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Abstract. These are notes for five lectures given at the second School of pthe program “Operator
Algebras, Groups and Applications to Quantum Information” held in May 2019 at the ICMAT in
Mardid.

The goal of this series of lectures is to present some recent results in quantum information theory
which make use of random matrices. The main goal is to understand the spectrum of the partially
transposed random quntum states, in the limit of large matrix dimension. The mathematical tools
needed to do this are Gaussian integraion via the Wick formula, the method of moments, and some
basic notions of free probability theory. Along the way, we shall discuss at length the Marchenko-
Pastur limit theorem for the Wishart ensemble.
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Introduction

Let us gather here some basic definitions from quantum information theory and set up some
notation. A recent excellent monograph containing a lot of relevant material for these lectures is
[AS17]. A quantum state is a positive semidefinite matrix of unit trace. The set of all quantum
states is a convex body denoted by

M1,+
d (C) := {ρ ∈Md(C) : ρ ≥ 0 and Tr ρ = 1}.

The extremal points of M1,+
d (C) are the rank one projectors xx∗ (x ∈ Cd, ‖x‖ = 1), and they are

called pure states.
Of particular interest are states of multiple quantum systems, which are quantum states acting on

the tensor product of the corresponding Hilbert spaces. Of particular importance are the separable
states, which in the bipartite case can be described as

SEPd1,d2 := conv{ρ1 ⊗ ρ2}ρi∈M1,+
di

(C)
.

Non-separable states are called entangled, and among those, of particular importance is the

maximally entangled state d−1Ωd ∈M1,+
d2

(C), where Ωd =
∑d

i=1 ei ⊗ ei and {ei} is an orthonormal

basis of Cd.
An intermediate set between the set of separable states and the set of all quantum states is the

set of positive partial transpose states:

PPT d1,d2 := {ρ ∈M1,+
d1d2

(C) : ρΓ := [idd1 ⊗ transpd2 ](ρ) ≥ 0}.
The inclusion

SEPd1,d2 ⊆ PPT d1,d2 (0.1)

always holds, with equality iff (d1, d2) ∈ {(2, 2), (2, 3), (3, 2)}, see Figure 1. This fact is a deep result
in operator algebra, see [Stø63, Wor76] and [AS17, Section 2.4.5]. One of the main objective of these
lectures is to quantify how far is the inclusion (0.1) from being an equality for large dimensions
d1,2. We shall answer this question in the balanced case (d1, d2 → ∞) in Section 3 and in the
unbalanced case (d1 → ∞, d2 fixed) in Section 5. Sections 1 and 2 contain the random matrix
theory pre-requisites, while Section 4 contains the necessary notions and results from Voiculescu’s
free probability theory needed to state the results in the unbalanced case.

M1,+

SEP

PPT

Figure 1. Three convex sets: the set of PPT contains the set of separable quantum states.

1. Gaussian integration. Wick formula

1.1. Graphical notation for tensors. In this section, we lay out the foundation for the graphical
calculus we shall develop later. We introduce a graphical formalism for representing tensors and
tensor contractions that is adapted to quantum information theory. We start at an abstract level,
with a purely diagrammatic axiomatization and then we study the Hilbert representations, where
graph-theoretic objects shall be associated with concrete elements of Hilbert spaces. This fairly
standard graphical notation will be extended in Section 1.3 to random tensors: one can compute
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expectation values of diagrams containing Gaussian and/or Haar-unitary boxes by performing a
graphical expansion.

1.1.1. Diagrams, boxes, decorations and wires. Our starting point is a set S̃ endowed with an
involution without fixed point ∗. The set S̃ splits as S t S∗ according to the involution. Elements
of S̃ are called decorations, and will correspond to vector spaces and their duals.

A diagram is a collection of decorated boxes and possibly wires (or strings) connecting the boxes
along their decorations according to rules which we shall specify. In terms of graph theory, a
diagram is an unoriented (multi-)graph whose vertices are boxes, and whose edges are strings.

Each vertex comes with a (possibly empty) n-tuple of indices (or decorations or labels) in S̃n. The
number n of decorations may depend on the vertex. We say that two diagrams are isomorphic if
they are isomorphic as multi-graphs with labeled vertices.

A box is an elementary diagram from which we can construct more elaborate diagrams by putting
boxes together and possibly wiring them together. Each box B of a diagram has attached to it
a collection of n(B) decorations in S̃n(B). The union of the decorations attached to a box B is
denoted by S(B) t S∗(B).

Graphically, boxes are represented by rectangles with symbols corresponding to the decorations
attached to them (see Figure 2). We take the convention that decorations in S∗ are represented
by empty (or white) symbols and decorations in S by full (or black) symbols; moreover, we shall
depict white decorations on the right hand side of a box, and black decorations on the left (following
the standard “right-to-left” matrix multiplication direction). Each decoration is thought as having
potentially up to two attachment points. An inner one (which is attached to the box it belongs to)
and an outer one, which we shall allow to be attached to a string later on.

M

Figure 2. A box M

1.1.2. Constructing new diagrams out of old ones. Given a family of existing diagrams (e.g. boxes)
there exists several ways of creating new diagrams.

(1) One can put diagrams together, i.e. take their disjoint union (when it comes to taking
representations in Hilbert spaces, this operation will amount to tensoring). One diagram
can be viewed as a box. This amounts to specifying an order between the boxes.

(2) Given a diagram A and a complex number x, one can create a new diagram A′ = xA.
(3) Given two boxes A,B having the same n-tuples of decorations, one can define A+B. This

axiom and the previous one (together with evident relations such as A+A = 2A which we
don’t enumerate in detail) endow the set of identically decorated diagrams with a structure
of a complex vector space.

(4) One can add wires to an existing diagram (or between two diagrams that have been put
together). A wire is allowed between the outer attachment of two decorations only if the
decorations have the same shape and different shadings. Such a wire can be created if and
only if the two candidate decorations have their outer attachments unoccupied.

(5) There exists an anti-linear involution on the diagrams, denoted by ∗. This operation does
nothing on the wires. On the boxes, it reverts the shading of the decorations. The involution
∗ is conjugate linear.
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1.1.3. Hilbert structure. We shall now consider a concrete representation of the diagrams introduced
above as tensors in Hilbert spaces. We start by assuming that the set S of full (or black) decorations
corresponds to a collection of finite dimensional Hilbert spaces S = {V1, V2, · · · }. An important
fact that will be useful later is that each Hilbert space Vi comes equipped with an orthonormal
basis {e1, e2, . . . , edimVi}. Our aim is to define a ∗-linear map T between the diagrams and tensors
in products of Hilbert spaces in the above class and their duals. By duality, white decorations
correspond to dual spaces S∗ = {V ∗1 , V ∗2 , · · · }. With these conventions, boxes can be seen as
tensors whose legs belong to the vector spaces corresponding to its decorations. In a diagram,
symbols of the same shape denote isomorphic spaces, but the converse may be false. A particular
space Vi (or V ∗i ) can appear several times in a box. The reader acquainted with quantum mechanics
might think of white shapes as corresponding to “bras” and black shapes corresponding to “kets”,
but we shall get back to quantum mechanical notions later.

To a box B we therefore associate a tensor

TB ∈

 ⊗
i∈S(B)

Vi

⊗
 ⊗
j∈S∗(B)

V ∗j

 . (1.1)

Using the canonical duality between tensors and multilinear maps, TB can also be seen as a function

TB :
⊗

j∈S∗(B)

Vj →
⊗
i∈S(B)

Vi,

We use freely partial duality results, and for example, an element of V ⊗W ∗ can as well be seen
as an element of L(W,V ) or L(V ∗,W ∗).

Equation (1.1) defines the map T from the collection of boxes to the collection of vectors in
Hilbert spaces obtained by tensoring finitely many copies of Vi, i ∈ S(B) ∪ S∗(B). This map is
denoted by

T : B 7→ TB

and we now explain how we can extend it to all diagrams. A wire connecting two decorations of
the same shape (corresponding to some Hilbert space V ) is associated with the identity map (or
tensor) I : V → V . Together with our duality axiom, it also corresponds to a canonical tensor
contraction (or trace)

C : V ∗ ⊗ V → C.

We denote the set of wires in a diagram D by C(D).
With this notation, a diagram D is associated with the tensor T obtained by applying all the

contractions (“wires”) to the product of tensors represented by the boxes. One is left with a tensor

TD =

 ∏
C∈C(D)

C

( ⊗
B box of D

TB

)
.

This is well defined (provided that one specifies one total order on the boxes): the order of the
factors in the product does not matter, since wires act on different spaces. For a box B, we denote
by FS(B) ⊂ S(B) the subset of black decorations which have no wires attached (we call such a
decoration free). FS∗(B) is defined in the same manner for white decorations (dual spaces). With
this notation, the tensor TD associated to a diagram D can be seen in two ways: as an element of
a Hilbert space

TD ∈

 ⊗
j∈

⋃
B FS∗(B)

V ∗j

⊗
 ⊗
i∈

⋃
B FS(B)

Vi

 ,
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or, equivalently, as a linear map

TD :
⊗

j∈
⋃

B FS∗(B)

Vj →
⊗

i∈
⋃

B FS(B)

Vi.

We need two further axioms to ensure that we are indeed dealing with acceptable Hilbert repre-
sentations.

(1) A diagram such that all outer attachments of its decorations are occupied by wires corre-
sponds canonically to an element in C. In addition, a trivial box with a given decoration
of type i closed on itself by a wire into a loop takes a value in N. This value is called the
dimension of Vi.

(2) Given a diagram D, if it is canonically paired to its dual D∗ by strings, the result lies in
R+.

1.1.4. Special diagrams. To make our calculus useful, we need to introduce a few special diagrams
(equivalently, boxes) satisfying some specific axioms.

(1) The trivial box. A wire connecting two identically shaped decorations of different shading
corresponds to the identity map I : V → V . We shall call this box the trivial or the identity
box.

Figure 3. Trivial box, corresponding to the identity matrix.

It satisfies the following identity axiom:

=

Figure 4. Trivial axiom: I = I · I.

(2) Bras and kets. The simplest boxes one can consider are vectors and linear forms. Fol-
lowing the quantum mechanics “bra” and “ket” vocabulary, vectors, or (1, 0)-tensors have
no white decorations and only one black decoration, whereas linear forms (or (0,1)-tensors)
have one white label and no black labels. We represent in Figure 5 a ket x ∈ V and a bra
ϕ ∈ V ∗.

x ϕ

Figure 5. A ket (left) and bra (right).

(3) The Bell state. Since each space V ∈ S comes equipped with a particular fixed basis
{ei}dimV

i=1 , we can define the bra Bell state as the tensor (it is in fact a linear form)

Ω∗ =

dimV∑
i=1

e∗i ⊗ e∗i ,

and its ket counterpart (which is a vector in V ⊗ V )

Ω =
dimV∑
i=1

ei ⊗ ei.

This notation is needed in the sense that Bell states are not canonical and are not well
defined from the sole data of V . They rely on some additional real structure of the vector
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space V which can be encoded by the data of an explicit basis. Bell states are represented
in Figure 6(a). They satisfy the graphical axiom in Figure 6(b). Bell states play a central
role in our formalism; we shall see later that they allow us to define the transposition of a
box and even to consider wires connecting identical decorations.

(a)

=

(b)

Figure 6. Bell states (ket and bra, left) and axiom (right).

(4) Unitary boxes. Boxes associated to unitary matrices U satisfy the graphical axiom de-
picted in Figure 7 which corresponds to the identities UU∗ = U∗U = I.

=U U∗ =U∗ U

Figure 7. Axioms for unitary matrices.

1.1.5. Examples. Let us now look at some simple diagrams which illustrate this formalism.

M

(a)

x M y

(b)

N

(c)

Figure 8. Some simple diagrams: a trace, a scalar product, and a partial trace.

Suppose that each diagram in Figure 8 comes equipped with two vector spaces V1 and V2 which
we shall represent respectively by circle and square shaped symbols. In the first diagram, M is a
tensor (or a matrix, depending on which point of view we adopt) M ∈ V ∗1 ⊗V1, and the wire applies
the contraction V ∗1 ⊗V1 → C to M . The result of the diagram Da is thus TDa = Tr(M) ∈ C. In the
second diagram, again there are no free decorations, hence the result is the complex number TDb

=
〈y,Mx〉. Finally, in the third example, N is a (2, 2) tensor or a linear map N ∈ L(V1⊗V2, V1⊗V2).
When one applies to the tensor N the contraction of the couple (V1, V

∗
1 ), the result is the partial

trace of N over the space V1: TDc = TrV1(N) ∈ L(V2, V2).
Bell states allow us to introduce the transposition operation for a tensor (or a box) as follows.

We define, as usual, transposition for a matrix M (or a tensor M ∈ V ∗ ⊗ V ) and we extend it
in a trivial way to more general situations. Graphically, the box corresponding to the transposed
tensor M t is defined in Figure 9(a): the box M has its “legs” transposed; the wires are connecting
decorations of the same color, so this is a non-canonical, basis dependent, operation. Note however
that this operation is different from the involution ∗ applied to the same box. Bell states allow for
wires connecting identical shaped symbols of the same color, as in Figure 9(b). Such non-canonical
tensor contractions (V ⊗ V → C or V ∗ ⊗ V ∗ → C) are shorthand graphical notations for the
corresponding diagram containing a Bell state, and we shall use them quite often in what follows.
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M> M=

(a)

=

=

(b)

Figure 9. The transposition operation (left) and Bell states allowing for wires
between same-color decorations (right).

Also, for reasons which shall be clear later, we shall sometimes make substitution M = (M∗)>.
Finally, by grouping two Bell states together, one obtains the (non-canonical) tensor ω (Figure 10),
called “the maximal entangled state”. It corresponds to the tensor

ω = ΩΩ∗ =
dimV∑
i=1

dimV∑
j=1

ei ⊗ ei ⊗ e∗j ⊗ e∗j ∈ V ⊗ V ⊗ V ∗ ⊗ V ∗.

The reader with background in quantum information will notice that the maximally entangled state
we just defined is not normalized in order to be a density matrix. The reader with background in
planar algebra theory will recognize a multiple of the Jones projection.

=ω

Figure 10. The (un-normalized) maximal entangled state ω.

The graphical formalism we have just defined allows us to perform some operations directly on
the level of diagrams, bypassing sometimes cumbersome algebraic manipulations involving summing
over families of indices. As a first example of this philosophy, we prove graphically in Figure 11
that the partial trace of the (un-normalized) maximally entangled state is the identity matrix.

=ω =

Figure 11. The partial trace of the (un-normalized) maximal entangled state ω is
the identity operator.

(
1
dω

)2 = 1
d2 = d

d2
1
dω

=

Figure 12. The normalized maximal entangled state is a projection. Note that the
loop in the second diagram is equal to the dimension of the vector space, d here.
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1.1.6. Comments on other existing graphical calculi. The above formalism is the one that seemed
the most compatible with Weingarten calculus. Here, we comment about already existing graphical
formalisms, in the hope that this section will serve as a dictionary for the reader acquainted to one
of the calculi below.

Our calculus is mainly inspired by Bob Coecke’s Kindergarten Quantum Mechanics [Coe10].
However we choose not to orient the strings; rather, we separate with color (black/white) the
vector spaces and their duals, therefore there is only one possible pairing. A common feature of
the two calculi is the central place occupied in the formalisms by Bell states.

V.F.R. Jones’s theory of planar algebras [Jon99] is also connected to our graphical calculus.
One of our diagrammatic axioms is the existence of a Bell state. This is very closely related to
the axioms of Temperley-Lieb algebras and the diagrammatic for a Jones projection. Most of our
calculus could take place in Jones’ bipartite graph planar algebra.

However it is not clear whether planarity plays an important role in our calculus. More generally,
one could view our calculus as fitting in the frame of traced monoidal (or tensor) categories. Here,
our objects are our elementary family of Hilbert spaces, their duals and all their finite Hilbert
tensor products. The monoidal structure corresponds graphically consists in copying two diagrams
side to side, and amounts to taking tensor product of the Hilbert spaces. The trace corresponds to
the conditional expectations obtained by our wiring procedure. We refer for example to [JSV96].

1.2. Gaussian integration. The Gaussian (or normal) distribution is arguably the most impor-
tant probability distribution in mathematics and in science, due to the Central Limit Theorem:
properly normalized sums of independent, identically distributed (i.i.d.) random variables converge
to a Gaussian distribution.

In the real case, a Gaussian distribution of mean m and variance σ2 has the following density
with respect to the Lebesgue measure dx:

1√
2πσ2

exp

(
−(x−m2)

2σ2

)
;

if X is such a random variable, we write X ∼ N (m,σ2), see Figure 13, left panel, for some
examples. One can consider multi-dimensional Gaussian distributions, characterized by a vector
m ∈ Rn and a positive definite covariance matrix Σ ∈ Mn(R). The density of such a random
vector Rn 3 X ∼ N (m,Σ) reads

1√
(2π)n det Σ

exp

(
−1

2
〈x−m,Σ−1(x−m)〉

)
.

Of importance in what follows is the multi-variate standard (i.e. zero mean, identity variance)
complex case, where a random variable Z ∈ Cn is said to have a standard normal distribution if it
has density

1

πn
exp(−‖z‖2/2).

In particular, a scalar standard complex random variable Z has independent real and imaginary
parts, both having distribution N (0, 1/2), see Figure 13, right panel. More general complex Gauss-
ian vectors Z ∈ Cd are described by a complex vector m and a positive definite complex covariance
matrix Σ:

∀i, EZi = mi

∀i, j, E[Z̄iZj ] = Σij .

We now address the question of computing integrals with respect to a Gaussian distribution.
The combinatorial method described below is known in the literature as Wick’s formula, or Isserlis’



APPLICATIONS OF RANDOM MATRICES IN QIT 9

m=0, σ2=1

m=0, σ2=0.2

m=0, σ2=5

m=-2, σ2=0.5

-4 -2 0 2 4
x

0.2

0.4

0.6

0.8

1.0

density

Figure 13. Gaussian distributions, in the real case (left) and in the complex case (right).

formula [Iss18]. We denote below by P2(k) the set of pair-partitions of the set [k] = {1, 2, . . . , k};
for example,

P2(4) = { {{1, 2}, {3, 4}} , {{1, 3}, {2, 4}} , {{1, 4}, {2, 3}} } =
{

, ,
}
.

Theorem 1.1. Let Z be a (complex) Gaussian n-variate random vector with zero mean. Then

E[Zi1Zi2 · · ·Zik ] =
∑

π∈P2(k)

∏
{s,t}∈π

E[ZisZit ].

Proof. We shal prove the statement in the real case and leave the complex setting to the reader.
First, note that if k is odd, both sides are zero: the LHS is zero by the invariance of a centered
Gaussian distribution over a global sign change, while the RHS is zero since there are no pair
partitions of [k]; we assume thus k = 2r. The proof strategy follows [Wit85]. The first ingredient
of the proof is a Laplace transform: for all λ ∈ Rn, we have

E exp〈λ, Z〉 = exp

(
〈λ,Σλ〉

2

)
.

We leave the proof of the claim above as an exercise, it follows from a linear change of variables in
the Gaussian integral. Taking partial derivatives with respect to the λis variables and evaluating
at λ = 0, we obtain

E[Zi1Zi2 · · ·Zik ] =
∂k

∂λi1 · · · ∂λik

∣∣∣∣∣
λ=0

exp

(
〈λ,Σλ〉

2

)
.

To evaluate the derivative on the RHS, we use Faà di Bruno’s formula for the chain rule, see
[Har06, Proposition 1 and equation (4)]:

∂k

∂x1 · · · ∂xk
f(y) =

∑
π∈P (k)

f (#π)(y)
∏
B∈π

∂|B|y∏
j∈B ∂xj

,

where the sum is over all partitions π of [k], and #π denotes the number of blocks of a given
partition π (see Section 2.2 for the combinatorics of (non-crossing) partitions). In our situation,

f above is the exponential function, so f (#π) = f = exp, while y is a quadratic function of the x
variables, so only pair partitions survive. �
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It is a remarkable property of the Gaussian distribution that all the moments of the distribution
can be computed using only the covariance. For example, for a centered Gaussian vector Z having
covariance matrix Σ, we have

E[Z1Z2Z3Z4] = Σ12Σ34 + Σ13Σ24 + Σ14Σ23.

Since the number of pair partitions of [2n] is

|P2(2n)| = (2n− 1)(2n− 3) · · · 5 · 3 · 1 =: (2n)!!,

we have the following corollary.

Corollary 1.2. If X is a real standard Gaussian random variable, we have, for all n ≥ 0:

E[X2n] = (2n)!!

E[X2n+1] = 0.

For Z a complex standard Gaussian, he have

E[Z̄mZn] = δm,n(m+ n)!!.

1.3. Graphical Wick formula. We shall now recast the Wick formula above in the graphical for-
malism described previously. Consider a diagram which contains a new special box G corresponding
to a Gaussian random matrix (i.e. the entries of the matrix are i.i.d. standard complex Gaussian
random variables). We shall compute the expected value of a random diagram with respect to the
Gaussian probability measure; as we shall see, this operation will consist of expanding the diagram,
by erasing the Gaussian boxes and replacing them with wires.

To start, consider D a diagram which contains, amongst other constant tensors, boxes corre-
sponding to independent Gaussian random matrices of covariance one (identity). One can deal
with more general Gaussian matrices by multiplying the standard ones with constant matrices.
Note that a box can appear several times, adjoints of boxes are allowed and the diagram may be
disconnected. Also, Gaussian matrices need not be square.

The expectation value of such a random diagram D can be computed by a removal procedure
as in the unitary case. Without loss of generality, we assume that we do not have in our diagram
adjoints of Gaussian matrices, but instead their complex conjugate box. This assumption allows
for a more straightforward use of the Wick formula from Theorem 1.1. We can assume that D
contains only one type of random Gaussian box G; other independent random Gaussian matrices
are assumed constant at this stage as they can be removed in the same manner afterwards.

A removal of the diagram D is a pairing between Gaussian boxes G and their conjugates Ḡ. The
set of removals is denoted by RemG(D) and it may be empty: if the number of G boxes is different
from the number of Ḡ boxes, then RemG(D) = ∅ (since no pairing between matrices and their
conjugates can exist). Otherwise, a removal r can identified with a permutation α ∈ Sp, where p is
the number of G and Ḡ boxes. In the Gaussian/Wick calculus, one pairs conjugate boxes: white
and black decorations are paired in an identical manner, hence only one permutation is needed to
encode the removal.

To each removal r associated to a permutation α ∈ Sp corresponds a removed diagram Dr
constructed as follows. One starts by erasing the boxes G and Ḡ, but keeps the decorations
attached to these boxes. Then, the decorations (white and black) of the i-th G box are paired with
the decorations of the α(i)-th Ḡ box in a coherent manner, see Figure 14.

The graphical reformulation of the Wick formula from Theorem 1.1 becomes the following the-
orem, which we state without proof.

Theorem 1.3. The following holds true:

EG[D] =
∑

r∈RemG(D)

Dr.
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G

Ḡ

paired boxes

Figure 14. Pairing of boxes in the Gaussian case

AG G∗E

AG ḠE

A

Tr(A) · In

Figure 15. Applying Theorem 1.3 to compute E[GAG∗].

In Figure 15, we present an example of application of the theorem above. We consider, on the
first row, the diagram corresponding to E[GAG∗], where G ∈Mn×k(C) is a n×k Gaussian matrix,
and A ∈Mk(C) is a square, deterministic matrix. The first row contains the diagram D associated
to the algebraic expression. In the second row, we rewrite the same diagram, replacing G∗ by Ḡ>,
in order to be able to apply Theorem 1.3. The third row contains the result of the application: we
erase the G/Ḡ boxed and we add the wires corresponding to the permutation (1) ∈ S1 (in red).
We recognize the diagrams for the identity matrix and for the trace of A: E[GAG∗] = Tr(A)In.

2. The Wishart ensemble

The birth of random matrix theory can be traced to statistics and physics. Wishart introduced
the distribution that bears his name in the 1920’s [Wis28], in order to explain the discrepancy
between the eigenvalues of a measured covariance matrix, and an expected covariance matrix.
Later, Wigner was studying nuclear physics when he introduced [Wig55] the semi-circle distribution.
Since then, random matrix theory has played a role in many fields of mathematics and science,
including operator algebras [VDN92], combinatorics, complex analysis, theoretical physics and
telecommunication theory, just to cite a few. Quantum information theory is definitely one of the
most recent of fields of application; for more on this, we direct the interested reader to the recent
review [CN16]. The classical reference for random matrix theory is Mehta’s book [Meh04]; more
recent monographs written in a mathematical language are [AGZ10, MS17].
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In quantum information theory, randomness is built in, by the axioms of quantum mechanics.
Since quantum states are modeled by (unit trace, positive semidefinite) matrices, it is clear that
the two fields intersect. However, we can see two more reasons for the use of random matrices
in quantum information. First, we would like to understand the typical properties of quantum
states and channels, relative to tasks ans paradigms in quantum information theory. Very early,
properties such as the average entanglement of quantum states were studied [Pag93], and several

probability distribution over the set of quantum states were introduced [ŻS01]. Second, it turns
out that some problems – in particular the minimum output entropy additivity problem, which we
discuss at length here – did not have an obvious non-random answer, therefore it became not only
natural, but also important, to consider random quantum objects.

One paper which popularized the use of random techniques in quantum information was [HLSW04].
This work pointed out that some well-established techniques in the mathematics of random matrices
– measure concentration in this case – could be of use in quantum information.

2.1. Wishart matrices and their limit distribution. Historically the first ensemble of random
matrices having been studied is the Wishart ensemble [Wis28], see [BS10, Chapter 3] or [AGZ10,
Section 2.1] for a modern presentation.

Definition 2.1. Let G ∈ Md×s(C) be a random matrix with complex, standard, i.i.d. Gaussian
entries. The distribution of the positive-semidefinite matrix W = GG∗ ∈Md(C) is called a Wishart
distribution of parameters (d, s) and is denoted by Wd,s.

The study of the asymptotic behavior of Wishart random matrices is due to Marčenko and
Pastur [MP67], while the stronger convergence results have been proved by analytic tools such as
determinantal point processes; one can also recover the stronger forms of the theorem as direct
consequences of the much more general results [Mal12]. Since we aim at giving complete proofs of
our results, we state it here in a rather week form: the convergence in moments.

Definition 2.2. A sequence of random matrices Xd is said to converge in moments to a probability
distribution ν if for all positive integers p, we have

lim
d→∞

E
∫
tpdµXd

= E
1

d
Tr(Xp

d) =

∫
tpdν,

where µXd
is the empirical eigenvalue distribution of Xd

µXd
=

1

d

d∑
i=1

δλi(Xd).

Theorem 2.3. Consider a sequence sd of positive integers which behaves as sd ∼ cd as d → ∞,
for some constant c ∈ (0,∞). Let Wd be a sequence of positive-semidefinite random matrices such
that Wd is distributed according to Wd,sd. Then, the sequence Wd converges in moments to the
Marčenko-Pastur distribution πc given by

πc = max(1− c, 0)δ0 +

√
(b− x)(x− a)

2πx
1(a,b)(x) dx, (2.1)

where a = (1−
√
c)2 and b = (1 +

√
c)2.

The Marčenko-Pastur distribution πc is sometimes called the free Poisson distribution, see [NS06,
Proposition 12.11]. We plotted in Figure 16 its density in the cases c = 1 and c = 4.

Remark 2.4. The Dirac mass appearing in (2.1) is due to the fact that if c < 1, the matrix Wd is
rank deficient. Since cd < d, a fraction 1− c of the eigenvalues of Wd are null, yielding the Dirac
mass at zero.
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Figure 16. The density of the Marčenko-Pastur distributions π1 (left) and π4 (right).

We postpone the proof of Theorem 2.3 to Section 2.3.
We end this section by the statement of the so-called Carleman condition, which ensures that a

sequence of moments defines a unique probability measure.

Proposition 2.5. Let µ be a probability measure on R having finite moments

mn =

∫
tpdµ(t)

which satisfy
∞∑
n=1

m
−1/(2n)
2n = +∞.

Then, µ is the only measure on R having the sequence (mn) as moments.

2.2. Non-crossing partitions and permutations. For a permutation σ ∈ Sp, denote by #σ the
number of its cycles, including the trivial ones (fixed points). Denote also by |σ| its length, i.e. the
minimum number of transposition which multiply to σ. It is well known that for all permutations
σ ∈ Sp,

#σ + |σ| = p.

The set of non-crossing partitions will play a crucial role in what follows. Recall that a partition
π of [p] := {1, 2, . . . , p} is called non-crossing if there are now quadruples (a, b, c, d) such that a, b
(resp. c, d) belong to the same block of π, and a < c < b < d; see Figure 17 for some examples. The
are supremum and infimum operations on NC(p), which turn it into a lattice, see [NS06, Lecture
9]. The number of elements in the set NC(p) is the Catalan number

Catp =
1

p+ 1

(
2p

p

)
.

These numbers satisfy the recurrence relation

Catp =

p∑
i=1

Cati−1Catp−i,

and thus their generating series is given by

M(z) =

∞∑
p=0

Catpz
p =

1−
√

1− 4z

2z
.

We collect now a some properties of the distance function over the symmetric group, which allow
us to bijectively identify a subset of Sp with NC(p). This result can be traced back to [Bia97].
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Figure 17. A non-crossing partition {{1, 2, 4}, {3}} (left) vs. a crossing one
{{1, 3}, {2, 4}} (right).

Lemma 2.6. The function d(σ, τ) = |σ−1τ | is an integer valued distance on Sp. Besides, it has
the following properties:

• the diameter of Sp is p− 1;
• d(·, ·) is left and right translation invariant;
• for three permutations σ1, σ2, τ ∈ Sp, the quantity d(τ, σ1) + d(τ, σ2) has the same parity as
d(σ1, σ2);
• the set of geodesic points (elements which saturate the triangular inequality) between the

identity permutation id and some permutation σ ∈ Sp is in bijection with the set of non-
crossing partitions smaller than π, where the partition π encodes the cycle structure of σ.
Moreover, the preceding bijection preserves the lattice structure.

2.3. Proof of the Marcenko-Pastur theorem. Proof of the Marčenko-Pastur theorem We have
now all the elements to present a short and elegant proof of Theorem 2.3.

Proof of Theorem 2.3. The proof will consist of three independent steps: computing the moments,
at fixed d, of the random matrix Wd, letting d → ∞ and computing the limiting moments, and
finally identifying the probability measure having precisely these moments.

Step 1. Moment formula
We are interested, for any fixed dimensions d, s, in computing the p-th moment of the random

matrix Wd = GG∗, where G is a d × s matrix with i.i.d. complex standard Gaussian random
entries. To do this, we consider the diagram D corresponding to the random variable Tr(W p

d ). This
diagram contains p pairs (G, Ḡ) of Gaussian boxes, which are connected as in Figures 18 and 19.
More precisely, the label corresponding to Cd which is attached to the i-th G-box is connected to the
corresponding label attached to the (i− 1)-th Ḡ-box. On the other hand, the label corresponding
to Cs which is attached to the i-th G-box is connected to the corresponding label attached to the
i-th Ḡ-box. Using the graphical Wick formula from Theorem 1.3, we have

ETr(W p
d ) = ED =

∑
α∈Sp

Dα,

where Dα is the removal diagram obtained by deleting the G/Ḡ boxed and connecting the labels
according to the permutation α. It is clear that each diagram Dα consists only of loops of two
types: ones coming from round labels corresponding to Cd spaces, and others coming from square
labels corresponding to Cs spaces. The number of loops of each type is the number of cycles in the
permutation β−1α, where β encodes the initial wiring of the labels of each type; see Figures 18 and
19 for some examples. In conclusion, we have

ETr(W p
d ) =

∑
α∈Sp

d#(γ−1α)s#α. (2.2)

In the formula above, #(·) is the number of cycles function, and γ is the full cycle permtuation

γ = (p (p− 1) · · · 3 2 1) ∈ Sp.

Step 2. Asymptotic moments



APPLICATIONS OF RANDOM MATRICES IN QIT 15

G ḠE = = ds

Figure 18. The first moment of a Wishart matrix using the graphical Wick calculus
from Theorem 1.3. Round labels correspond to Cd, while square labels correspond
to Cs.

G ḠE G Ḡ

Figure 19. The second moment of a Wishart matrix using the graphical Wick
calculus. On the top row, the diagram for ETr(W 2

d ). On the bottom row, the two
diagrams corresponding to the permutations id = (1)(2), on the left, and (12), on
the right. Their values are respectively ds2 and d2s.

Let us now consider the asymptotic regime we are interested in, d → ∞ and s ∼ cd, for some
fixed parameter c ∈ (0,∞). Since the terms in (2.2) are all positive, we have

ETr(W p
d ) ∼

∑
α∈Sp

c#αd#(γ−1α)+#α.

The dominating terms in the sum above are those maximizing the quantity #(γ−1α) + #α over
the symmetric group. Using the properties of the distance function | · | on permutations from
Lemma 2.6, we have

#(γ−1α) + #α = 2p− (|α|+ |γ−1α|) ≤ 2p− |γ| = p+ 1,

where equality is attained iff α is a geodesic permutation (it saturates the triangle inequality
|id−1α|+ |α−1γ| ≥ |id−1γ|). We conclude that

ETr(W p
d ) ∼ dp+1

∑
σ∈NC(p)

c#σ.

Notice that considering only the dominating terms from the sum (2.2), indexed over all permuta-
tions, selects the ones for which the permutations are non-crossing partitions.

Step 3. The Marčenko-Pastur distribution
We are going to treat here the case c = 1; the general case is similar. We can rewrite the

asymptotic moment formula as

lim
d→∞

E
1

d
Tr
[
(d−1Wd)

p
]

= Catp.

We claim that the unique probability measure µ having the Catalan numbers as moments is the
one from (2.1):

π1 =

√
x(4− x)

2πx
1(0,4)(x) dx.
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To show this, recall that the generating function of the Catalan number must be the moment
generating function of µ:

Mµ(z) =
∞∑
p=0

zp
∫
tpdµ =

1−
√

1− 4z

2z
,

where the relation above holds formally (as a power series in z), and analytically, in a small
neighborhood of 0. The Cauchy transform of µ reads now

Gµ(z) =

∫
1

z − t
dµ(t) = z−1Mµ(z−1) =

1−
√

1− 4z−1

2
,

which holds now on a neighborhood of the infinity in the complex plane. One recovers the density
of µ via the Stieltjes inversion formula, which says that if we denote by

hε(t) := − 1

π
=Gµ(t+ iε),

then
dµ

dt
= lim

ε→0
hε(t).

In our case, we recover µ = π1.
The uniqueness clame comes from the fact that π1 is compactly supported, hence it satisfies the

Carleman condition from Proposition 2.5. �

3. Random quantum states and their partial transposition

In this lecture, we turn to the main goal of the series, that is the study of the partial transposition
of random quantum states. Having discussed all the presrequisites from random matrix theory in
the previous lecture, we first specify what we mean when we talk about random quantum states,
and then move on to study the partial transposition of this model of random matrices.

3.1. Random quantum states: the induced measures. Endowing the set of quantum states
with natural probability measures is an important task, at least for two reasons. On the one hand,
it allows to study and understand the properties of typical quantum states, providing qualitative
and quantitative answers to questions such as: is a generic quantum state entangled or separable?
or what is the probability that the PPT (positive partial transpose) entanglement criterion fails, i.e.
what is the probability that a random state is PPT entangled? Answering these questions, under
reasonable notions of randomness, is the main topic of this series of lectures. On the other hand,
random constructions have proven to be very successful in quantum information theory (we cite the
resolution in the negative of the additivity conjecture of the minimum output entropy of quantum
channels by Hastings [Has09] as an example); hence, different ensembles of quantum states are a
valuable source of examples (and counter-examples) for the theory.

In the case of random pure quantum states, there is a clear candidate for a probability distribu-
tion: the Lebesgue measure on the unit sphere of the corresponding complex Hilbert space. Given the
rotation invariance of the (complex) Gaussian distribution on Cd, a random pure d-dimmensional
quantum state can be defined simply by renormalizing a standard complex Gaussian random vector
g ∈ Cd:

|ψ〉 =
g

‖g‖
.

Note that in the definition above, the random variables ψ and ‖g‖ are independent : this is again a
consequence of the rotational invariance of the standard Gaussian distribution, and can be seen as a
generalization of the scalar (1D) situation, where the modulus |z| of a complex Gaussian z = |z|eiϕ
is independend of its angle (or phase) ϕ.

In the mixed state case, there is no unique candidate for a probability measure on the convex
body M1,+

d . Of course, the set of states inherits the Lebesgue measure of its ambient space, and
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one can normalize it to have unit mass. We shall see however that the Lebesgue measure is just a
special case of a one parameter family of probability distributions which are very natural, both from
a mathematical and from a physical viewpoint. Before going into details, let us briefly mention
here another distribution on the set of states which has received a lot of attention, and which is
motivated by considerations from statistics, the Bures measure [Hal98, SZ03, OSŻ10].

Let us introduced the family of induced measures starting from a physical perspective. Assume
that the system of interest (modelled by the Hilbert space Cd) is coupled to a s-dimensionnal
environment Cs and that the joint system is in a pure state |ψ〉, which is distributed uniformly
on the unit sphere of the product Hilbert space Cd ⊗ Cs ∼= Cds. The reduced density matrix
ρ = Trs |ψ〉〈ψ| is a random mixed quantum state, and the induced measure of parameters d, s is
the distribution of this random matrix. Note that ρ is a d × d random matrix, the parameter s
appearing in the expression of its denisty. One can compute the probability distribution of this
random matrix [ŻS01, ŻPNC11]

dP(ρ) = Cd,s det ρs−d1ρ≥0,Tr ρ=1dLeb(ρ), (3.1)

where Cd,s is a normalizing constant and Leb is the Lebesgue measure on the set of d×d hermitian

matrices. In particular, it is a remarkable fact [ŻS03] that, for s = d (i.e. the size of the envoronment
is equal to the size of the system of interest), one recovers a uniform density, thus the Lebesgue
measure (or the Hilbert-Schmidt measure) on the set of density matrices. Integrating out the Haar-
distributed eigenvectors from (3.1), one obtains the probability density of the spectrum (λ1, . . . , λd)
of ρ, with respect to the Lebesgue measure on the probability simplex ∆d−1 := {x ∈ Rd : xi ≥
0 and

∑
i xi = 1}:

dP(λ1, . . . , λd) = C ′d,s

d∏
i=1

λs−di

∏
1≤i<j≤d

(λi − λj)21λi≥0,
∑

i λi=1dLeb(λ),

it is a remarkable fact that random quantum states following the induced distribution of param-
eters (d, s) can also be obtained as normalized Wishart matrix of the same parameters, see also

[Nec07, ŻPNC11]

ρ =
W

TrW
=

GG∗

Tr(GG∗)
,

where G is a d× s random matrix with i.i.d. standard complex Gaussian entries. To establish this
equivalence, one uses the independence of the random variables ρ and TrW appearing above, see
[Nec07, Proposition 4 and Corollary 1].

In what follows, we shall not work with normalized quantum states, but with Wishart matrices.
This choice is motivated by the fact that the PPT criterion is about positivity, and normalization
does not play any role in it. We shall thus work with the cone of positive semidefinite matrices
(and the Wishart matrices) instead of working with quantum states. Abusing notation, we define
the three cones of interest below:

SEPd,n = {A ∈Mdn : A =
∑
i

Bi ⊗ Ci, where Bi, Ci ≥ 0}

⊆
PPT d,n = {A ∈Mdn : AΓ = [idd ⊗ transpn](A) ≥ 0}
⊆
PSDdn = {A ∈Mdn : A ≥ 0}.

3.2. The partial transpose of Wishart random matrices. We study here the asymptoti-
cal eigenvalue distribution of the partial transposition of random quantum states. The question
whether a given mixed quantum state is separable or entangled has been proven to be an NP-hard
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one [Gur03]. To circumvent this worst-case intractability, entanglement criteria are used. These
are efficiently computable conditions which are necessary for separability; in other words, an en-
tanglement criterion is a (usually convex) super-set Xd of the set of separable states, for which the
membership problem is efficiently solvable (see [AS15] for the number of such criteria needed to
obtain a good approximation of the set of separable states). As in the previous section, from a
probabilistic point of view, estimating the probability that a random quantum state (sampled from
the induced ensemble) is an element of Xd is central.

In what follows we shall tackle this problem for one entanglement criterion in the framework
of thresholds. Given a family Gd ⊆ PSDd of convex cones, a pair of functions (s′d, s

′′
d) is called a

threshold for the family Gd if the following two properties are satisfied:

(1) If Wd is a sequence of Wishart random matrices of parameters (d, sd) with sd ≥ s′′d, then

lim
d→∞

P[Wd ∈ Gd] = 1.

(2) If Wd is a sequence of Wishart random matrices of parameters (d, sd) with sd ≤ s′d, then

lim
d→∞

P[Wd ∈ Gd] = 0.

Let us start with the most used example, the positive partial transpose criterion (PPT). The PPT
criterion has been introduced by Peres in [Per96]: if a positive semidefinite matrix A ∈Md ⊗Mn

is separable, then

AΓ := [id⊗ transp](A) ≥ 0.

Note that the positivity of AΓ is equivalent to the positivity of A Γ= [transp ⊗ id](A), so it does
not matter on which tensor factor the transpose application acts. We denote by PPT d,n the PPT
cone

PPT d,n := {A ∈Mdn : AΓ ≥ 0} ⊇ SEPd,n.
This necessary condition for separability has been shown to be also sufficient for qubit-qubit and
qubit-qutrit systems (dn ≤ 6) in [HHH96]; the result was a simple consequence of the fact that
all the positive application from M2 to M2,3 are decomposable. These non trivial facts are due
to Woronowocz [Wor76]. The PPT criterion for random quantum states has first been studied
numerically in [ŽPBC07]. The analytic results in the following proposition are from [Aub12] (in

the balanced case) and from [BN13] (in the unbalanced case); see also [FŚ13] for some improvements
in the balanced case and the relation to meanders.

Proposition 3.1. Consider a sequence Wd ∈ Mdnd
of random Wishart matrices of parameters

(dnd, cdnd), where nd is a function of d and c is a positive constant.
In the balanced regime nd = d, the (properly rescaled) empirical eigenvalue distribution of the

matrices WΓ
d converges to a semicircular measure µSC(1,1/c) of mean 1 and variance 1/c, see (4.1).

In particular, the threshold for the sets PPT d,d (d→∞) is c0 = 4.
In the unbalanced regime nd = n fixed, the (properly rescaled) empirical eigenvalue distribution

of the matrices d−1WΓ
d converges to a free difference of free Poisson distributions (see Section 4

for the definitions)

πcn(n+1)/2 � πcn(n−1)/2.

In particular, the threshold for the sets PPT d,n (n fixed, d→∞) is

c0 = 2 + 2

√
1− 1

n2
.

Proof. We are going to sketch the proof of the convergence result in the unbalanced case; for the
balanced case, see [Aub12] and for the threshold in the unbalanced case, see [BN13, Section 6].
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Using again the graphical Wick formula, one can find the following expression for the (unnor-
malized) moments of WΓ

d :

ETr[(Wd
Γ)p] =

∑
α∈Sp

s#αd#(γ−1α)n#(γα).

Using the fact that, for every noncrossing partition σ ∈ NC(p), denoting by e(σ) the number of
blocks of even size of σ, we have 1 + e(σ) = #(σγ), we arrive at the formula

E(dn)−1 Tr[(d−1Wd
Γ
)p] ∼

∑
σ∈NC(p)

n#σ+e(σ)c#σ

∼
∑

σ∈NC(p)

∏
b∈σ

cn1+1|b| is even

∼
∑

σ∈NC(p)

∏
b∈σ

(
cn(n+ 1)

2
+
cn(n− 1)

2
(−1)|b|

)
.

We can now identify the free difference of free Poisson operators using the free cumulant approach
of [NS06]: the free cumulant of order p of the limiting measure is

cn(n+ 1)

2
+
cn(n− 1)

2
(−1)|b|.

�

Remark 3.2. The computation of the limiting distribution of in the unbalanced case performed
above was done using the method of moments. A more general approach, allowing to answer the
same question for general maps and general matrix distributions, was provided in [ANV16] using
operator valued free probability theory.

Remark 3.3. The value of the threshold in the theorem above has a practical significance: if one
considers a random pure quantum state on H = Cd ⊗ Cn ⊗ Ccdn, takes the partial trace on the
third subsystem, and the partial transposition on the second subsystem, then the resulting matrix is
positive semidefinite if c > c0, and has negative eigenvalues if c < c0, with large probability as n is
fixed and d→∞.

4. An introduction to free probability theory

4.1. Non-commutative probability spaces. Freeness. We have studied random matrices in
the previous lecture by their moments: the only properties of the ambient probability space we
have used were the fact that the random variables have an algebra structure, and the existence of
the expectation functional. We abstract out these notions in the following definition [NS06, Lecture
1].

Definition 4.1. A non-commutative probability space is an algebra A with unit endowed with a
tracial state ϕ. An element of A is called a (non-commutative) random variable.

In these lectures we have already encountered the non-commutative probability space of ran-
dom matrices (Md(L

∞−(Ω,P)),E[d−1 Tr(·)]), where we use the standard notation L∞−(Ω,P) =
∩p≥1L

p(Ω,P); the L∞− space contains all random variables with moments of all orders. We shall
encounter another example in Section 4.2.

In classical probability theory, the notion of independence of random variables plays a very
important role; in particular, it allows to compute the joint distribution of independent random
variables in terms of the marginal distributions (i.e. the distributions of the individual random
variables). The notion of freeness is a non-commutative alternative to classical independence.
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Definition 4.2. Let A1, . . . ,Ak be subalgebras of A having the same unit as A. They are said to
be free if for all ai ∈ Aji (i = 1, . . . , k) such that ϕ(ai) = 0, one has

ϕ(a1 · · · ak) = 0

as soon as j1 6= j2, j2 6= j3, . . . , jk−1 6= jk. Collections S1, S2, . . . of random variables are said to be
free if the unital subalgebras they generate are free.

Let (a1, . . . , ak) be a k-tuple of selfadjoint random variables and let C〈X1, . . . , Xk〉 be the free
∗-algebra of non commutative polynomials on C generated by the k indeterminates X1, . . . , Xk.
The joint distribution of the family {ai}ki=1 is the linear form

µ(a1,...,ak) : C〈X1, . . . , Xk〉 → C
P 7→ ϕ(P (a1, . . . , ak)).

In the case of a single, self-adjoint random variable x, if the moments of x coincide with those of a
compactly supported probability measure µ, i.e.

∀p ≥ 1, ϕ(xp) =

∫
tpdµ(t),

we say that x has distribution µ. The most important distribution in free probability theory is the
semicircular distribution

µSC(0,1) =

√
4− x2

2π
1[−2,2](x)dx,

which is, for reasons we will not get into, the free world equivalent of the Gaussian distribution in
classical probability (see [NS06, Lecture 8] for the details). A random variable x having distribution
µSC(0,1) has the Catalan number for moments:

ϕ(xp) =

{
Catp := 1

p+1

(
2p
p

)
, if p is even

0, if p is odd.

More generally, if x has distribution µSC(0,1), we say that y = σx+m has distribution

µSC(m,σ2) =

√
4σ2 − (x−m)2

2πσ2
1[m−2σ,m+2σ](x)dx. (4.1)
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Figure 20. The density of the semicircular distributions µSC(0,1) (left) and
µSC(1,1/4) (right).

Remark 4.3. If the non-commutative random variable x has (standard) semicircular distribution,
then x2 has a free Poisson (or Marchenko-Pastur distribution) of parameter c = 1.
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Given a k-tuple (a1, . . . , ak) of free random variables such that the distribution of ai is µai ,
the joint distribution µ(a1,...,ak) is uniquely determined by the µai ’s. A family (an1 , . . . , a

n
k)n of k-

tuples of random variables is said to converge in distribution towards (a1, . . . , ak) iff for all P ∈
C〈X1, . . . , Xk〉, µ(an1 ,...,a

n
k )(P ) converges towards µ(a1,...,ak)(P ) as n → ∞. Sequences of random

variables (an1 )n, . . . , (a
n
k)n are called asymptotically free as n → ∞ iff the k-tuple (an1 , . . . , a

n
k)n

converges in distribution towards a family of free random variables.
Given two free random variables a, b ∈ A, the distribution µa+b is uniquely determined by µa

and µb. The free additive convolution of µa and µb is defined by µa�µb = µa+b. When x = x∗ ∈ A,
we identify µx with the spectral measure of x with respect to τ . The operation � induces a binary
operation on the set of probability measures on R. Similarly, we write µa � µb = µa−b.

4.2. The full Fock space, free semicircular random variables. We discuss now a more ab-
stract non-commutative probability space, in which freeness appears naturally.

Definition 4.4. Let H be a complex Hilbert space. The full Fock space over H is defined to be

F(H) =
∞⊕
n=0

H⊗n = CΩ⊕
∞⊕
n=1

H⊗n.

The bounded operators on F(H), together with the vacuum state

τ(X) = 〈Ω, XΩ〉
form a non-commutative probability space. We also define, for a vector f ∈ H, the creation and
annihilation operators `(h) and `(h)∗, defined as follows:

`(f)Ω = f

`(f)f1 ⊗ · · · ⊗ fn = f ⊗ f1 ⊗ · · · ⊗ fn
and

`(f)∗Ω = 0

`(f)∗f1 = 〈f, f1〉Ω
`(f)∗f1 ⊗ · · · ⊗ fn = 〈f, f1〉f2 ⊗ · · · ⊗ fn.

The following theorem is taken from [NS06, Section 7], where it is proven in a more general form.

Theorem 4.5. Let f, g ∈ H be two orthogonal vectors. Then the non-commutative random vari-
ables x = `(f) + `(f)∗ and y = `(g) + `(g)∗ are semicircular and free.

Proof. Let us first show that both x and y have semicircular distributions; moreover, without loss
of generality, let us assume that ‖f‖ = 1, and task to show that x has µSC(0,1) distribution.

To do this, fix some moment order p, and consider τ(xp):

τ(xp) =
∑

w:[p]→{1,∗}

〈Ω, `(f)w(p)`(f)w(p−1) · · · `(f)w(2)`(f)w(1)Ω〉.

For each choice of the function w, the scalar product above is either 0 or 1; we have thus to count
how many choices of w give 1. It is clear that a function w gives 1 iff p = 2q is even, and the lattice
path induced by w is a Dyck path. Recall that a Dyck path is a path in the lattice Z2, starting at
(0, 0), ending at (p = 2q, 0), having (1,±1) steps, and, importantly, staying above the x-axis at all
times; see Figure 21 for an example. The number of such paths is given by the Catalan numbers,
and the first part of the proof is complete.

Let us now show that x and y are free. Let us first identify which elements in the algebra
generated by {1, `(f)} are traceless. It is easy enough to see that, after some cancellations of the
form `(f)∗`(f) = ‖f‖2, the only such elements are of the form

`(f) · · · `(f)`(f)∗ · · · `(f)∗,
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Figure 21. A Dyck path.

where the product above is non empty. The conclusion follows by considering arbitrary alternating
products of the above type for f and g, and by noting that whenever `(f)∗`(g) appears, the end
result is zero; hence, the ∗-algebras generated by `(f) and `(g) are free. The conclusion follows. �

5. Partial transposition of random quantum states: the unbalanced case

5.1. Other entanglement criteria.

5.2. Conclusion: SEP vs. PPT .
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