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Random quantum channels
&

additivity problems



Additivity for MOE of quantum channels

• Quantum channels: CPTP maps Φ :Min(C)→Mout(C).

• Rnyi entropies

Hp(ρ) =
log Tr ρp

1− p
, p > 0

H1(ρ) = H(ρ) = −Tr(ρ log ρ).

• p-Minimal Output Entropy of a quantum channel

Hp
min(Φ) = min

ρ∈Min(C)
Hp(Φ(ρ))

= min
x∈Cin

Hp(Φ(Px)).

• Is the p-MOE additive ?

Hp
min(Φ⊗Ψ) = Hp

min(Φ) + Hp
min(Ψ) ∀Φ,Ψ.

• NO !!!
• p > 1: Hayden ’07, Hayden + Winter ’08
• p = 1: Hastings ’09
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Random quantum channels

• Counterexamples to additivity conjectures are random.

• Random quantum channels from random partial isometries (Hayden, Hastings
+ King)

Φ(ρ) = Traux(V ρV ∗),

where V is a Haar partial isometry

V : Cin → Cout ⊗ Caux.

• Equivalently, via the Stinespring dilation theorem

Φ(ρ) = Traux(U(ρ⊗ Py )U∗),

where y ∈ C
out×aux

in and U ∈Mout×aux(C) is a Haar unitary matrix.
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Our model

Choice of parameters

• in = tnk,

• out = k,

• aux = n,

where n, k ∈ N and t ∈ (0, 1). In general, we shall assume that

• n→∞;

• k is fixed, but “large”;

• t is fixed, and may depend on k .

We are thus considering random channels

Φ :Mtnk(C)→Mk(C)

ρ 7→ Trn [U(ρ⊗ Py )U∗] ,

where y ∈ Ct−1

is fixed (and irrelevant) and U ∈ U(nk) is a Haar random unitary
matrix.
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How to get counterexamples ?

• Choose Φ to be random and Ψ = Φ.

• Find lower bounds for Hp
min(Φ) = Hp

min(Φ)  next talk.

• Find upper bounds for Hp
min(Φ⊗ Φ).

Strategy

• Use trivial bound

Hp
min(Φ⊗ Φ) 6 Hp

(
[Φ⊗ Φ](X12)

)
,

for a particular choice of X12 ∈Mtnk(C)⊗Mtnk(C).

• X12 = X1 ⊗ X2 do not yield counterexamples ⇒ choose a maximally
entangled state X12 = Etnk .

• Bound entropies of the (random) density matrix

Z = [Φ⊗ Φ](Etnk) ∈Mk2(C).
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Main result for product channel

Theorem (Collins + N. ’09)

For all k, t, almost surely as n→∞, the eigenvalues of Z = [Φ⊗ Φ](Etnk)
converge to t +

1− t

k2
,

1− t

k2
, . . . ,

1− t

k2︸ ︷︷ ︸
k2−1 times

 .

• Previously known bound: for all t, n, k, the largest eigenvalue of Z is at least
t.

• Two improvements:

1 “better” largest eigenvalue,
2 knowledge of the whole spectrum.

• However, smaller eigenvalues are the “worst possible”.

• Precise knowledge of eigenvalue  optimal estimates for entropies.
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Graphical calculus for
random quantum channels



Boxes & wires

• Graphical formalism inspired by works of Penrose, Coecke, Jones, etc.

• Tensors  decorated boxes.

M

V ∗
1

V ∗
2

V2

V3

V1

M ∈ V1 ⊗ V2 ⊗ V3 ⊗ V ∗
1 ⊗ V ∗

2

x

x ∈ V1

ϕ

ϕ ∈ V ∗
1

• Tensor contractions (or traces) V ⊗ V ∗ → C  wires.

AB = A B
C D

Tr(C) TrV1
(D)

• Bell state Φ+ =
∑dimV1

i=1 ei ⊗ ei ∈ V1 ⊗ V1

Φ+ =
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Graphical representation of quantum channels

• Single channel

U U∗Φ(X) =
X

• Product of conjugate channels

U U∗

Z = [Φ⊗ Φ̄](Etnk) =

Ū Ū∗

1
tnk

• Decorations/labels

= Ct−1

= Ctnk= Cn = Ck

10 / 16



Proof strategy for a.s. spectrum of random channels

• Use the method of moments

1 Convergence in moments:

ETr(Z p)→
(
t +

1− t

k2

)p

+ (k2 − 1)

(
1− t

k2

)p

;

2 Borel-Cantelli for a.s. convergence:
∞∑
n=1

E
[
(Tr(Z p)− ETr(Z p))2

]
<∞.

• We need to compute moments E [Tr(Z p1)q1 · · ·Tr(Z ps )qs ].
• Example

U U∗

ETr(Z2) =

Ū Ū∗

E 1
(tnk)2

U U∗

Ū Ū∗
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Ū Ū∗
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Unitary integration - Weingarten formula

• Using matrix coordinates, we can reduce our problem to computing integrals
over the unitary group.

Theorem (Weingarten formula)

Let d be a positive integer and i = (i1, . . . , ip), i′ = (i ′1, . . . , i
′
p), j = (j1, . . . , jp),

j′ = (j ′1, . . . , j
′
p) be p-tuples of positive integers from {1, 2, . . . , d}. Then∫

U(d)
Ui1j1 · · ·Uip jpUi ′1 j

′
1
· · ·Ui ′p j

′
p
dU =∑

α,β∈Sp
δi1i ′α(1)

. . . δip i ′α(p)
δj1j′β(1)

. . . δjp j′β(p)
Wg(d , αβ−1).

If p 6= p′ then ∫
U(d)

Ui1j1 · · ·Uip jpUi ′1 j
′
1
· · ·Ui ′

p′ j
′
p′
dU = 0.

• There is a graphical way of reading this formula on the diagrams !
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“Graphical” Weingarten formula: graph expansion

Consider a diagram D containing random unitary matrices/boxes U and U∗.
Apply the following removal procedure:

1 Start by replacing U∗ boxed by U boxes (by reversing decoration shading).

2 By the (algebraic) Weingarten formula, if the number p of U boxes is
different from the number of U boxes, then ED = 0.

3 Otherwise, choose a pair of permutations (α, β) ∈ S2p . These permutations

will be used to pair decorations of U/U boxes.

4 For all i = 1, . . . , p, add a wire between each white decoration of the i-th U
box and the corresponding white decoration of the α(i)-th U box. In a
similar manner, use β to pair black decorations.

5 Erase all U and U boxes. The resulting diagram is denoted by D(α,β).

Theorem

ED =
∑
α,β

D(α,β) Wg(d , αβ−1).
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Application: product conjugate channel

• We want to compute, for all p > 1, ETr(Z p).

• One needs to compute the contribution of each diagram D(α,β), where
α, β ∈ S2p.

• D(α,β) is a collection of loops associated to vector spaces of dimensions n, k
and tnk.

• After doing the loop combinatorics, one is left with maximizing over S2
2p

quantities such as

#(γ−1α) + #(α−1β) + #(β−1δ),

where γ and δ are permutations coding the initial wiring of U/U boxes and
#(·) is the number of cycles function.

• Geodesic problems in symmetric groups ⇒ non-crossing partitions ⇒ free
probability.

• Asymptotic for Weingarten weights:

Wg(d , σ) = d−(p+|σ|)(Mob(σ) + O(d−2)).
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Concluding remarks

• Graphical calculus for random matrices

• Powerful and intuitive reinterpretation of the Weingarten formula

• Adapted to tensor products and partial traces

• Almost sure asymptotic eigenvalues for product conjugate channels

• Almost sure asymptotic eigenvalues for product of independent channels

• Improved bounds for MOE of product channels

• Other applications to QIT (work in progress with B. Collins and K.
Życzkowski)
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Thank you !

Next talk  bounds for 1 channel

http://arxiv.org/abs/0905.2313

http://arxiv.org/abs/0906.1877
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