta(\tilde{\lambda})^2,$$

where  $\tilde{\lambda}_n$  is not itself a variable, but merely a function of the other eigenvalues:

$$\tilde{\lambda}_n = 1 - (\tilde{\lambda}_1 + \dots + \tilde{\lambda}_{n-1}).$$

# The density function

#### Theorem

The distribution of the (unordered) eigenvalues  $\tilde{\lambda}_1(\rho), \dots, \tilde{\lambda}_{n-1}(\rho)$  has density with respect to the Lebesgue measure on  $\Sigma_{n-1}$  given by

$$\Phi_{n,k}(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_{n-1})=C_{n,k}\prod_{i=1}^n(\tilde{\lambda}_i)^{k-n}\Delta(\tilde{\lambda})^2,$$

where  $\tilde{\lambda}_n$  is not itself a variable, but merely a function of the other eigenvalues:

$$\tilde{\lambda}_n = 1 - (\tilde{\lambda}_1 + \cdots + \tilde{\lambda}_{n-1}).$$

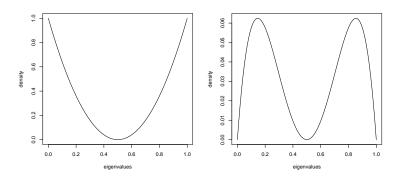


Figure: Theoretical eigenvalue distribution for n = 2, k = 2 (left) and n = 2, k = 3 (right)



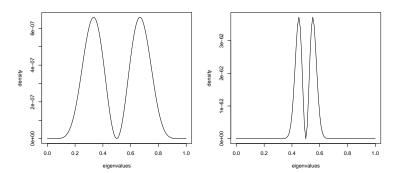
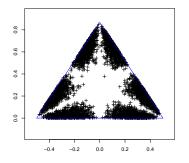


Figure: Theoretical eigenvalue distribution for n = 2, k = 10 (left) and n = 2, k = 100 (right)





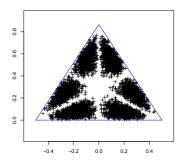
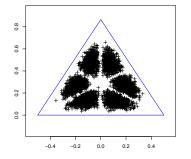


Figure: Empirical eigenvalue distribution for n = 3, k = 3 (left) and n = 3, k = 5 (right)





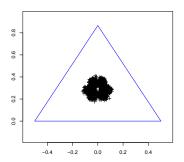


Figure: Empirical eigenvalue distribution for n = 3, k = 10 (left) and n = 3, k = 100 (right)



# Asymptotics

#### Motivation

- Typically, quantum systems have a large number of degrees of freedom ⇒ large density matrices
- Properties of typical large density matrices can be expressed in function of the limit object
- There are a lot of results dealing with Wishart matrices in the large n and k limit

#### Motivation

- Typically, quantum systems have a large number of degrees of freedom ⇒ large density matrices
- Properties of typical large density matrices can be expressed in function of the limit object
- There are a lot of results dealing with Wishart matrices in the large n and k limit

#### Motivation

- Typically, quantum systems have a large number of degrees of freedom ⇒ large density matrices
- Properties of typical large density matrices can be expressed in function of the limit object
- There are a lot of results dealing with Wishart matrices in the large n and k limit

- ① *n* is constant and  $k \to \infty$ 
  - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
  - we will show that in the limit  $k\to\infty$ , density matrices distributed along  $\mu_{n,k}$  converge to the maximally mixed state  $\operatorname{Id}/n$
- ②  $n, k \to \infty$ ,  $k/n \to c > 0$ 
  - describes a large system coupled to a large environment with constant ratio of size  $(\dim \mathcal{K}/\dim \mathcal{H} \approx c)$
  - we show that the spectral measure of density matrices of law  $\mu_{n,k}$  converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
  - we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

- **1** *n* is constant and  $k \to \infty$ 
  - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
  - we will show that in the limit  $k\to\infty$ , density matrices distributed along  $\mu_{n,k}$  converge to the maximally mixed state  $\operatorname{Id}/n$
- ②  $n, k \rightarrow \infty$ ,  $k/n \rightarrow c > 0$ 
  - describes a large system coupled to a large environment with constant ratio of size  $(\dim \mathcal{K}/\dim \mathcal{H} \approx c)$
  - we show that the spectral measure of density matrices of law  $\mu_{n,k}$  converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
  - we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

- **1** *n* is constant and  $k \to \infty$ 
  - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
  - we will show that in the limit  $k\to\infty$ , density matrices distributed along  $\mu_{n,k}$  converge to the maximally mixed state  $\operatorname{Id}/n$
- ②  $n, k \to \infty$ ,  $k/n \to c > 0$ 
  - describes a large system coupled to a large environment with constant ratio of size  $(\dim \mathcal{K}/\dim \mathcal{H} \approx c)$
  - we show that the spectral measure of density matrices of law  $\mu_{n,k}$  converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
  - we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

- **1** *n* is constant and  $k \to \infty$ 
  - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
  - we will show that in the limit  $k\to\infty$ , density matrices distributed along  $\mu_{n,k}$  converge to the maximally mixed state  $\operatorname{Id}/n$
- ②  $n, k \to \infty, k/n \to c > 0$ 
  - describes a large system coupled to a large environment with constant ratio of size  $(\dim \mathcal{K}/\dim \mathcal{H} \approx c)$
  - we show that the spectral measure of density matrices of law  $\mu_{n,k}$  converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
  - we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

- **1** *n* is constant and  $k \to \infty$ 
  - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
  - we will show that in the limit  $k\to\infty$ , density matrices distributed along  $\mu_{n,k}$  converge to the maximally mixed state  $\operatorname{Id}/n$
- - describes a large system coupled to a large environment with constant ratio of size  $(\dim \mathcal{K} / \dim \mathcal{H} \approx c)$
  - we show that the spectral measure of density matrices of law  $\mu_{n,k}$  converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
  - we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

- **1** *n* is constant and  $k \to \infty$ 
  - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
  - we will show that in the limit  $k\to\infty$ , density matrices distributed along  $\mu_{n,k}$  converge to the maximally mixed state  $\operatorname{Id}/n$
- - describes a large system coupled to a large environment with constant ratio of size  $(\dim \mathcal{K}/\dim \mathcal{H} \approx c)$
  - we show that the spectral measure of density matrices of law  $\mu_{n,k}$  converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
  - we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

- **1** *n* is constant and  $k \to \infty$ 
  - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
  - we will show that in the limit  $k\to\infty$ , density matrices distributed along  $\mu_{n,k}$  converge to the maximally mixed state  $\operatorname{Id}/n$
- (2)  $n, k \to \infty$ ,  $k/n \to c > 0$ 
  - describes a large system coupled to a large environment with constant ratio of size  $(\dim \mathcal{K}/\dim \mathcal{H} \approx c)$
  - we show that the spectral measure of density matrices of law  $\mu_{n,k}$  converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
  - we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

- **1** *n* is constant and  $k \to \infty$ 
  - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
  - we will show that in the limit  $k\to\infty$ , density matrices distributed along  $\mu_{n,k}$  converge to the maximally mixed state  $\operatorname{Id}/n$
- (2)  $n, k \to \infty$ ,  $k/n \to c > 0$ 
  - describes a large system coupled to a large environment with constant ratio of size  $(\dim \mathcal{K}/\dim \mathcal{H} \approx c)$
  - we show that the spectral measure of density matrices of law  $\mu_{n,k}$  converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
  - we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

# The spectral measure

- permits to state results on the whole spectrum of a density matrix
- density matrices admit spectral decompositions:

$$\rho = \sum_{i=1}^{n} \lambda_i |\psi_i\rangle\langle\psi_i|,$$

where the eigenvalues  $\lambda_1, \ldots, \lambda_n$  are positive and sum up to 1.

#### Definition

The *spectral measure* associated to a density matrix with spectrum  $\{\lambda_1, \ldots, \lambda_n\}$  is the probability measure

$$L(\rho) = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}$$

# The spectral measure

- permits to state results on the whole spectrum of a density matrix
- density matrices admit spectral decompositions:

$$\rho = \sum_{i=1}^{n} \lambda_i |\psi_i\rangle\langle\psi_i|,$$

where the eigenvalues  $\lambda_1, \ldots, \lambda_n$  are positive and sum up to 1.

#### Definition

The *spectral measure* associated to a density matrix with spectrum  $\{\lambda_1, \ldots, \lambda_n\}$  is the probability measure

$$L(\rho) = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}$$

# The spectral measure

- permits to state results on the whole spectrum of a density matrix
- density matrices admit spectral decompositions:

$$\rho = \sum_{i=1}^{n} \lambda_i |\psi_i\rangle\langle\psi_i|,$$

where the eigenvalues  $\lambda_1, \ldots, \lambda_n$  are positive and sum up to 1.

#### Definition

The spectral measure associated to a density matrix with spectrum  $\{\lambda_1,\ldots,\lambda_n\}$  is the probability measure

$$L(\rho) = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}.$$

## Dirichlet distributions

• Consider the probability distributions  $\mu_{n,k}$  at fixed n and  $k \to \infty$ . It has density

$$\Phi_{n,k}(\lambda_1,\ldots,\lambda_{n-1})=C_{n,k}\prod_{i=1}^n(\lambda_i)^{k-n}\Delta(\lambda)^2.$$

• Because n fixed, the Vandermonde factor  $\Delta(\lambda)$  is constant; the other factor, properly normalized in order to get a probability density, is the Dirichlet measure of parameter  $\alpha = k - n + 1$ :

$$\Phi'_{n,k}(\lambda_1,\ldots,\lambda_{n-1})=C'_{n,k}\prod_{i=1}^n(\lambda_i)^{\alpha-1}.$$



## Dirichlet distributions

• Consider the probability distributions  $\mu_{n,k}$  at fixed n and  $k \to \infty$ . It has density

$$\Phi_{n,k}(\lambda_1,\ldots,\lambda_{n-1})=C_{n,k}\prod_{i=1}^n(\lambda_i)^{k-n}\Delta(\lambda)^2.$$

• Because n fixed, the Vandermonde factor  $\Delta(\lambda)$  is constant; the other factor, properly normalized in order to get a probability density, is the Dirichlet measure of parameter  $\alpha = k - n + 1$ :

$$\Phi'_{n,k}(\lambda_1,\ldots,\lambda_{n-1})=C'_{n,k}\prod_{i=1}^n(\lambda_i)^{\alpha-1}.$$



#### The result

It is a classical result in probability theory that

#### $\mathsf{Theorem}$

The Dirichlet measure converges weakly as  $\alpha \to \infty$  to the Dirac measure  $\delta_{(1/n,...,1/n)}$ 

As the maximally mixed state  $\operatorname{Id}/n$  is the unique state having spectrum  $\{1/n, \ldots, 1/n\}$ , we get:

#### Corollary

Density matrices of the first model converge almost surely to the maximally mixed state Id/n.

#### The result

It is a classical result in probability theory that

#### **Theorem**

The Dirichlet measure converges weakly as  $\alpha \to \infty$  to the Dirac measure  $\delta_{(1/n,...,1/n)}$ 

As the maximally mixed state  $\operatorname{Id}/n$  is the unique state having spectrum  $\{1/n, \ldots, 1/n\}$ , we get:

#### Corollary

Density matrices of the first model converge almost surely to the maximally mixed state Id/n.

## The Marchenko Pastur measure

The Marchenko-Pastur distribution arises naturally in random matrix theory and free probability.

#### Definition

For  $c \in ]0, \infty[$ , we denote by  $\mu_c$  the *Marchenko-Pastur* probability measure given by the equation

$$\mu_c = \max\{1-c,0\}\delta_0 + \frac{\sqrt{(x-a)(b-x)}}{2\pi x}\mathbf{1}_{[a,b]}(x)dx,$$

where  $a = (\sqrt{c} - 1)^2$  and  $b = (\sqrt{c} + 1)^2$ .

## An useful lemma

#### Lemma

Assume that  $c \in ]0, \infty[$ , and let  $(k(n))_n$  be a sequence of integers such that  $\lim_{n\to\infty}\frac{k(n)}{n}=c$ . Consider a sequence of random matrices  $(W_n)_n$  such that for all n,  $W_n$  is a Wishart matrix of parameters n and k(n). Let  $S_n=\operatorname{Tr} W_n$  be the trace of  $W_n$ . Then

$$rac{S_n}{nk(n)} 
ightarrow 1$$
 almost surely

and

$$\frac{S_n - nk(n)}{\sqrt{nk(n)}} \Rightarrow \mathcal{N}(0, 1),$$



#### The main result

#### **Theorem**

Assume that  $c \in ]0, \infty[$ , and let  $(k(n))_n$  be a sequence of integers such that  $\lim_{n\to\infty}\frac{k(n)}{n}=c$ . Consider a sequence of random density matrices  $(\rho_n)_n$  such that for all n,  $\rho_n$  has distribution  $\mu_{n,k(n)}$ . Define the renormalized empirical distribution of  $\rho_n$  by

$$L_n = \frac{1}{n} \sum_{i=1}^n \delta_{cn\lambda_i(\rho_n)},$$

where  $\lambda_1(\rho_n), \dots, \lambda_n(\rho_n)$  are the eigenvalues of  $\rho_n$ . Then, almost surely, the sequence  $(L_n)_n$  converges weakly to the Marchenko-Pastur distribution  $\mu_c$ .

#### Proof

We know that the empirical distribution of eigenvalues for the Wishart ensemble

$$L_n^{(W)} = \frac{1}{n} \sum_{i=1}^n \delta_{n^{-1}\lambda_i(W_n)},$$

converges almost surely to the Marchenko-Pastur distribution of parameter c. Recall that the eigenvalues of the density matrix  $\rho_n = W_n/\operatorname{Tr}(W_n)$  are those of  $W_n$  divided by the trace  $S_n$  of  $W_n$ ; we have thus

$$L_n = \frac{1}{n} \sum_{i=1}^n \delta_{\operatorname{cn}\lambda_i(W_n)/S_n} = \frac{1}{n} \sum_{i=1}^n \delta_{n^{-1}\lambda_i(W_n) \cdot \frac{\operatorname{cn}^2}{S_n}}.$$

Use the fact that  $S_n/nk(n) \rightarrow 1$  almost surely to conclude.



## Numerical simulations

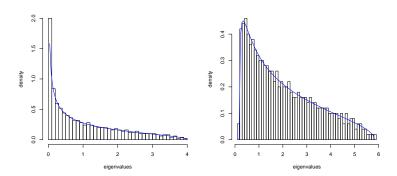
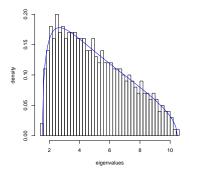


Figure: Empirical and limit measures for n = 500, k = 500 (left) and n = 500, k = 1000 (right)



## Numerical simulations



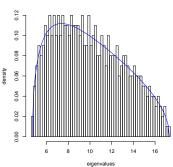


Figure: Empirical and limit measures for n = 500, k = 2500 (left) and n = 500, k = 5000 (right)



# Random density matrices - largest eigenvalue

#### **Theorem**

Assume that  $c \in ]0, \infty[$ , and let  $(k(n))_n$  be a sequence of integers such that  $\lim_{n\to\infty}\frac{k(n)}{n}=c$ . Consider a sequence of random matrices  $(\rho_n)_n$  such that for all n,  $\rho_n$  has distribution  $\mu_{n,k(n)}$ , and let  $\lambda_{max}(\rho_n)$  be the largest eigenvalue of  $\rho_n$ . Then, almost surely,

$$\lim_{n\to\infty} cn\lambda_{\max}(\rho_n) = (\sqrt{c}+1)^2.$$

Moreover,

$$\lim_{n\to\infty}\frac{n^{2/3}\left[cn\lambda_{\max}(\rho_n)-(\sqrt{c}+1)^2\right]}{(1+\sqrt{c})(1+1/\sqrt{c})^{1/3}}=\mathcal{W}_2\quad \text{in distribution}.$$

Fin

Questions?