Quantum de Finetti theorems and Reznick's Positivstellensatz

Ion Nechita (CNRS, LPT Toulouse) — joint work with Alexander Müller-Hermes and David Reeb

Harbin, June 2nd, 2019

(Quantum) de Finetti theorems

Sums of squares and Reznick's Positivstellensatz

The proof: inverting the Chiribella formula

(Quantum) de Finetti theorems

The classical de Finetti theorem

 Let V be a finite alphabet, |V| = d. A probability ℙ on Vⁿ is called excheangeable if it is symmetric under permutations:

$$\forall \sigma \in \mathcal{S}_n, \qquad \mathbb{P}[x_1, x_2, \dots, x_n] = \mathbb{P}[x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}].$$

• In particular, i.i.d. distributions are exchangeable

$$\mathbb{P} = \pi^{\otimes n}$$
 i.e. $\mathbb{P}[x_1, x_2, \dots, x_n] = \prod_{i=1}^n \pi(x_i) = \prod_{a \in V} \pi(a)^{|x^{-1}(a)|}$

Theorem

Let \mathbb{P} be an exchangeable probability distribution on V^n . Then, for $k \ll n$, its k-marginal \mathbb{P}_k is close to a convex mixture of i.i.d. distributions. More precisely, for any $k \leq n$, there exists a probability measure μ on $\mathcal{P}(V)$ such that

$$\left\|\mathbb{P}_k - \int \pi^{\otimes k} \mathrm{d}\mu(\pi)\right\|_{\mathrm{TV}} \leq \frac{2dk}{n}.$$

Figure 1: k = 2; n = 3, 4, 5, 10.

- Finite alphabet $[d] \rightsquigarrow$ vector space \mathbb{C}^d
- Probability distribution on $[d] \rightsquigarrow$ quantum state (density matrix) $\rho \in \mathcal{M}_d(\mathbb{C}), \ \rho \ge 0, \ \text{Tr} \ \rho = 1$
- i.i.d. probability distribution π^{⊗n} on [d]^{×n} → multipartite product quantum state ρ^{⊗n} ∈ M_d(ℂ)^{⊗n}
- Exchangeable distribution P[x₁,...,x_n] = P[x_{σ(1)},...,x_{σ(n)}] → two different notions of symmetry for quantum states:
 - 1. Permutation symmetry: $\pi \rho_n \pi^* = \rho_n$, for all $\pi \in S_n$
 - 2. Bose symmetry: ρ_n supported on $\vee^n \mathbb{C}^d$, i.e. $P_{sym}^{(d,n)} \rho_n P_{sym}^{(d,n)} = \rho_n$
- Any permutationally symmetric state can be purified to a Bose symmetric pure state in ∨ⁿ(ℂ^d ⊗ ℂ^d)

The finite quantum de Finetti theorem

Theorem.

Let $\rho \in \mathcal{B}(\vee^n \mathbb{C}^d)$ be a (Bose symmetric) quantum state. Then, for all $k \leq n$, there exists a probability measure μ_ρ on the unit sphere of \mathbb{C}^d such that

$$\|\operatorname{Tr}_{n \to k} \rho - \int |\varphi\rangle \langle \varphi|^{\otimes k} \mathrm{d}\mu_{\rho}(\varphi)\|_{1} \leq \frac{2k(d+k)}{n+d}$$

A better upper bound of 2dk/n can be obtained by similar methods.

• Application: the DPS hierarhy. The convex body of separable states

$$\mathrm{SEP} = \mathrm{conv}\{|x\rangle\langle x|\otimes|y\rangle\langle y|\,:\,x\in\mathbb{C}^{d_A},\,y\in\mathbb{C}^{d_B}\}$$

is hard to approximate

• A quantum state ρ_{AB} is said to be *k*-extendible if $\exists \sigma_{AB_1\cdots B_k}$ such that $\sigma_{B_1\cdots B_k} \in \mathcal{B}(\vee^k \mathbb{C}^{d_B})$ and $\sigma_{AB_1} = \rho_{AB}$

Theorem

A state ho_{AB} is separable iff it is *k*-extendible for all $k \geq 1$

- Let $d[n] := \dim P_{sym}^{(d,n)} = \binom{n+d-1}{d-1}$ the dimension of the symmetric subspace
- Define $\mathsf{MP}_{n \to k} : \mathcal{B}(\vee^n \mathbb{C}^d) \to \mathcal{B}(\vee^k \mathbb{C}^d)$ by

$$\mathsf{MP}_{n \to k}(X) = d[n] \int \langle \varphi^{\otimes n} | X | \varphi^{\otimes n} \rangle | \varphi \rangle \langle \varphi |^{\otimes k} \mathrm{d}\varphi,$$

where $\mathrm{d}\varphi$ is the Lebesgue measure on the unit sphere of $\mathbb{C}^d,$ or even a n+k spherical design

 The linear map MP_{n→k} is completely positive, and it is normalized to be trace preserving (i.e. it is a quantum channel):

$$\int |\varphi\rangle\langle\varphi|^{\otimes n} \mathrm{d}\varphi = \frac{P_{sym}^{(d,n)}}{d[n]}$$

Chiribella's formula

Assuming k ≤ n, let Tr_{n→k} : B(∨ⁿC^d) → B(∨^kC^d) be the partial trace map and Tr^{*}_{k→n} : B(∨^kC^d) → B(∨ⁿC^d) be its dual w.r.t. the Hilbert-Schmidt scalar product

$$\mathsf{Tr}^*_{k \to n}(X) = \mathsf{P}^{(d,n)}_{sym} \left[X \otimes \mathsf{I}^{\otimes (n-k)}_d \right] \mathsf{P}^{(d,n)}_{sym}$$

• $Clone_{k \to n} := \frac{d[k]}{d[n]} \operatorname{Tr}_{k \to n}^*$ is the optimal Keyl-Werner cloning quantum channel

Theorem

For any $k \leq n$, we have

$$\mathsf{MP}_{n\to k} = \sum_{s=0}^{k} c(n, k, s) \operatorname{Clone}_{s\to k} \circ \operatorname{Tr}_{n\to s},$$

where $c(n,k,s) = \binom{n}{s}\binom{k+d-1}{k-s}/\binom{n+k+d-1}{k}$.

Fact: $c(n, k, \cdot)$ is a probability distribution, $\sum_{s=0}^{k} c(n, k, s) = 1$

Proof of the quantum de Finetti theorem

• Let $\|\cdot\|_\diamond$ be the $\mathcal{S}_1\to\mathcal{S}_1$ CB norm, aka the diamond norm

$$\|\Phi\|_{\diamond} = \sup_{k} \sup_{\|X\|_{1} \leq 1} \|[\mathrm{id}_{k} \otimes \Phi](X)\|_{1}$$

• We have

$$\|\operatorname{Tr}_{n \to k} - \operatorname{MP}_{n \to k}\|_{\diamond}$$

$$= \|(1 - c(n, k, k)) \operatorname{Tr}_{n \to k} - \sum_{s=0}^{k-1} c(n, k, s) \operatorname{Clone}_{s \to k} \circ \operatorname{Tr}_{n \to s}\|_{\diamond}$$

$$\leq 2(1 - c(n, k, k))$$

$$\leq \frac{2k(d+k)}{n+d}$$

Sums of squares and Reznick's Positivstellensatz

Hilbert's 17th problem

- $\mathbb{R}[x]
 i P(x) \ge 0 \iff P = Q_1(x)^2 + Q_2(x)^2$, for $Q_{1,2} \in \mathbb{R}[x]$
- $\operatorname{Pos}(d, n) := \{ P \in \mathbb{R}[x_1, \dots, x_d] \text{ hom. of deg. } 2n, P(x) \ge 0, \forall x \}$
- $\operatorname{SOS}(d, n) := \{\sum_i Q_i^2 \text{ with } Q_i \in \mathbb{R}[x_1, \dots, x_d] \text{ hom. of deg. } n\}$
- Hilbert 1888:

 $SOS(d, n) \subseteq Pos(d, n), eq. iff (d, n) \in \{(d, 1), (2, n), (3, 2)\}$

• The Motzkin polynomial

$$M(x, y, z) = x^4 y^2 + y^4 z^2 + z^4 x^2 - 3x^2 y^2 z^2$$

is positive but not SOS

 Membership in SOS can be decided with a SDP: P ∈ SOS(d, n) iff ∃A ≥ 0 such that P = ⟨v_{d,n}|A|v_{d,n}⟩, where v_{d,n} is the vector containing all the hom. monomials in d variables of degree n

Reznick's Positivstellensatz

• Hilbert 1900, Artin 1927:

$$P \ge 0 \iff P = \sum_i rac{Q_i^2}{R_i^2}$$

In particular, if $P \ge 0$, there exists R such that R^2P is SOS

• Polya 1928: P even, $P \ge 0 \implies \exists r \text{ such that } (\sum_i x_i^2)^r P$ has non-negative coefficients (and thus is SOS)

Theorem. [Reznick 1995]

Let $P \in Pos(d, k)$ such that $m(P) := \min_{\|x\|=1} P(x) > 0$. Then, for all

$$n \ge \frac{dk(2k-1)}{2\ln 2} \frac{M(P)}{m(P)} - \frac{d}{2}$$

we have

$$\|x\|^{2(n-k)}P(x)=\sum_{j=1}^r t_j\langle x,a_j\rangle^{2n},$$

where $t_j > 0$ and $a_j \in \mathbb{R}^d$

A complex version of Reznick's PSS

- In the complex case, we are interested in bi-homogeneous polynomials of degree n in d complex variables: P(z₁,..., z_d) is hom. in the variables z_i and also in z
 _i.
- Bi-hom. polynomials are in one-to-one correspondence with operators on $\vee^n \mathbb{C}^d$:

 $P(z_1,\ldots,z_d) = \langle z^{\otimes n} | W | z^{\otimes n} \rangle$

- Self-adjoint ${\it W}$ are associated to real, bi-hom. polynomials
- Non-negative polynomials *P* are associated to block-positive matrices *W*:

$$\langle z^{\otimes n} | W | z^{\otimes n} \rangle \ge 0, \qquad \forall z \in \mathbb{C}^d$$

• W PSD \implies P SOS: if $W = \sum_j t_j |a_j\rangle \langle a_j|$, then

$$P(z) = \sum_{j} t_{j} |\langle z^{\otimes n}, a_{j} \rangle|^{2}$$

• $||z||^{2n} = \langle z^{\otimes n} | P_{sym}^{(d,n)} | z^{\otimes n} \rangle$

A complex version of Reznick's PSS

Theorem.

Consider $W = W^* \in \mathcal{B}(\vee^k \mathbb{C}^d \otimes \mathbb{C}^D)$ with m(W) > 0 and $k \ge 1$. Then, for any

$$n \ge \frac{dk(2k-1)}{\ln\left(1 + \frac{m(W)}{M(W)}\right)} - k \tag{1}$$

with $n \ge k$, we have

$$\|x\|^{2(n-k)}p_{W}(x,y) = \int p_{\tilde{W}}(\varphi,y) |\langle \varphi,x \rangle|^{2n} \mathrm{d}\varphi$$

with $p_{\tilde{W}}(\varphi, y) \geq 0$ for all $\varphi \in \mathbb{C}^d$ and $y \in \mathbb{C}^D$, where $p_{\tilde{W}}(\varphi, y)$ is a bihermitian form of degree k in φ and $\overline{\varphi}$ and degree 1 in y and \overline{y} , explicitly computable in terms of W, and $d\varphi$ is any (n + k) spherical design. In the case k = 1, the bound (1) can be improved

$$n\geq d\frac{M(W)}{m(W)}-1.$$

Similar result obtained by [To and Yeung] with worse bounds and in a less general setting, by "complexifying" Reznick's proof

The proof: inverting the Chiribella formula

• The equality

$$\|x\|^{2(n-k)}p_W(x,y) = \int p_{\tilde{W}}(\varphi,y)|\langle \varphi,x\rangle|^{2n}\mathrm{d}\varphi$$

reads, in terms of linear maps over symmetric spaces

$$\mathsf{Clone}_{k \to n} \otimes \mathsf{id}_D = \left[\mathsf{MP}_{k \to n} \circ \tilde{\Psi}\right] \otimes \mathsf{id}_D$$

• The fact that the polynomial $p_{\tilde{W}}$ is non-negative reads

$$ilde{W}:= ilde{\Psi}(W)$$
 is block-positive $\iff \langle z^{\otimes n}| ilde{W}|z^{\otimes n}
angle\geq 0$

• Re-write the Chiribella identity as

$$MP_{n \to k} = \sum_{s=0}^{k} c(n, k, s) \operatorname{Clone}_{s \to k} \circ \operatorname{Tr}_{n \to s}$$
$$= \sum_{s=0}^{k} c(n, k, s) \operatorname{Clone}_{s \to k} \circ \operatorname{Tr}_{k \to s} \circ \operatorname{Tr}_{n \to k}$$
$$= \Phi_{k \to k}^{(n)} \circ \operatorname{Tr}_{n \to k}$$

•
$$\mathsf{MP}_{n \to k} = \Phi_{k \to k}^{(n)} \circ \mathsf{Tr}_{n \to k}$$

Key fact.

The linear map $\Phi_{k \to k}^{(n)} : \vee^k \mathbb{C}^d \to \vee^k \mathbb{C}^d$ is invertible, with inverse

$$\Psi_{k \to k}^{(n)} := \sum_{s=0}^{k} q(n, k, s) \operatorname{Clone}_{s \to k} \circ \operatorname{Tr}_{k \to s}$$

with

$$q(n,k,s) := (-1)^{s+k} \frac{\binom{n+s}{s}\binom{k}{s}}{\binom{n}{k}} \frac{d[k]}{d[s]}$$

- Hence, up to some constants, $Clone_{k \to n} = MP_{k \to n} \circ \Psi_{k \to k}^{(n)}$
- Final step: use hypotheses on n, k, m(W), M(W) to ensure Ψ⁽ⁿ⁾_{k→k}(W) is block-positive

Note:
$$p_{\text{Tr}^*_{k \to n}(W)}(x) = ||x||^{2(n-k)} p_W(x)$$

Lemma.

For any $W \in \mathcal{B}(\vee^k \mathbb{C}^d)$, we have

$$p_{\operatorname{Tr}_{k\to k-s}(W)} = ((k)_s)^{-2} \Delta^s_{\mathbb{C}} p_W,$$

where $\Delta_{\mathbb{C}}$ is the Laplacian

$$\Delta_{\mathbb{C}} = \sum_{i=1}^{d} \frac{\partial^2}{\partial \bar{z}_i \partial z_i}$$

Lemma.

For any $W = W^* \in \mathcal{B}(\vee^k \mathbb{C}^d)$ we have $\forall \|z\| = 1, \qquad \left| (\Delta^s_{\mathbb{C}} p_W)(z) \right| \le 4^{-s} (2d)^s (2k)_{2s} \mathcal{M}(W)$

• Assume, wlog, D = 1, i.e. there is no y

$$p_{\tilde{W}}(\varphi) = \sum_{s=0}^{k} q(n, k, s) \langle \varphi^{\otimes k} | \operatorname{Clone}_{s \to k} \circ \operatorname{Tr}_{k \to s}(W) | \varphi^{\otimes k} \rangle$$
$$= \sum_{s=0}^{k} q(n, k, s) ||\varphi||^{2(k-s)} \langle \varphi^{\otimes s} | \operatorname{Tr}_{k \to s}(W) | \varphi^{\otimes s} \rangle$$
$$= \sum_{s=0}^{k} q(n, k, s) ||\varphi||^{2(k-s)} p_{\operatorname{Tr}_{k \to s}(W)}(\varphi)$$
$$= \sum_{s=0}^{k} \hat{q}(n, k, s) ||\varphi||^{2(k-s)} (\Delta_{\mathbb{C}}^{k-s} p_{W})(\varphi)$$

• Use the complex version of the Bernstein inequality

$$p_{\tilde{W}}(\varphi) \geq \left[m(W)\tilde{q}(n,k,k) - M(W)\sum_{s=0}^{k-1} |\tilde{q}(n,k,s)| \right]$$

How good are the bounds?

• Consider the modified Motzkin polynomial

 $p_{\varepsilon}(x, y, z) = x^{4}y^{2} + y^{4}z^{2} + z^{4}x^{2} - 3x^{2}y^{2}z^{2} + \varepsilon(x^{2} + y^{2} + z^{2})$

- We have $m(p_{\varepsilon}) = \varepsilon$; $M(p_{\varepsilon}) = \varepsilon + 4/27$
- Let p_{n,ε}(x, y, z) := (x² + y² + z²)ⁿ⁻³p_ε(x, y, z). If a PSS decomposition holds, then the [2p, 2q, 2r] coefficient of p_{n,ε} must be positive → lower bound on optimal n

Thank you!

P. Diaconis and D. Freedman - *Finite exchangeable sequences* - The Annals of Probability, 745-764 (1980).

A. Harrow - The Church of the Symmetric Subspace - arXiv:1308.6595

B. Reznick - Uniform denominators in Hilberts seventeenth problem - Math. Z., 220(1):7597 (1995).

W.-K. To and S.-K. Yeung - Effective isometric embeddings for certain hermitian holomorphic line bundles - J. London Math. Soc. (2) 73, 607624 (2006).