Quantum de Finetti theorems and Reznick's Positivstellensatz

Ion Nechita (CNRS, LPT Toulouse)

- joint work with Alexander Müller-Hermes and David Reeb

Harbin, June 2nd, 2019

Talk outline

(Quantum) de Finetti theorems

Sums of squares and Reznick's Positivstellensatz

The proof: inverting the Chiribella formula

(Quantum) de Finetti theorems

The classical de Finetti theorem

- Let V be a finite alphabet, $|V|=d$. A probability \mathbb{P} on V^{n} is called excheangeable if it is symmetric under permutations:

$$
\forall \sigma \in \mathcal{S}_{n}, \quad \mathbb{P}\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\mathbb{P}\left[x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right]
$$

- In particular, i.i.d. distributions are exchangeable

$$
\mathbb{P}=\pi^{\otimes n} \quad \text { i.e. } \quad \mathbb{P}\left[x_{1}, x_{2}, \ldots, x_{n}\right]=\prod_{i=1}^{n} \pi\left(x_{i}\right)=\prod_{a \in V} \pi(a)^{\left|x^{-1}(a)\right|}
$$

Theorem

Let \mathbb{P} be an exchangeable probability distribution on V^{n}. Then, for $k \ll n$, its k-marginal \mathbb{P}_{k} is close to a convex mixture of i.i.d. distributions. More precisely, for any $k \leq n$, there exists a probability measure μ on $\mathcal{P}(V)$ such that

$$
\left\|\mathbb{P}_{k}-\int \pi^{\otimes k} \mathrm{~d} \mu(\pi)\right\|_{\mathrm{TV}} \leq \frac{2 d k}{n}
$$

Figure 1: $k=2 ; n=3,4,5,10$.

Quantum de Finetti theorems - the setup

- Finite alphabet $[d] \rightsquigarrow$ vector space \mathbb{C}^{d}
- Probability distribution on [d] \rightsquigarrow quantum state (density matrix) $\rho \in \mathcal{M}_{d}(\mathbb{C}), \rho \geq 0, \operatorname{Tr} \rho=1$
- i.i.d. probability distribution $\pi^{\otimes n}$ on [d] ${ }^{\times n} \rightsquigarrow$ multipartite product quantum state $\rho^{\otimes n} \in \mathcal{M}_{d}(\mathbb{C})^{\otimes n}$
- Exchangeable distribution $\mathbb{P}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{P}\left[x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right] \rightsquigarrow$ two different notions of symmetry for quantum states:

1. Permutation symmetry: $\pi \rho_{n} \pi^{*}=\rho_{n}$, for all $\pi \in \mathcal{S}_{n}$
2. Bose symmetry: ρ_{n} supported on $\vee^{n} \mathbb{C}^{d}$, i.e. $P_{s y m}^{(d, n)} \rho_{n} P_{s y m}^{(d, n)}=\rho_{n}$

- Any permutationally symmetric state can be purified to a Bose symmetric pure state in $\vee^{n}\left(\mathbb{C}^{d} \otimes \mathbb{C}^{d}\right)$

The finite quantum de Finetti theorem

Theorem.

Let $\rho \in \mathcal{B}\left(\vee^{n} \mathbb{C}^{d}\right)$ be a (Bose symmetric) quantum state. Then, for all $k \leq n$, there exists a probability measure μ_{ρ} on the unit sphere of \mathbb{C}^{d} such that

$$
\| \operatorname{Tr}_{n \rightarrow k} \rho-\int|\varphi\rangle\left\langle\left.\varphi\right|^{\otimes k} \mathrm{~d} \mu_{\rho}(\varphi) \|_{1} \leq \frac{2 k(d+k)}{n+d}\right.
$$

A better upper bound of $2 d k / n$ can be obtained by similar methods.

- Application: the DPS hierarhy. The convex body of separable states

$$
\mathrm{SEP}=\operatorname{conv}\left\{|x\rangle\langle x| \otimes|y\rangle\langle y|: x \in \mathbb{C}^{d_{A}}, y \in \mathbb{C}^{d_{B}}\right\}
$$

is hard to approximate

- A quantum state $\rho_{A B}$ is said to be k-extendible if $\exists \sigma_{A B_{1} \cdots B_{k}}$ such that $\sigma_{B_{1} \cdots B_{k}} \in \mathcal{B}\left(\vee^{k} \mathbb{C}^{d_{B}}\right)$ and $\sigma_{A B_{1}}=\rho_{A B}$

Theorem

A state $\rho_{A B}$ is separable iff it is k-extendible for all $k \geq 1$

The measure-and-prepare map

- Let $d[n]:=\operatorname{dim} P_{s y m}^{(d, n)}=\binom{n+d-1}{d-1}$ the dimension of the symmetric subspace
- Define $\mathrm{MP}_{n \rightarrow k}: \mathcal{B}\left(\mathrm{V}^{n} \mathbb{C}^{d}\right) \rightarrow \mathcal{B}\left(\vee^{k} \mathbb{C}^{d}\right)$ by

$$
\mathrm{MP}_{n \rightarrow k}(X)=d[n] \int\left\langle\varphi^{\otimes n}\right| X\left|\varphi^{\otimes n}\right\rangle|\varphi\rangle\left\langle\left.\varphi\right|^{\otimes k} \mathrm{~d} \varphi,\right.
$$

where $\mathrm{d} \varphi$ is the Lebesgue measure on the unit sphere of \mathbb{C}^{d}, or even a $n+k$ spherical design

- The linear map $\mathrm{MP}_{n \rightarrow k}$ is completely positive, and it is normalized to be trace preserving (i.e. it is a quantum channel):

$$
\int|\varphi\rangle\left\langle\left.\varphi\right|^{\otimes n} \mathrm{~d} \varphi=\frac{P_{s y m}^{(d, n)}}{d[n]}\right.
$$

Chiribella's formula

- Assuming $k \leq n$, let $\operatorname{Tr}_{n \rightarrow k}: \mathcal{B}\left(\vee^{n} \mathbb{C}^{d}\right) \rightarrow \mathcal{B}\left(\vee^{k} \mathbb{C}^{d}\right)$ be the partial trace map and $\operatorname{Tr}_{k \rightarrow n}^{*}: \mathcal{B}\left(\vee^{k} \mathbb{C}^{d}\right) \rightarrow \mathcal{B}\left(\vee^{n} \mathbb{C}^{d}\right)$ be its dual w.r.t. the Hilbert-Schmidt scalar product

$$
\operatorname{Tr}_{k \rightarrow n}^{*}(X)=P_{s y m}^{(d, n)}\left[X \otimes I_{d}^{\otimes(n-k)}\right] P_{s y m}^{(d, n)}
$$

- Clone ${ }_{k \rightarrow n}:=\frac{d[k]}{d[n]} \operatorname{Tr}_{k \rightarrow n}^{*}$ is the optimal Keyl-Werner cloning quantum channel

Theorem

For any $k \leq n$, we have

$$
\mathrm{MP}_{n \rightarrow k}=\sum_{s=0}^{k} c(n, k, s) \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{n \rightarrow s}
$$

where $c(n, k, s)=\binom{n}{s}\binom{k+d-1}{k-s} /\binom{n+k+d-1}{k}$.
Fact: $c(n, k, \cdot)$ is a probability distribution, $\sum_{s=0}^{k} c(n, k, s)=1$

Proof of the quantum de Finetti theorem

$c(n, k, s)$ for $d=2$ and $k=10$

— $\mathrm{n} / \mathrm{k}=1-\mathrm{n} / \mathrm{k}=2$ - $\mathrm{n} / \mathrm{k}=10$ - $\mathrm{n} / \mathrm{k}=50$ - $\mathrm{n} / \mathrm{k}=100$

Proof of the quantum de Finetti theorem

- Let $\|\cdot\|_{\diamond}$ be the $\mathcal{S}_{1} \rightarrow \mathcal{S}_{1}$ CB norm, aka the diamond norm

$$
\|\Phi\|_{\diamond}=\sup _{k} \sup _{\|X\|_{1} \leq 1}\left\|\left[\mathrm{id}_{k} \otimes \Phi\right](X)\right\|_{1}
$$

- We have

$$
\begin{aligned}
\| \operatorname{Tr}_{n \rightarrow k} & -\mathrm{MP}_{n \rightarrow k} \|_{\diamond} \\
& =\|(1-c(n, k, k)) \operatorname{Tr}_{n \rightarrow k}-\sum_{s=0}^{k-1} c(n, k, s) \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{n \rightarrow s} \|_{\diamond} \\
& \leq 2(1-c(n, k, k)) \\
& \leq \frac{2 k(d+k)}{n+d}
\end{aligned}
$$

Sums of squares and Reznick's
Positivstellensatz

Hilbert's 17th problem

- $\mathbb{R}[x] \ni P(x) \geq 0 \Longleftrightarrow P=Q_{1}(x)^{2}+Q_{2}(x)^{2}$, for $Q_{1,2} \in \mathbb{R}[x]$
- $\operatorname{Pos}(d, n):=\left\{P \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]\right.$ hom. of deg. $\left.2 n, P(x) \geq 0, \forall x\right\}$
- $\operatorname{SOS}(d, n):=\left\{\sum_{i} Q_{i}^{2}\right.$ with $Q_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$ hom. of deg. $\left.n\right\}$
- Hilbert 1888:

$$
\operatorname{SOS}(d, n) \subseteq \operatorname{Pos}(d, n), \text { eq. iff }(d, n) \in\{(d, 1),(2, n),(3,2)\}
$$

- The Motzkin polynomial

$$
M(x, y, z)=x^{4} y^{2}+y^{4} z^{2}+z^{4} x^{2}-3 x^{2} y^{2} z^{2}
$$

is positive but not SOS

- Membership in SOS can be decided with a SDP: $P \in \operatorname{SOS}(d, n)$ iff $\exists A \geq 0$ such that $P=\left\langle v_{d, n}\right| A\left|v_{d, n}\right\rangle$, where $v_{d, n}$ is the vector containing all the hom. monomials in d variables of degree n

Reznick's Positivstellensatz

- Hilbert 1900, Artin 1927:

$$
P \geq 0 \Longleftrightarrow P=\sum_{i} \frac{Q_{i}^{2}}{R_{i}^{2}}
$$

In particular, if $P \geq 0$, there exists R such that $R^{2} P$ is SOS

- Polya 1928: P even, $P \geq 0 \Longrightarrow \exists r$ such that $\left(\sum_{i} x_{i}^{2}\right)^{r} P$ has non-negative coefficients (and thus is SOS)

Theorem. [Reznick 1995]

Let $P \in \operatorname{Pos}(d, k)$ such that $m(P):=\min _{\|x\|=1} P(x)>0$. Then, for all

$$
n \geq \frac{d k(2 k-1)}{2 \ln 2} \frac{M(P)}{m(P)}-\frac{d}{2}
$$

we have

$$
\|x\|^{2(n-k)} P(x)=\sum_{j=1}^{r} t_{j}\left\langle x, a_{j}\right\rangle^{2 n},
$$

where $t_{j}>0$ and $a_{j} \in \mathbb{R}^{d}$

A complex version of Reznick's PSS

- In the complex case, we are interested in bi-homogeneous polynomials of degree n in d complex variables: $P\left(z_{1}, \ldots, z_{d}\right)$ is hom. in the variables z_{i} and also in \bar{z}_{i}.
- Bi-hom. polynomials are in one-to-one correspondence with operators on $V^{n} \mathbb{C}^{d}$:

$$
P\left(z_{1}, \ldots, z_{d}\right)=\left\langle z^{\otimes n}\right| W\left|z^{\otimes n}\right\rangle
$$

- Self-adjoint W are associated to real, bi-hom. polynomials
- Non-negative polynomials P are associated to block-positive matrices W:

$$
\left\langle z^{\otimes n}\right| W\left|z^{\otimes n}\right\rangle \geq 0, \quad \forall z \in \mathbb{C}^{d}
$$

- W PSD $\Longrightarrow P$ SOS: if $W=\sum_{j} t_{j}\left|a_{j}\right\rangle\left\langle a_{j}\right|$, then

$$
P(z)=\sum_{j} t_{j}\left|\left\langle z^{\otimes n}, a_{j}\right\rangle\right|^{2}
$$

- $\|z\|^{2 n}=\left\langle z^{\otimes n}\right| P_{s y m}^{(d, n)}\left|z^{\otimes n}\right\rangle$

A complex version of Reznick's PSS

Theorem.

Consider $W=W^{*} \in \mathcal{B}\left(\vee^{k} \mathbb{C}^{d} \otimes \mathbb{C}^{D}\right)$ with $m(W)>0$ and $k \geq 1$.
Then, for any

$$
\begin{equation*}
n \geq \frac{d k(2 k-1)}{\ln \left(1+\frac{m(W)}{M(W)}\right)}-k \tag{1}
\end{equation*}
$$

with $n \geq k$, we have

$$
\|x\|^{2(n-k)} p_{W}(x, y)=\int p_{\tilde{W}}(\varphi, y)|\langle\varphi, x\rangle|^{2 n} \mathrm{~d} \varphi
$$

with $p_{\tilde{W}}(\varphi, y) \geq 0$ for all $\varphi \in \mathbb{C}^{d}$ and $y \in \mathbb{C}^{D}$, where $p_{\tilde{W}}(\varphi, y)$ is a bihermitian form of degree k in φ and $\bar{\varphi}$ and degree 1 in y and \bar{y}, explicitly computable in terms of W, and $\mathrm{d} \varphi$ is any $(n+k)$ spherical design. In the case $k=1$, the bound (1) can be improved

$$
n \geq d \frac{M(W)}{m(W)}-1
$$

Similar result obtained by [To and Yeung] with worse bounds and in a less general setting, by "complexifying" Reznick's proof

The proof: inverting the Chiribella formula

Proof strategy

- The equality

$$
\|x\|^{2(n-k)} p_{W}(x, y)=\int p_{\tilde{W}}(\varphi, y)|\langle\varphi, x\rangle|^{2 n} \mathrm{~d} \varphi
$$

reads, in terms of linear maps over symmetric spaces

$$
\text { Clone }_{k \rightarrow n} \otimes \mathrm{id}_{D}=\left[\mathrm{MP}_{k \rightarrow n} \circ \tilde{\Psi}\right] \otimes \mathrm{id}_{D}
$$

- The fact that the polynomial $p_{\tilde{W}}$ is non-negative reads

$$
\tilde{W}:=\tilde{\Psi}(W) \text { is block-positive } \Longleftrightarrow\left\langle z^{\otimes n}\right| \tilde{W}\left|z^{\otimes n}\right\rangle \geq 0
$$

- Re-write the Chiribella identity as

$$
\begin{aligned}
\mathrm{MP}_{n \rightarrow k} & =\sum_{s=0}^{k} c(n, k, s) \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{n \rightarrow s} \\
& =\sum_{s=0}^{k} c(n, k, s) \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{k \rightarrow s} \circ \operatorname{Tr}_{n \rightarrow k} \\
& =\Phi_{k \rightarrow k}^{(n)} \circ \operatorname{Tr}_{n \rightarrow k}
\end{aligned}
$$

Proof strategy

- $\mathrm{MP}_{n \rightarrow k}=\Phi_{k \rightarrow k}^{(n)} \circ \operatorname{Tr}_{n \rightarrow k}$

Key fact.

The linear map $\Phi_{k \rightarrow k}^{(n)}: \vee^{k} \mathbb{C}^{d} \rightarrow V^{k} \mathbb{C}^{d}$ is invertible, with inverse

$$
\Psi_{k \rightarrow k}^{(n)}:=\sum_{s=0}^{k} q(n, k, s) \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{k \rightarrow s}
$$

with

$$
q(n, k, s):=(-1)^{s+k} \frac{\binom{n+s}{s}\binom{k}{s}}{\binom{n}{k}} \frac{d[k]}{d[s]}
$$

- Hence, up to some constants, Clone ${ }_{k \rightarrow n}=M P_{k \rightarrow n} \circ \Psi_{k \rightarrow k}^{(n)}$
- Final step: use hypotheses on $n, k, m(W), M(W)$ to ensure $\Psi_{k \rightarrow k}^{(n)}(W)$ is block-positive

Proof strategy

Note: $p_{\operatorname{Tr}_{k \rightarrow n}^{*}(}(W)(x)=\|x\|^{2(n-k)} p_{W}(x)$

Lemma.

For any $W \in \mathcal{B}\left(V^{k} \mathbb{C}^{d}\right)$, we have

$$
p_{T_{r_{k \rightarrow k-s}}(W)}=\left((k)_{s}\right)^{-2} \Delta_{\mathbb{C}}^{s} p_{W},
$$

where $\Delta_{\mathbb{C}}$ is the Laplacian

$$
\Delta_{\mathbb{C}}=\sum_{i=1}^{d} \frac{\partial^{2}}{\partial \bar{z}_{i} \partial z_{i}}
$$

Lemma.

For any $W=W^{*} \in \mathcal{B}\left(\vee^{k} \mathbb{C}^{d}\right)$ we have

$$
\forall\|z\|=1, \quad\left|\left(\Delta_{\mathbb{C}}^{s} p_{W}\right)(z)\right| \leq 4^{-s}(2 d)^{s}(2 k)_{2 s} M(W)
$$

Proof strategy

- Assume, wlog, $D=1$, i.e. there is no y

$$
\begin{aligned}
p_{\tilde{W}}(\varphi) & =\sum_{s=0}^{k} q(n, k, s)\left\langle\varphi^{\otimes k}\right| \text { Clone }_{s \rightarrow k} \circ \operatorname{Tr}_{k \rightarrow s}(W)\left|\varphi^{\otimes k}\right\rangle \\
& =\sum_{s=0}^{k} q(n, k, s)\|\varphi\|^{2(k-s)}\left\langle\varphi^{\otimes s}\right| \operatorname{Tr}_{k \rightarrow s}(W)\left|\varphi^{\otimes s}\right\rangle \\
& =\sum_{s=0}^{k} q(n, k, s)\|\varphi\|^{2(k-s)} p_{\operatorname{Tr}_{k \rightarrow s}(W)}(\varphi) \\
& =\sum_{s=0}^{k} \hat{q}(n, k, s)\|\varphi\|^{2(k-s)}\left(\Delta_{\mathbb{C}}^{k-s} p_{W}\right)(\varphi)
\end{aligned}
$$

- Use the complex version of the Bernstein inequality

$$
p_{\tilde{W}}(\varphi) \geq\left[m(W) \tilde{q}(n, k, k)-M(W) \sum_{s=0}^{k-1}|\tilde{q}(n, k, s)|\right]
$$

How good are the bounds?

- Consider the modified Motzkin polynomial

$$
p_{\varepsilon}(x, y, z)=x^{4} y^{2}+y^{4} z^{2}+z^{4} x^{2}-3 x^{2} y^{2} z^{2}+\varepsilon\left(x^{2}+y^{2}+z^{2}\right)
$$

- We have $m\left(p_{\varepsilon}\right)=\varepsilon ; M\left(p_{\varepsilon}\right)=\varepsilon+4 / 27$
- Let $p_{n, \varepsilon}(x, y, z):=\left(x^{2}+y^{2}+z^{2}\right)^{n-3} p_{\varepsilon}(x, y, z)$. If a PSS decomposition holds, then the $[2 p, 2 q, 2 r]$ coefficient of $p_{n, \varepsilon}$ must be positive \rightsquigarrow lower bound on optimal n

Thank you!

P. Diaconis and D. Freedman - Finite exchangeable sequences - The Annals of Probability, 745-764 (1980).
A. Harrow - The Church of the Symmetric Subspace - arXiv:1308.6595
B. Reznick - Uniform denominators in Hilberts seventeenth problem - Math. Z., 220(1):7597 (1995).
W.-K. To and S.-K. Yeung - Effective isometric embeddings for certain hermitian holomorphic line bundles - J. London Math. Soc. (2) 73, 607624 (2006).

