Canaux quantiques aléatoires et le problème d'additivité

Ion Nechita travail en collaboration avec Benoît Collins

Institut Camille Jordan, Université Lyon 1

Toulouse, 25 Juin 2009

Canaux quantiques et la conjecture d'additivité

Définition

A un système quantique on associe un espace de Hilbert $\mathcal{H} \simeq \mathbb{C}^n$. L'état d'un tel système est décrit par un opérateur positif de trace $1 \ \rho \in \mathcal{B}(\mathcal{H}) \simeq \mathcal{M}_n^{1,+}(\mathbb{C})$, dit matrice densité. Un état est dit pur s'il est de rang 1: $\rho = P_x$, pour un $x \in \mathbb{C}^n$, ||x|| = 1.

Définition

A un système quantique on associe un espace de Hilbert $\mathcal{H} \simeq \mathbb{C}^n$. L'état d'un tel système est décrit par un opérateur positif de trace $1 \ \rho \in \mathcal{B}(\mathcal{H}) \simeq \mathcal{M}_n^{1,+}(\mathbb{C})$, dit matrice densité. Un état est dit pur s'il est de rang 1: $\rho = P_x$, pour un $x \in \mathbb{C}^n$, ||x|| = 1.

• Système composé \rightsquigarrow produit tensoriel $\mathcal{H}_1 \otimes \mathcal{H}_2$.

Définition

A un système quantique on associe un espace de Hilbert $\mathcal{H} \simeq \mathbb{C}^n$. L'état d'un tel système est décrit par un opérateur positif de trace $1 \ \rho \in \mathcal{B}(\mathcal{H}) \simeq \mathcal{M}_n^{1,+}(\mathbb{C})$, dit matrice densité. Un état est dit pur s'il est de rang 1: $\rho = P_x$, pour un $x \in \mathbb{C}^n$, ||x|| = 1.

- Système composé \rightsquigarrow produit tensoriel $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- Accès à un sous système → trace partielle

Définition

A un système quantique on associe un espace de Hilbert $\mathcal{H} \simeq \mathbb{C}^n$. L'état d'un tel système est décrit par un opérateur positif de trace $1 \ \rho \in \mathcal{B}(\mathcal{H}) \simeq \mathcal{M}_n^{1,+}(\mathbb{C})$, dit matrice densité. Un état est dit pur s'il est de rang 1: $\rho = P_x$, pour un $x \in \mathbb{C}^n$, ||x|| = 1.

- Système composé \rightsquigarrow produit tensoriel $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- Accès à un sous système \rightsquigarrow trace partielle : pour $ho_{12} \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$,

$$\rho_1 = \mathsf{Tr}_2[\rho_{12}] \in \mathcal{B}(\mathcal{H}_1).$$

La trace partielle $Tr_2[\cdot]$ est l'application duale à la dilatation

$$\mathcal{B}(\mathcal{H}_1) \ni X \mapsto X \otimes \mathsf{I}_2 \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2).$$

Définition

A un système quantique on associe un espace de Hilbert $\mathcal{H} \simeq \mathbb{C}^n$. L'état d'un tel système est décrit par un opérateur positif de trace $1 \ \rho \in \mathcal{B}(\mathcal{H}) \simeq \mathcal{M}_n^{1,+}(\mathbb{C})$, dit matrice densité. Un état est dit pur s'il est de rang 1: $\rho = P_x$, pour un $x \in \mathbb{C}^n$, ||x|| = 1.

- Système composé \rightsquigarrow produit tensoriel $\mathcal{H}_1 \otimes \mathcal{H}_2$.
- Accès à un sous système \rightsquigarrow trace partielle : pour $\rho_{12} \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$,

$$\rho_1 = \mathsf{Tr}_2[\rho_{12}] \in \mathcal{B}(\mathcal{H}_1).$$

La trace partielle $Tr_2[\cdot]$ est l'application duale à la dilatation

$$\mathcal{B}(\mathcal{H}_1) \ni X \mapsto X \otimes \mathsf{I}_2 \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2).$$

 Un état pur x ∈ H₁ ⊗ H₂ est dit intriqué s'il n'existe pas x_i ∈ H_i, i = 1,2 tels que

$$x = x_1 \otimes x_2.$$

Canaux quantiques

Définition

Un canal quantique est une application linéaire $\Phi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ complètement positive (i.e. $\Phi \otimes I_k$ positive $\forall k$) qui préserve la trace.

Canaux quantiques

Définition

Un canal quantique est une application linéaire $\Phi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ complètement positive (i.e. $\Phi \otimes I_k$ positive $\forall k$) qui préserve la trace.

Proposition

Une application linéaire $\Phi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ est un canal quantique ssi l'une des deux assertions suivantes est vérifiée:

1 Dilatation de Stinespring: pour un $k \in \mathbb{N}$, il existe une matrice densité $\beta \in \mathcal{M}_k^{1,+}(\mathbb{C})$ et un opérateur unitaire $U \in \mathcal{U}(nk)$ tels que

 $\Phi(X) = \operatorname{Tr}_{k} \left[U(X \otimes \beta) U^{*} \right], \quad \forall X \in \mathcal{M}_{n}(\mathbb{C}).$

Canaux quantiques

Définition

Un canal quantique est une application linéaire $\Phi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ complètement positive (i.e. $\Phi \otimes I_k$ positive $\forall k$) qui préserve la trace.

Proposition

Une application linéaire $\Phi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ est un canal quantique ssi l'une des deux assertions suivantes est vérifiée:

1 Dilatation de Stinespring: pour un $k \in \mathbb{N}$, il existe une matrice densité $\beta \in \mathcal{M}_k^{1,+}(\mathbb{C})$ et un opérateur unitaire $U \in \mathcal{U}(nk)$ tels que

 $\Phi(X) = \operatorname{Tr}_{k} \left[U(X \otimes \beta) U^{*} \right], \quad \forall X \in \mathcal{M}_{n}(\mathbb{C}).$

2 Décomposition de Kraus: il existe k matrices $L_1, \ldots, L_k \in \mathcal{M}_n(\mathbb{C})$ telles que

$$\Phi(X) = \sum_{i=1}^{k} L_i X L_i^*, \quad \forall X \in \mathcal{M}_n(\mathbb{C}) \quad et \quad \sum_{i=1}^{k} L_i^* L_i = I_n.$$

• Pour tout $U \in \mathcal{U}(n)$, on définit la conjugaison unitaire

 $\Phi_U(X) = UXU^*.$

• Le canal identité $\Phi_{I}(X) = X$.

• Pour tout $U \in \mathcal{U}(n)$, on définit la conjugaison unitaire

$$\Phi_U(X) = UXU^*.$$

- Le canal identité $\Phi_{I}(X) = X$.
- Le canal dépolarisant $\Phi_{dep}: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ est défini par

$$\Phi_{dep}(X) = \operatorname{Tr}(X)\frac{\mathsf{I}_n}{n}.$$

• Pour tout $U \in \mathcal{U}(n)$, on définit la conjugaison unitaire

$$\Phi_U(X) = UXU^*.$$

- Le canal identité $\Phi_{I}(X) = X$.
- Le canal dépolarisant $\Phi_{dep}: \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ est défini par

$$\Phi_{dep}(X) = \operatorname{Tr}(X)\frac{\mathsf{I}_n}{n}.$$

• L'application transposition

$$X\mapsto X^{\top}$$

n'est pas complètement positive.

• Pour tout $U \in \mathcal{U}(n)$, on définit la conjugaison unitaire

$$\Phi_U(X) = UXU^*.$$

- Le canal identité $\Phi_{I}(X) = X$.
- Le canal dépolarisant $\Phi_{dep} : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ est défini par

$$\Phi_{dep}(X) = \operatorname{Tr}(X) \frac{\mathsf{I}_n}{n}.$$

• L'application transposition

$$X\mapsto X^{ op}$$

n'est pas complètement positive. En revanche, pour tout $rac{-1}{n-1}\leqslant t\leqslant rac{1}{n+1}$, l'application

$$X \mapsto tX^{\top} + (1-t)\operatorname{Tr}(X)\frac{\operatorname{I}_n}{n}$$

est un canal quantique.

• Φ modélise un canal de communication entre deux parties, Alice et Bob <u>Alice</u> <u>Bob</u> \bigcirc ρ $\Phi(\rho)$

- Φ modélise un canal de communication entre deux parties, Alice et Bob O _____ O ____ O ____ O ____ O ____ O ____ $\Phi(\rho)$
- Exemple 1: Conjugaison unitaire Φ_U(ρ) = UρU* → Bob peut "inverser" le canal et retrouver l'état ρ envoyé par Alice.

- Exemple 1: Conjugaison unitaire Φ_U(ρ) = UρU^{*} → Bob peut "inverser" le canal et retrouver l'état ρ envoyé par Alice.
- Exemple 2: Canal dépolarisant Φ_{dep}(ρ) = I_n / n → Bob ne peut rien savoir sur l'état initial ρ.

- Exemple 1: Conjugaison unitaire Φ_U(ρ) = UρU^{*} → Bob peut "inverser" le canal et retrouver l'état ρ envoyé par Alice.
- Exemple 2: Canal dépolarisant Φ_{dep}(ρ) = I_n / n → Bob ne peut rien savoir sur l'état initial ρ.
- Peut-on quantifier la capacité (de transmettre l'information classique) d'un canal quantique ?

- Φ modélise un canal de communication entre deux parties, Alice et Bob \bigcirc ______ \bigcirc _____ \bigcirc _____ \bigcirc _____ \bigcirc \bigcirc ϕ $\Phi(\rho)$
- Exemple 1: Conjugaison unitaire Φ_U(ρ) = UρU* → Bob peut "inverser" le canal et retrouver l'état ρ envoyé par Alice.
- Exemple 2: Canal dépolarisant Φ_{dep}(ρ) = I_n / n → Bob ne peut rien savoir sur l'état initial ρ.
- Peut-on quantifier la capacité (de transmettre l'information classique) d'un canal quantique ?

Définition

Pour $p \ge 1$, on définit la p-Entropie Minimale de Sortie d'un canal quantique $\Phi : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ par

$$H^{p}_{\min}(\Phi) = \min_{\rho \in \mathcal{M}^{1,+}_{n}(\mathbb{C})} H^{p}(\Phi(\rho)).$$

 Pour p≥1, la p-entropie de Rényi d'un vecteur de probabilités x ∈ ℝⁿ (x_i ≥ 0 et ∑_i x_i = 1) est définie par

$$H^{p}(x) = \frac{1}{1-p} \log \sum_{i=1}^{n} x_{i}^{p};$$

$$H(x) = H^{1}(x) = -\sum_{i=1}^{n} x_{i} \log x_{i}.$$

 Pour p≥1, la p-entropie de Rényi d'un vecteur de probabilités x ∈ ℝⁿ (x_i ≥ 0 et ∑_i x_i = 1) est définie par

$$H^{p}(x) = rac{1}{1-p} \log \sum_{i=1}^{n} x_{i}^{p};$$

 $H(x) = H^{1}(x) = -\sum_{i=1}^{n} x_{i} \log x_{i}$

.

• On étend ces définition par le calcul fonctionnel aux matrices densités:

$$\begin{split} H^{p}(\rho) &= \frac{1}{1-\rho} \log \operatorname{Tr} \rho^{p}; \\ H(\rho) &= H^{1}(\rho) = -\operatorname{Tr} \rho \log \rho \end{split}$$

 Pour p≥1, la p-entropie de Rényi d'un vecteur de probabilités x ∈ ℝⁿ (x_i ≥ 0 et ∑_i x_i = 1) est définie par

$$H^{p}(x) = \frac{1}{1-p} \log \sum_{i=1}^{n} x_{i}^{p};$$

$$H(x) = H^{1}(x) = -\sum_{i=1}^{n} x_{i} \log x_{i}.$$

• On étend ces définition par le calcul fonctionnel aux matrices densités:

$$egin{aligned} \mathcal{H}^p(
ho) &= rac{1}{1-
ho}\log\operatorname{Tr}
ho^p;\ \mathcal{H}(
ho) &= \mathcal{H}^1(
ho) = -\operatorname{Tr}
ho\log
ho. \end{aligned}$$

• Pour tout $p \ge 1$ et pour toute matrice densité $\rho \in \mathcal{M}_n^{1,+}(\mathbb{C})$,

 $0 \leqslant H^p(\rho) \leqslant \log n.$

 Pour p≥1, la p-entropie de Rényi d'un vecteur de probabilités x ∈ ℝⁿ (x_i ≥ 0 et ∑_i x_i = 1) est définie par

$$H^{p}(x) = \frac{1}{1-p} \log \sum_{i=1}^{n} x_{i}^{p};$$

$$H(x) = H^{1}(x) = -\sum_{i=1}^{n} x_{i} \log x_{i}.$$

On étend ces définition par le calcul fonctionnel aux matrices densités:

$$\begin{split} H^p(\rho) &= \frac{1}{1-\rho} \log \operatorname{Tr} \rho^p; \\ H(\rho) &= H^1(\rho) = -\operatorname{Tr} \rho \log \rho. \end{split}$$

• Pour tout $p \ge 1$ et pour toute matrice densité $\rho \in \mathcal{M}_n^{1,+}(\mathbb{C})$,

$$0 \leqslant H^p(\rho) \leqslant \log n.$$

• On a: $H^p_{\min}(\Phi_U) = 0$ et $H^p_{\min}(\Phi_{dep}) = \log n$.

• Alice et Bob ont à leur disposition deux canaux en parallèle, Φ_1 et Φ_2

• Si
$$ho_{12} =
ho_1 \otimes
ho_2$$
, alors

$$[\Phi_1\otimes\Phi_2](
ho_1\otimes
ho_2)=\Phi_1(
ho_1)\otimes\Phi_2(
ho_2),$$

• Alice et Bob ont à leur disposition deux canaux en parallèle, Φ_1 et Φ_2

• Si
$$ho_{12} =
ho_1 \otimes
ho_2$$
, alors

$$[\Phi_1\otimes\Phi_2](
ho_1\otimes
ho_2)=\Phi_1(
ho_1)\otimes\Phi_2(
ho_2),$$

et donc

$$H^p_{\min}(\Phi_1\otimes\Phi_2)\leqslant H^p_{\min}(\Phi_1)+H^p_{\min}(\Phi_2).$$

• Alice et Bob ont à leur disposition deux canaux en parallèle, Φ_1 et Φ_2

• Si
$$ho_{12} =
ho_1 \otimes
ho_2$$
, alors

$$[\Phi_1 \otimes \Phi_2](\rho_1 \otimes \rho_2) = \Phi_1(\rho_1) \otimes \Phi_2(\rho_2),$$

et donc

$$H^p_{\min}(\Phi_1\otimes\Phi_2)\leqslant H^p_{\min}(\Phi_1)+H^p_{\min}(\Phi_2).$$

• A-t-on égalité ?

• Alice et Bob ont à leur disposition deux canaux en parallèle, Φ_1 et Φ_2

• Si
$$ho_{12} =
ho_1 \otimes
ho_2$$
, alors

$$[\Phi_1\otimes\Phi_2](\rho_1\otimes\rho_2)=\Phi_1(\rho_1)\otimes\Phi_2(\rho_2),$$

et donc

$$H^p_{\min}(\Phi_1\otimes\Phi_2)\leqslant H^p_{\min}(\Phi_1)+H^p_{\min}(\Phi_2).$$

• A-t-on égalité ? Autrement dit, peut-on faire mieux avec des états ρ_{12} intriqués?

• ['98] Conjecture de Holevo: pour tous canaux $\Phi_{1,2}$,

$$H^1_{\min}(\Phi_1\otimes\Phi_2)=H^1_{\min}(\Phi_1)+H^1_{\min}(\Phi_2).$$

Ça serait une conséquence de l'additivité pour H_{\min}^p , pour p proche de 1.

• ['98] Conjecture de Holevo: pour tous canaux $\Phi_{1,2}$,

$$H^1_{\min}(\Phi_1\otimes\Phi_2)=H^1_{\min}(\Phi_1)+H^1_{\min}(\Phi_2).$$

Ça serait une conséquence de l'additivité pour H_{\min}^p , pour p proche de 1. • ['02] Werner & Holevo: contre exemple pour p > 4.79. Canal explicite

$$\Phi(\rho) = \frac{1}{n-1} (\mathsf{I}_n - X^\top).$$

• ['98] Conjecture de Holevo: pour tous canaux $\Phi_{1,2}$,

$$H^1_{\min}(\Phi_1\otimes\Phi_2)=H^1_{\min}(\Phi_1)+H^1_{\min}(\Phi_2).$$

Ça serait une conséquence de l'additivité pour H_{\min}^p , pour p proche de 1. • ['02] Werner & Holevo: contre exemple pour p > 4.79. Canal explicite

$$\Phi(\rho) = \frac{1}{n-1} (\mathsf{I}_n - X^\top).$$

• ['08] Hayden & Winter: contre exemple aléatoire pour p > 1.

• ['98] Conjecture de Holevo: pour tous canaux $\Phi_{1,2}$,

$$H^1_{\min}(\Phi_1\otimes\Phi_2)=H^1_{\min}(\Phi_1)+H^1_{\min}(\Phi_2).$$

Ça serait une conséquence de l'additivité pour H^p_{min} , pour p proche de 1. • ['02] Werner & Holevo: contre exemple pour p > 4.79. Canal explicite

$$\Phi(\rho) = \frac{1}{n-1} (\mathsf{I}_n - X^\top).$$

- ['08] Hayden & Winter: contre exemple aléatoire pour p > 1.
- ['09] Hastings: contre exemple aléatoire (modèle différent du précédent) pour p = 1.

• ['98] Conjecture de Holevo: pour tous canaux $\Phi_{1,2}$,

$$H^1_{\min}(\Phi_1\otimes\Phi_2)=H^1_{\min}(\Phi_1)+H^1_{\min}(\Phi_2).$$

Ça serait une conséquence de l'additivité pour H^p_{min} , pour p proche de 1. • ['02] Werner & Holevo: contre exemple pour p > 4.79. Canal explicite

$$\Phi(\rho) = \frac{1}{n-1} (\mathsf{I}_n - X^\top).$$

- ['08] Hayden & Winter: contre exemple aléatoire pour p > 1.
- ['09] Hastings: contre exemple aléatoire (modèle différent du précédent) pour p = 1.
- Collins & N. : analyse approfondie du modèle de Hayden + simplifications importantes + amélioration des bornes.

Un contre exemple aléatoire

Canaux quantiques aléatoires

Fixons deux entiers n, k ≥ 2 et un vecteur unité y ∈ C^k. A toute matrice unitaire U ∈ U(nk), on associe le canal

$$\Phi^{U}(X) = \operatorname{Tr}_{k} \left[U(X \otimes P_{y}) U^{*} \right].$$

Canaux quantiques aléatoires

Fixons deux entiers n, k ≥ 2 et un vecteur unité y ∈ C^k. A toute matrice unitaire U ∈ U(nk), on associe le canal

$$\Phi^{U}(X) = \operatorname{Tr}_{k}\left[U(X \otimes P_{y})U^{*}\right].$$

 Si U est une matrice unitaire aléatoire de Haar, on obtient une v.a. à valeurs dans les canaux quantiques

$$\mathcal{U}(nk) \to \operatorname{End}(\mathcal{M}_n(\mathbb{C}))$$

 $U \mapsto \Phi^U.$
Canaux quantiques aléatoires

• Fixons deux entiers $n, k \ge 2$ et un vecteur unité $y \in \mathbb{C}^k$. A toute matrice unitaire $U \in \mathcal{U}(nk)$, on associe le canal

$$\Phi^{U}(X) = \operatorname{Tr}_{k}\left[U(X \otimes P_{y})U^{*}\right].$$

 Si U est une matrice unitaire aléatoire de Haar, on obtient une v.a. à valeurs dans les canaux quantiques

$$\mathcal{U}(nk) \to \operatorname{End}(\mathcal{M}_n(\mathbb{C}))$$

 $U \mapsto \Phi^U.$

La distribution de Φ ne dépend pas du choix particulier du vecteur y.

• Prendre
$$\Phi_1 = \Phi^U$$
 et $\Phi_2 = \Phi^{\overline{U}} = \overline{\Phi_1}$.

• Prendre
$$\Phi_1 = \Phi^U$$
 et $\Phi_2 = \Phi^{\overline{U}} = \overline{\Phi_1}$.

Théorème (Hayden & Winter)

Presque sûrement, lorsque n et $k \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

• Prendre
$$\Phi_1 = \Phi^U$$
 et $\Phi_2 = \Phi^{\overline{U}} = \overline{\Phi_1}$.

Théorème (Hayden & Winter)

Presque sûrement, lorsque n et $k \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

Théorème (Collins & N.)

Pour k assez grand, presque sûrement, lorsque $n \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

• Prendre
$$\Phi_1 = \Phi^U$$
 et $\Phi_2 = \Phi^{\overline{U}} = \overline{\Phi_1}$.

Théorème (Hayden & Winter)

Presque sûrement, lorsque n et $k \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

Théorème (Collins & N.)

Pour k assez grand, presque sûrement, lorsque $n \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

• Preuve en deux étapes:

• Prendre
$$\Phi_1 = \Phi^U$$
 et $\Phi_2 = \Phi^{\overline{U}} = \overline{\Phi_1}$.

Théorème (Hayden & Winter)

Presque sûrement, lorsque n et $k \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

Théorème (Collins & N.)

Pour k assez grand, presque sûrement, lorsque $n \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

- Preuve en deux étapes:
 - 1 Pour un état particulier à l'entrée X₁₂, obtenir une borne sup pour le bi-canal:

$$H^p_{\min}(\Phi \otimes \overline{\Phi}) \leqslant H^p\left([\Phi \otimes \overline{\Phi}](X_{12})\right);$$

• Prendre
$$\Phi_1 = \Phi^U$$
 et $\Phi_2 = \Phi^{\overline{U}} = \overline{\Phi_1}$.

Théorème (Hayden & Winter)

Presque sûrement, lorsque n et $k \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

Théorème (Collins & N.)

Pour k assez grand, presque sûrement, lorsque $n \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

- Preuve en deux étapes:
 - 1 Pour un état particulier à l'entrée X₁₂, obtenir une borne sup pour le bi-canal:

$$H^p_{\min}(\Phi \otimes \overline{\Phi}) \leqslant H^p\left([\Phi \otimes \overline{\Phi}](X_{12})\right);$$

2 Borne inf pour
$$H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$$
.

• Prendre
$$\Phi_1 = \Phi^U$$
 et $\Phi_2 = \Phi^{\overline{U}} = \overline{\Phi_1}$.

Théorème (Hayden & Winter)

Presque sûrement, lorsque n et $k \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

Théorème (Collins & N.)

Pour k assez grand, presque sûrement, lorsque $n \to \infty$, le couple (Φ_1, Φ_2) fournit un contre exemple à la conjecture d'additivité de la p-EMS.

- Preuve en deux étapes:
 - 1 Pour un état particulier à l'entrée X₁₂, obtenir une borne sup pour le bi-canal:

$$H^p_{\min}(\Phi \otimes \overline{\Phi}) \leqslant H^p\left([\Phi \otimes \overline{\Phi}](X_{12})\right);$$

2 Borne inf pour $H^p_{\min}(\Phi) = H^p_{\min}(\overline{\Phi})$.

• Conclusion: $H^p_{\min}(\Phi \otimes \overline{\Phi}) < H^p_{\min}(\Phi) + H^p_{\min}(\overline{\Phi}) = 2H^p_{\min}(\Phi).$

Borne pour le bi-canal

• Les états produits $X_{12} = X_1 \otimes X_2$ ne sont pas intéressants \rightsquigarrow états intriqués.

- Les états produits $X_{12} = X_1 \otimes X_2$ ne sont pas intéressants \rightsquigarrow états intriqués.
- On choisit l'état maximalement intriqué $X_{12} = P_E$, où

$$E=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}e_{i}\otimes e_{i}\in\mathbb{C}^{n}\otimes\mathbb{C}^{n}.$$

- Les états produits $X_{12} = X_1 \otimes X_2$ ne sont pas intéressants \rightsquigarrow états intriqués.
- On choisit l'état maximalement intriqué $X_{12} = P_E$, où

$$E = rac{1}{\sqrt{n}}\sum_{i=1}^n e_i\otimes e_i\in\mathbb{C}^n\otimes\mathbb{C}^n.$$

Proposition (Hayden & Winter)

La matrice $[\Phi \otimes \overline{\Phi}](X_{12})$ admet une valeur propre plus grande que 1/k.

- Les états produits $X_{12} = X_1 \otimes X_2$ ne sont pas intéressants \rightsquigarrow états intriqués.
- On choisit l'état maximalement intriqué $X_{12} = P_E$, où

$$E = rac{1}{\sqrt{n}}\sum_{i=1}^n e_i\otimes e_i\in\mathbb{C}^n\otimes\mathbb{C}^n.$$

Proposition (Hayden & Winter)

La matrice $[\Phi \otimes \overline{\Phi}](X_{12})$ admet une valeur propre plus grande que 1/k.

Proposition (Collins & N.)

Pour tout k, presque sûrement lorsque $n \to \infty$, les valeurs propres non-nulles de $[\Phi \otimes \overline{\Phi}](X_{12})$ sont

$$\left(\frac{1}{k} + \frac{1}{k^2} - \frac{1}{k^3}, \underbrace{\frac{1}{k^2} - \frac{1}{k^3}, \dots, \frac{1}{k^2} - \frac{1}{k^3}}_{\substack{k^2 - 1 \text{ fois}}}\right)$$

• Méthode des moments \rightsquigarrow calculer $\mathbb{E}[\operatorname{Tr}(Y_{12}^p)]$ pour $Y_{12} = [\Phi \otimes \overline{\Phi}](X_{12})$.

- Méthode des moments \rightsquigarrow calculer $\mathbb{E}[\operatorname{Tr}(Y_{12}^p)]$ pour $Y_{12} = [\Phi \otimes \overline{\Phi}](X_{12})$.
- Formule de Weingarten pour l'intégration sur le groupe unitaire:

$$\int_{\mathcal{U}(nk)} U_{i_{1}j_{1}} \cdots U_{i_{p}j_{p}} \overline{U_{i'_{1}j'_{1}}} \cdots \overline{U_{i'_{p}j'_{p}}} \, dU = \sum_{\sigma, \tau \in \mathcal{S}_{p}} \delta_{i_{1}i'_{\sigma(1)}} \cdots \delta_{i_{p}i'_{\sigma(p)}} \delta_{j_{1}j'_{\tau(1)}} \cdots \delta_{j_{p}j'_{\tau(p)}} \, \mathrm{Wg}(nk, \sigma^{-1}\tau).$$

- Méthode des moments \rightsquigarrow calculer $\mathbb{E}[\text{Tr}(Y_{12}^p)]$ pour $Y_{12} = [\Phi \otimes \overline{\Phi}](X_{12})$.
- Formule de Weingarten pour l'intégration sur le groupe unitaire:

$$\int_{\mathcal{U}(nk)} U_{i_{1}j_{1}} \cdots U_{i_{p}j_{p}} \overline{U_{i'_{1}j'_{1}}} \cdots \overline{U_{i'_{p}j'_{p}}} \, dU = \sum_{\sigma, \tau \in \mathcal{S}_{p}} \delta_{i_{1}i'_{\sigma(1)}} \cdots \delta_{i_{p}i'_{\sigma(p)}} \delta_{j_{1}j'_{\tau(1)}} \cdots \delta_{j_{p}j'_{\tau(p)}} \, \mathrm{Wg}(nk, \sigma^{-1}\tau).$$

Formalisme graphique pour représenter les canaux quantiques

- Méthode des moments \rightsquigarrow calculer $\mathbb{E}[\text{Tr}(Y_{12}^p)]$ pour $Y_{12} = [\Phi \otimes \overline{\Phi}](X_{12})$.
- Formule de Weingarten pour l'intégration sur le groupe unitaire:

$$\begin{split} \int_{\mathcal{U}(nk)} U_{i_{1}j_{1}} \cdots U_{i_{p}j_{p}} \overline{U_{i_{1}'j_{1}'}} \cdots \overline{U_{i_{p}'j_{p}'}} \, dU = \\ \sum_{\sigma, \tau \in \mathcal{S}_{p}} \delta_{i_{1}i_{\sigma(1)}'} \cdots \delta_{i_{p}i_{\sigma(p)}'} \delta_{j_{1}j_{\tau(1)}'} \cdots \delta_{j_{p}j_{\tau(p)}'} \, \mathrm{Wg}(nk, \sigma^{-1}\tau). \end{split}$$

• Formalisme graphique pour représenter les canaux quantiques

• Lecture de la formule de Weingarten avec ce formalisme ~> "graph expansion".

- Méthode des moments \rightsquigarrow calculer $\mathbb{E}[\text{Tr}(Y_{12}^p)]$ pour $Y_{12} = [\Phi \otimes \overline{\Phi}](X_{12})$.
- Formule de Weingarten pour l'intégration sur le groupe unitaire:

$$\int_{\mathcal{U}(nk)} U_{i_{1}j_{1}} \cdots U_{i_{p}j_{p}} \overline{U_{i'_{1}j'_{1}}} \cdots \overline{U_{i'_{p}j'_{p}}} \, dU = \sum_{\sigma, \tau \in \mathcal{S}_{p}} \delta_{i_{1}i'_{\sigma(1)}} \cdots \delta_{i_{p}i'_{\sigma(p)}} \delta_{j_{1}j'_{\tau(1)}} \cdots \delta_{j_{p}j'_{\tau(p)}} \, \mathrm{Wg}(nk, \sigma^{-1}\tau).$$

Formalisme graphique pour représenter les canaux quantiques

- Lecture de la formule de Weingarten avec ce formalisme → "graph expansion".
- Asymptotique $\operatorname{Wg}(n,\sigma) = n^{-(p+|\sigma|)}(\operatorname{Mob}(\sigma) + O(n^{-2}))$.

- Méthode des moments \rightsquigarrow calculer $\mathbb{E}[\text{Tr}(Y_{12}^p)]$ pour $Y_{12} = [\Phi \otimes \overline{\Phi}](X_{12})$.
- Formule de Weingarten pour l'intégration sur le groupe unitaire:

$$\int_{\mathcal{U}(nk)} U_{i_{1}j_{1}} \cdots U_{i_{p}j_{p}} \overline{U_{i'_{1}j'_{1}}} \cdots \overline{U_{i'_{p}j'_{p}}} \, dU = \sum_{\sigma, \tau \in \mathcal{S}_{p}} \delta_{i_{1}i'_{\sigma(1)}} \cdots \delta_{i_{p}i'_{\sigma(p)}} \delta_{j_{1}j'_{\tau(1)}} \cdots \delta_{j_{p}j'_{\tau(p)}} \, \mathrm{Wg}(nk, \sigma^{-1}\tau).$$

• Formalisme graphique pour représenter les canaux quantiques

- Lecture de la formule de Weingarten avec ce formalisme ~> "graph expansion".
- Asymptotique $Wg(n, \sigma) = n^{-(p+|\sigma|)}(Mob(\sigma) + O(n^{-2}))$.
- Bijection de P. Biane entre les géodésiques dans S_p et NC(p).

Borne pour le mono-canal

Borne inf pour H^p vs. valeurs propres dans un convexe

 Hayden & Winter: concentration de la mesure pour la fonction H^p → contre exemple à p > 1 fixé.

Borne inf pour H^p vs. valeurs propres dans un convexe

 Hayden & Winter: concentration de la mesure pour la fonction H^p → contre exemple à p > 1 fixé.

Théorème (Collins & N.)

Soit $k \ge 2$ fixé. Alors il existe un ensemble convexe S_k tel que, pour tout $\varepsilon > 0$, presque sûrement quand $n \to \infty$, pour toute matrice densité ρ ,

$$\operatorname{spec}_{>0}(\Phi(\rho)) \in S_k + \varepsilon.$$

L'ensemble S_k est défini à partir d'un vecteur de probabilités z_k :

$$S_k = \operatorname{conv} \{ \sigma. z_k \, | \, \sigma \in S_k \}.$$

En particulier, $\forall p \ge 1$,

 $H^p_{\min}(\Phi) \ge H^p(z_k).$

• Comme H^p est concave, H^p_{min} est atteinte sur les matrices densités extrémales, i.e. les projecteurs de rang 1, P_x .

- Comme H^p est concave, H^p_{min} est atteinte sur les matrices densités extrémales, i.e. les projecteurs de rang 1, P_x .
- $\Phi(P_x) = \operatorname{Tr}_k[U(P_x \otimes P_y)U^*] = \operatorname{Tr}_k P_{U(x \otimes y)}$.

- Comme H^p est concave, H^p_{\min} est atteinte sur les matrices densités extrémales, i.e. les projecteurs de rang 1, P_x .
- $\Phi(P_x) = \operatorname{Tr}_k[U(P_x \otimes P_y)U^*] = \operatorname{Tr}_k P_{U(x \otimes y)}.$
- Quand x parcourt Cⁿ, {U(x ⊗ y), x ∈ Cⁿ} est un sous-espace aléatoire de Haar W ⊂ C^{nk} de dimension n.

- Comme H^p est concave, H^p_{\min} est atteinte sur les matrices densités extrémales, i.e. les projecteurs de rang 1, P_x .
- $\Phi(P_x) = \operatorname{Tr}_k[U(P_x \otimes P_y)U^*] = \operatorname{Tr}_k P_{U(x \otimes y)}.$
- Quand x parcourt Cⁿ, {U(x ⊗ y), x ∈ Cⁿ} est un sous-espace aléatoire de Haar W ⊂ C^{nk} de dimension n.
- Soient λ₁ ≥ · · · ≥ λ_j les j plus grandes valeurs propres de Φ(P_x); par le théorème min-max, on a

$$\lambda_1 + \dots + \lambda_j = \sup_{V \subset \mathbb{C}^n, \dim V = j} \operatorname{Tr}(P_V \operatorname{Tr}_k P_{U(x \otimes y)}) = \sup_{V \subset \mathbb{C}^n, \dim V = j} \operatorname{Tr}(P_{V \otimes \mathbb{C}^k} P_{U(x \otimes y)}).$$

- Comme H^p est concave, H^p_{min} est atteinte sur les matrices densités extrémales, i.e. les projecteurs de rang 1, P_x .
- $\Phi(P_x) = \operatorname{Tr}_k[U(P_x \otimes P_y)U^*] = \operatorname{Tr}_k P_{U(x \otimes y)}$.
- Quand x parcourt Cⁿ, {U(x ⊗ y), x ∈ Cⁿ} est un sous-espace aléatoire de Haar W ⊂ C^{nk} de dimension n.
- Soient λ₁ ≥ · · · ≥ λ_j les j plus grandes valeurs propres de Φ(P_x); par le théorème min-max, on a

$$\lambda_1 + \dots + \lambda_j = \sup_{V \subset \mathbb{C}^n, \dim V = j} \operatorname{Tr}(P_V \operatorname{Tr}_k P_{U(x \otimes y)}) = \sup_{V \subset \mathbb{C}^n, \dim V = j} \operatorname{Tr}(P_{V \otimes \mathbb{C}^k} P_{U(x \otimes y)}).$$

• On considère le sup sur $x \in \mathbb{C}^n$, $\|x\| = 1$:

$$\sup_{x\in\mathbb{C}^n}\lambda_1+\cdots+\lambda_j=\sup_{V\subset\mathbb{C}^n,\dim\,V=j}\|P_VP_WP_V\|_{\infty}.$$

- Comme H^p est concave, H^p_{min} est atteinte sur les matrices densités extrémales, i.e. les projecteurs de rang 1, P_x .
- $\Phi(P_x) = \operatorname{Tr}_k[U(P_x \otimes P_y)U^*] = \operatorname{Tr}_k P_{U(x \otimes y)}$.
- Quand x parcourt Cⁿ, {U(x ⊗ y), x ∈ Cⁿ} est un sous-espace aléatoire de Haar W ⊂ C^{nk} de dimension n.
- Soient λ₁ ≥ · · · ≥ λ_j les j plus grandes valeurs propres de Φ(P_x); par le théorème min-max, on a

$$\lambda_1 + \dots + \lambda_j = \sup_{V \subset \mathbb{C}^n, \dim V = j} \operatorname{Tr}(P_V \operatorname{Tr}_k P_{U(x \otimes y)}) = \sup_{V \subset \mathbb{C}^n, \dim V = j} \operatorname{Tr}(P_{V \otimes \mathbb{C}^k} P_{U(x \otimes y)}).$$

• On considère le sup sur $x \in \mathbb{C}^n$, $\|x\| = 1$:

$$\sup_{x\in\mathbb{C}^n}\lambda_1+\cdots+\lambda_j=\sup_{V\subset\mathbb{C}^n,\dim V=j}\|P_VP_WP_V\|_{\infty}.$$

 Par la compacité de la Grassmannienne, on remplace (à un coût ε) le sup sur V par un max sur un nombre fini de V_i.

- Comme H^p est concave, H^p_{\min} est atteinte sur les matrices densités extrémales, i.e. les projecteurs de rang 1, P_x .
- $\Phi(P_x) = \operatorname{Tr}_k[U(P_x \otimes P_y)U^*] = \operatorname{Tr}_k P_{U(x \otimes y)}$.
- Quand x parcourt Cⁿ, {U(x ⊗ y), x ∈ Cⁿ} est un sous-espace aléatoire de Haar W ⊂ C^{nk} de dimension n.
- Soient λ₁ ≥ · · · ≥ λ_j les j plus grandes valeurs propres de Φ(P_x); par le théorème min-max, on a

$$\lambda_1 + \dots + \lambda_j = \sup_{V \subset \mathbb{C}^n, \dim V = j} \operatorname{Tr}(P_V \operatorname{Tr}_k P_{U(x \otimes y)}) = \sup_{V \subset \mathbb{C}^n, \dim V = j} \operatorname{Tr}(P_{V \otimes \mathbb{C}^k} P_{U(x \otimes y)}).$$

• On considère le sup sur $x \in \mathbb{C}^n$, $\|x\| = 1$:

$$\sup_{x\in\mathbb{C}^n}\lambda_1+\cdots+\lambda_j=\sup_{V\subset\mathbb{C}^n,\dim V=j}\|P_VP_WP_V\|_{\infty}.$$

- Par la compacité de la Grassmannienne, on remplace (à un coût ε) le sup sur V par un max sur un nombre fini de V_i.
- Il reste à évaluer $||P_V P_W P_V||_{\infty}$, où V est fixe et W est un sous-espace aléatoire de Haar.

Pour 0 ≤ α, β ≤ 1 considérons deux projecteurs de Haar π_n, π'_n ∈ M_n(ℂ), indépendants, de rangs [αn] et [βn].

- Pour 0 ≤ α, β ≤ 1 considérons deux projecteurs de Haar π_n, π'_n ∈ M_n(ℂ), indépendants, de rangs [αn] et [βn].
- Si $\alpha + \beta \ge 1$ alors $\|\pi_n \pi'_n\|_{\infty} = 1$.

- Pour 0 ≤ α, β ≤ 1 considérons deux projecteurs de Haar π_n, π'_n ∈ M_n(ℂ), indépendants, de rangs [αn] et [βn].
- Si $\alpha + \beta \ge 1$ alors $\|\pi_n \pi'_n\|_{\infty} = 1$.
- On suppose α + β < 1. Par un résultat de Voiculescu, π_n et π'_n sont asymptotiquement libres et la mesure spectrale empirique de π_nπ'_nπ_n converge vers

$$(\alpha\delta_1+(1-\alpha)\delta_0)\boxtimes (\beta\delta_1+(1-\beta)\delta_0).$$

- Pour 0 ≤ α, β ≤ 1 considérons deux projecteurs de Haar π_n, π'_n ∈ M_n(ℂ), indépendants, de rangs [αn] et [βn].
- Si $\alpha + \beta \ge 1$ alors $\|\pi_n \pi'_n\|_{\infty} = 1$.
- On suppose $\alpha + \beta < 1$. Par un résultat de Voiculescu, π_n et π'_n sont asymptotiquement libres et la mesure spectrale empirique de $\pi_n \pi'_n \pi_n$ converge vers

$$(\alpha\delta_1 + (1-\alpha)\delta_0) \boxtimes (\beta\delta_1 + (1-\beta)\delta_0).$$

• On peut calculer le produit de convolution précédent explicitement à l'aide de la *S*-transformée, et on en déduit

 $\liminf_{n} \left\| \pi_{n} \pi'_{n} \pi_{n} \right\|_{\infty} \geqslant \varphi(\alpha, \beta) = \text{ bord du support de la mesure } \boxtimes.$

- Pour 0 ≤ α, β ≤ 1 considérons deux projecteurs de Haar π_n, π'_n ∈ M_n(ℂ), indépendants, de rangs [αn] et [βn].
- Si $\alpha + \beta \ge 1$ alors $\|\pi_n \pi'_n\|_{\infty} = 1$.
- On suppose $\alpha + \beta < 1$. Par un résultat de Voiculescu, π_n et π'_n sont asymptotiquement libres et la mesure spectrale empirique de $\pi_n \pi'_n \pi_n$ converge vers

$$(\alpha\delta_1 + (1-\alpha)\delta_0) \boxtimes (\beta\delta_1 + (1-\beta)\delta_0).$$

 On peut calculer le produit de convolution précédent explicitement à l'aide de la S-transformée, et on en déduit

 $\liminf_{n} \left\| \pi_{n} \pi'_{n} \pi_{n} \right\|_{\infty} \geqslant \varphi(\alpha, \beta) = \text{ bord du support de la mesure } \boxtimes.$

Théorème (Collins '05)

p.s.
$$\lim_{n} \|\pi_{n}\pi'_{n}\pi_{n}\|_{\infty} = \varphi(\alpha,\beta) = 1 - \left[\sqrt{(1-\alpha)(1-\beta)} - \sqrt{\alpha\beta}\right]^{2}.$$

Conclusion & perspectives

• Avec des techniques de matrices aléatoires / probabilités libres, on a étudie le modèle de canaux quantiques aléatoires introduit par Hayden & Winter.
- Avec des techniques de matrices aléatoires / probabilités libres, on a étudie le modèle de canaux quantiques aléatoires introduit par Hayden & Winter.
- Borne optimale pour le bi-canal.

- Avec des techniques de matrices aléatoires / probabilités libres, on a étudie le modèle de canaux quantiques aléatoires introduit par Hayden & Winter.
- Borne optimale pour le bi-canal.
- Calcul de Weingarten graphique.

- Avec des techniques de matrices aléatoires / probabilités libres, on a étudie le modèle de canaux quantiques aléatoires introduit par Hayden & Winter.
- Borne optimale pour le bi-canal.
- Calcul de Weingarten graphique.
- Résultats sur les valeurs propres pour le mono-canal (qui impliquent des bornes pour les entropies).

- Avec des techniques de matrices aléatoires / probabilités libres, on a étudie le modèle de canaux quantiques aléatoires introduit par Hayden & Winter.
- Borne optimale pour le bi-canal.
- Calcul de Weingarten graphique.
- Résultats sur les valeurs propres pour le mono-canal (qui impliquent des bornes pour les entropies).
- Optimalité des résultats pour le mono-canal.

- Avec des techniques de matrices aléatoires / probabilités libres, on a étudie le modèle de canaux quantiques aléatoires introduit par Hayden & Winter.
- Borne optimale pour le bi-canal.
- Calcul de Weingarten graphique.
- Résultats sur les valeurs propres pour le mono-canal (qui impliquent des bornes pour les entropies).
- Optimalité des résultats pour le mono-canal.
- Cas p = 1.

- Avec des techniques de matrices aléatoires / probabilités libres, on a étudie le modèle de canaux quantiques aléatoires introduit par Hayden & Winter.
- Borne optimale pour le bi-canal.
- Calcul de Weingarten graphique.
- Résultats sur les valeurs propres pour le mono-canal (qui impliquent des bornes pour les entropies).
- Optimalité des résultats pour le mono-canal.
- Cas p = 1.
- Modèle de Hastings ?

- Avec des techniques de matrices aléatoires / probabilités libres, on a étudie le modèle de canaux quantiques aléatoires introduit par Hayden & Winter.
- Borne optimale pour le bi-canal.
- Calcul de Weingarten graphique.
- Résultats sur les valeurs propres pour le mono-canal (qui impliquent des bornes pour les entropies).
- Optimalité des résultats pour le mono-canal.
- Cas p = 1.
- Modèle de Hastings ?
- Construire des contre exemples déterministes (théorie des représentations ?).

Merci !

http://arxiv.org/abs/0905.2313

et

http://arxiv.org/abs/0906.1877