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Repeated quantum interactions and quantum channels

Invariant states and the asymptotic induced ensemble

Random environment states and i.i.d. interaction unitaries



Closed systems quantum dynamics

◮ Schrödinger equation

|ψ′〉 = U|ψ〉,

where U = e−iτH ∈ U(d) is the unitary interaction matrix

◮ For density matrices
ρ′ = UρU∗

◮ Graphical form

U ρ U∗ρ′ =



Open systems quantum dynamics

◮ The system ρ ∈ M1,+
d (C) is coupled to a (possibly

unknown/inaccessible) environment described by a state
β ∈ M1,+

d ′ (C) and undergoes a “closed” unitary dynamics
described by a matrix U ∈ U(dd ′)

U(ρ⊗ β)U∗

◮ Since we do not have access to the environment, we perform a
partial trace over the d ′ “hidden” degrees of freedom

ρ′ = Trd ′ [U(ρ⊗ β)U∗]

◮ Graphical form

β

ρ
U U∗ρ′ =



Quantum channels
A quantum channel is a completely positive, trace preserving linear
map Φ : Md(C) → Md(C).

◮ Φ is completely positive if, for all d ′ > 1, the map

Φ ⊗ Id ′ : Mdd ′(C) → Mdd ′(C)

is positive;

◮ Φ is trace preserving if

Tr [Φ(X )] = Tr [X ] , ∀X ∈ Md(C).

Remark
The transposition map

T : Md(C) → Md(C)

X 7→ X⊤

is not completely positive.



Quantum channels
A linear map Φ : Md(C) → Md(C) is a quantum channel iff one
of the following holds:

1. Stinespring dilation There exists a finite dimensional Hilbert
space C

d ′

, a density matrix β ∈ M1,+
d ′ (C) and an unitary

operation U ∈ U(dd ′) such that

Φ(X ) = Trd ′ [U(X ⊗ β)U∗] , ∀X ∈ Md(C).

2. Kraus decomposition There exists an integer k and matrices
L1, . . . , Lk ∈ Md(C) such that

Φ(X ) =
k

∑

i=1

LiXL∗

i , ∀X ∈ Md(C)

and
k

∑

i=1

L∗

i Li = Id .



Quantum channels

◮ Stinespring dilation

Φ(X ) = Trd ′ [U(X ⊗ β)U∗] ;

◮ Kraus decomposition

Φ(X ) =
k

∑

i=1

LiXL∗

i ,
k

∑

i=1

L∗

i Li = Id .

It can be shown that the dimension of the ancilla space in the
Stinespring dilation theorem can be chosen d ′ = d2 and β can be
chosen to be a rank one projector. A similar result holds for the
number of Kraus operators: one can always find a decomposition
with k = d2 operators.
The Choi rank of a quantum channel Φ is the least positive integer
k such that Φ admits a Kraus decomposition with k operators Li .



Two examples

◮ For U ∈ U(d), define the unitary conjugation channel

ΦU(X ) = UXU∗.

One can check that the spectrum of ΦU is

spec(ΦU) = {λ1λ2 |λ1, λ2 ∈ spec(U)}.

For U = I , one gets the identity channel ΦI (X ) = X .

◮ The depolarizing channel Φdep : Md(C) → Md(C) is given by

Φdep(X ) = Tr(X )
I

d
.

It has eigenvalues 1 (with multiplicity 1) and 0 (with
multiplicity d2 − 1).



Spectral properties of channels

Proposition

Let Φ : Md(C) → Md(C) a quantum channel. Then

1. Φ has at least one invariant element which is a density matrix;

2. Φ has trace operator norm 1;

3. Φ has spectral radius 1;

4. Φ satisfies the Schwarz inequality

∀X ∈ Md(C), Φ(X )∗Φ(X ) 6 ‖Φ(I )‖Φ(X ∗X ).



Asymptotic states for a class of channels

Let C be the set of all quantum channels that have 1 as a simple
eigenvalue and all other eigenvalues are contained in the open unit
disc.

Proposition

Consider a quantum channel Φ ∈ C. Then, for all density matrices
ρ0 ∈ M1,+

d (C),
lim

n→∞
Φn(ρ0) = ρ∞,

where ρ∞ is the unique invariant state of Φ.



A model of random quantum channels

Fix two integers d , d ′ > 2 and a density matrix β ∈ M1,+
d ′ (C). To

an unitary matrix U ∈ U(dd ′), associate the channel

ΦU,β(X ) = Trd ′ [U(X ⊗ β)U∗] .

Choosing U random from the Haar distribution hdd ′ on the unitary
group, we obtain a quantum channel-valued random variable (β is
fixed)

U(dd ′) → L(Md(C))

U 7→ ΦU,β .

Question: What are the properties of a generic quantum channel ?



Almost all quantum channels are in C

Theorem
Let β be a fixed density matrix of size d ′. If U is a random unitary
matrix distributed along the Haar invariant probability hdd ′ on
U(dd ′), then ΦU,β ∈ C almost surely.

Corollary

For almost all unitary matrices U ∈ U(dd ′), the channel ΦU,β has
an unique invariant state ρ∞ and for all density matrices ρ0,

lim
n→∞

(

ΦU,β
)n

(ρ0) = ρ∞.



Strictly positive and irreducible channels

Definition
A positive map Φ : Md(C) → Md(C) is called

◮ strictly positive (or positivity improving) if Φ(X ) > 0 for all
X > 0;

◮ irreducible if there is no (non-trivial) projector P such that
Φ(P) 6 λP for some λ > 0.

Proposition

A positive linear map Φ : Md(C) → Md(C) is irreducible if and
only if the map (I + Φ)d−1 is strictly positive.



Strictly positive and irreducible channels

Theorem
If Ψ is a unital, irreducible map on Md(C) which satisfies the
Schwarz inequality (eg. the dual of an irreducible quantum channel
Φ), then the set of peripheral (i.e. modulus one) eigenvalues is a
(possibly trivial) subgroup of the unit circle T. Moreover, every
peripheral eigenvalue is simple and the corresponding eigenspaces
are spanned by unitary elements of Md(C).

Corollary

The peripheral eigenvalues of an irreducible quantum channel are
simple and contained in the finite set

{ξ ∈ T | ∃1 6 n 6 d2 s.t. ξn = 1}.



Necessary and sufficient conditions for irreducibility

We denote by Lat(T ) the lattice of invariant subspaces of an
operator T ∈ Md(C).

Proposition (Farenick)

Consider a completely positive map Φ : Md(C) → Md(C) defined
by

Φ(X ) =
k

∑

i=1

LiXL∗

i ,

with Li ∈ Md(C), i = 1, . . . , k. Then Φ is irreducible if and only if
⋂k

i=1 Lat(Li ) is trivial.



Necessary and sufficient conditions for irreducibility

Proposition (the Shemesh criterion)

Two matrices A,B ∈ Md(C) have a common eigenvector if and
only if

d−1
⋂

i ,j=1

ker
[

Ai ,B j
]

6= {0}.

More generally, if A and B have a common invariant subspace of
dimension k (for 1 6 k 6 d − 1), then their k-th wedge powers
have a common eigenvector, and hence (we put n =

(

d
k

)

)

n−1
⋂

i ,j=1

ker
[

(A∧k)i , (B∧k)j
]

6= {0}.



Almost all quantum channels are irreducible

◮ Write the matrix U defining a quantum channel Φ as a
d ′ × d ′ matrix of blocks in Md(C): U ∈ Md ′(Md(C)).
Then, the Kraus matrices Li are (rescaled copies) of the
blocks Us,t ∈ Md(C).

◮ The Shemesh condition on the existence of an common
invariant subspace can be written as

det
n−1
∑

i ,j=1

[

(A∧k)i , (B∧k)j
]∗

·
[

(A∧k)i , (B∧k)j
]

= 0.

◮ This is a polynomial equation in the real and imaginary parts
of the (dd ′)2 complex coefficients of the matrix U.

◮



Conclusion: almost all quantum channels are in C

For almost all unitary matrices U ∈ U(dd ′), the channel ΦU,β has
an unique invariant state ρ∞ (which depends on U) and for all
density matrices ρ0,

lim
n→∞

(

ΦU,β
)n

(ρ0) = ρ∞.



From quantum channels to random density matrices

For a norm one vector x ∈ C
d , define the random density matrix

U(dd ′) ∋ U 7→ ρ = ΦU,β(|x〉〈x |) = Trd ′ [U(|x〉〈x | ⊗ β)U∗].

If β = |y〉〈y | (y ∈ C
d ′

) is a rank-one projector, then

ρ = Trd ′ |U(x ⊗ y)〉〈U(x ⊗ y)|

is an element of the induced density matrices ensemble (of
parameters d , d ′).

◮ the distribution of ρ does not depend on the choice of the
unit vectors x and y ;

◮ ρ has the same distribution as Trd ′ |z〉〈z |, where z is a
Lebesgue-uniform vector on the unit sphere of
C

d ⊗ C
d ′

≃ C
dd ′

.



The induced ensemble

ρ = Trd ′ |z〉〈z |, z uniform on S(Cd ⊗ C
d ′

)

◮ The distribution of ρ is unitarily invariant: ρ
law
= V ρV ∗ for all

V ∈ U(d). Hence ρ diagonalizes ρ = V diag(δ)V ∗, where δ is
a random vector in the probability simplex and V is a Haar
unitary;

◮ There is a connection with the Wishart ensemble from
Random Matrix Theory: if W = XX ∗ is a Wishart matrix of
parameters d and d ′, then

ρ
law
=

W

Tr W
;

◮ Asymptotics, in the regimes [d fixed, d ′ → ∞], [d → ∞ fixed,
d ′ fixed] and [d , d ′ → ∞, d ′/d → c > 0] are well understood.



A new model of random density matrices

◮ induced ensemble = one iteration of a random channel

ρ = Trd ′ [U(|x〉〈x | ⊗ |y〉〈y |)U∗]

= ΦU,y (|x〉〈x |).

◮ What about a large number of iterations ? For almost all U,

(

ΦU,y
)n

(|x〉〈x |) −→
n→∞

ρ∞.

◮ For a Haar-distributed unitary U, the distribution of ρ∞ does
not depend on x and y .

◮ We have defined an ensemble of density matrices

U(dd ′) ∋ U 7→ ρ∞ = lim
n→∞

(

ΦU,y
)n

(|x〉〈x |).



The asymptotic induced ensemble
Fix d , d ′ > 2 and a probability vector b ∈ C

d ′

. An element from
the asymptotic induced ensemble of parameters (d , b) is the
random density matrix

U(dd ′) ∋ U 7→ ρ∞ = lim
n→∞

(

ΦU,β
)n

(ρ0),

where
◮ β ∈ M1,+

d ′ (C) is a fixed density matrix with spectrum b;

◮ ρ0 ∈ M1,+
d (C) is a fixed initial state.

Remarks

◮ The map U 7→ ρ∞ is defined almost everywhere on U(dd ′)
(almost all random channels are in C).

◮ The distribution of ρ∞ does not depend on ρ0 and on the
“phase” of β; it depends only on the eigenvalue vector
b = spec(β).

◮ The distribution of ρ∞ is unitarily invariant: ρ∞
law
= V ρ∞V ∗

for all V ∈ U(d).



Numerical simulations
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Figure: First row - induced measure d’=2, d’=3, d’=5; Second & third
rows - asymptotic measure b=[1, 0], b=[3/4, 1/4],b=[1, 0, 0, 0];b=[1, 0,
0],b=[3/4, 1/8, 1/8] and b=[1, 0, 0, 0, 0].



Models of random repeated quantum interactions

Repeated quantum interactions

ρn = ΦUn,βn(ρn−1) = Trd ′ [Un(ρn−1 ⊗ βn)U
∗

n ] .

The first model of random repeated interactions we studied was
given by the iteration of the channel

U(dd ′) → L(Md(C))

U 7→ ΦU .

We now introduce two new models:

◮ random environment: U is fixed, and the successive
environment states (βn)n are i.i.d. random density matrices.

◮ i.i.d. unitaries: the sequence of interaction unitaries (Un)n is
Haar-i.i.d., and no assumption is made on the (possibly
random) environment states (βn)n.



Asymptotic results: random environment

Discrete evolution equation

ρn = Φβn(ρn−1) = Trd ′ [U(ρn−1 ⊗ βn)U
∗] .

In this model, the interaction unitary U is fixed beforehand and the
environment states (βn)n are i.i.d. random density matrices.
As usual, we are interested in the asymptotic behavior of the states

ρn = Φβn ◦ · · · ◦ Φβ1(ρ0).

We use results by L. Bruneau, A. Joye and M. Merkli on products
of random matrices, applied to the (i.i.d.) channels

Φβn ∈ L(Md(C)).



Asymptotic results: random environment

Theorem (BJM)

Let (Mn)n be a sequence of i.i.d. random contractions of MD(C)
with the following properties:

1. There exists a constant vector ψ ∈ C
D such that Mψ = ψ

almost surely;

2. P(1 is a simple eigenvalue of M) > 0.

Then the (deterministic) matrix E[M] has eigenvalue 1 with
multiplicity one and there exists a constant vector θ ∈ C

D such
that

lim
N→∞

1

N

N
∑

n=1

M1(ω)M2(ω) · · ·Mn(ω) = |ψ〉〈θ| = P1,E[M],

where P1,E[M] is the rank-one spectral projector of E[M]
corresponding to the eigenvalue 1.



Asymptotic results: random environment

Using the duality between the Schrödinger and the Heisenberg
pictures of Quantum Mechanics, we obtain

Theorem
Let (Φn)n be a sequence of i.i.d. random quantum channels acting
on Md(C) such that

P(Φ has an unique invariant state) > 0.

Then E[Φ] is a quantum channel with an unique invariant state
θ ∈ M1,+

d (C) and, P-almost surely,

lim
N→∞

1

N

N
∑

n=1

[Φn ◦ · · · ◦ Φ1](ρ0) = θ, ∀ρ0 ∈ M1,+
d (C).



Asymptotic results: random environment

Proposition

Let {βn}n be a sequence of i.i.d. random density matrices such
that, with positive probability, the random quantum channel Φβ

has an unique invariant state. Then, almost surely, for all initial
states ρ0 ∈ M1,+

d (C), one has

lim
N→∞

ρ1 + . . .+ ρN

N
=

lim
N→∞

1

N

N
∑

n=1

[Φβn ◦ · · · ◦ Φβ1 ](ρ0) = θ,

where θ ∈ M1,+
d (C) is the unique invariant state of the

deterministic channel ΦE[β].
In particular, if E[β] = Id ′/d ′, then θ is the “chaotic” state Id/d.



Asymptotic results: i.i.d. unitaries

Discrete evolution equation

ρn = ΦUn,βn(ρn−1) = Trd ′ [Un(ρn−1 ⊗ βn)U
∗

n ] .

In this model, the interaction unitaries Un are Haar distributed
independent random matrices.
The environment states (βn)n are independent of the family (Un)n
and can have an arbitrary joint distribution.

Lemma
Let (Vn)n be a sequence of i.i.d. Haar unitaries independent of the
family {Un, βn}n and consider the sequence of successive states
(ρn)n defined earlier. Then the sequences (ρn)n and (VnρnV

∗
n )n

have the same distribution.



Asymptotic results: i.i.d. unitaries

Lemma
The sequence of successive states (ρn)n and its i.i.d.-randomly
rotated version (VnρnV

∗
n )n have the same distribution.

Consequences

◮ ρn fluctuates, hence the need for an ergodic theorem.

◮ in the ergodic sum, the “phases” are random, uniform and
independent of the rest.

Proposition

Let (ρn)n be the successive states of a repeated quantum
interaction scheme with i.i.d. random unitary interactions. Then,
almost surely,

lim
n→∞

ρ1 + . . .+ ρn

n
=

Id
d
.



Conclusion and perspectives

◮ Study other properties of random quantum channels, such as
minimal output entropies

◮ Connections to Hayden’s and Hastings’ counterexamples to
the additivity conjecture

◮ Statistical properties of the asymptotic induced ensemble
(support of the measure, moments, mean entropy)

◮ Study the asymptotic induced ensemble for large matrices:
limit theorems for the empirical eigenvalue distribution,
convergence of the extremal eigenvalues, fluctuations

◮ Random scalings of random invariant states ⇒ random
positive matrices (à la Wishart)

◮ Continuous limit ?



Thank you !

http://arxiv.org/abs/0902.2634
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