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(Quantum) de Finetti theorems



The classical de Finetti theorem

• Let V be a finite alphabet, |V | = d . A probability P on V n is called

excheangeable if it is symmetric under permutations:

∀σ ∈ Sn, P[x1, x2, . . . , xn] = P[xσ(1), xσ(2), . . . , xσ(n)].

• In particular, i.i.d. distributions are exchangeable

P = π⊗n i.e. P[x1, x2, . . . , xn] =
n∏

i=1

π(xi ) =
∏
a∈V

π(a)|x
−1(a)|.

Theorem

Let P be an exchangeable probability distribution

on V n. Then, for k � n, its k-marginal Pk is

close to a convex mixture of i.i.d. distributions.

More precisely, for any k ≤ n, there exists a

probability measure µ on P(V ) such that∥∥Pk −
∫
π⊗kdµ(π)

∥∥
TV
≤ 2dk

n
.
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Figure 1: k = 2; n = 3, 4, 5, 10.



Quantum de Finetti theorems - the setup

• Finite alphabet [d ]  vector space Cd

• Probability distribution on [d ]  quantum state (density matrix)

ρ ∈Md(C), ρ ≥ 0, Tr ρ = 1

• i.i.d. probability distribution π⊗n on [d ]×n  multipartite product

quantum state ρ⊗n ∈Md(C)⊗n

• Exchangeable distribution P[x1, . . . , xn] = P[xσ(1), . . . , xσ(n)]  two

different notions of symmetry for quantum states:

1. Permutation symmetry: πρnπ
∗ = ρn, for all π ∈ Sn

2. Bose symmetry: ρn supported on ∨nCd , i.e. P
(d,n)
sym ρnP

(d,n)
sym = ρn

• Any permutationally symmetric state can be purified to a Bose

symmetric pure state in ∨n(Cd ⊗ Cd)



The finite quantum de Finetti theorem

Theorem.

Let ρ ∈ B(∨nCd) be a (Bose symmetric) quantum state. Then, for all

k ≤ n, there exists a probability measure µρ on the unit sphere of Cd

such that

‖Trn→k ρ−
∫
|ϕ〉〈ϕ|⊗kdµρ(ϕ)‖1 ≤

2k(d + k)

n + d

A better upper bound of 2dk/n can be obtained by similar methods.

• Application: the DPS hierarhy. The convex body of separable states

SEP = conv{|x〉〈x | ⊗ |y〉〈y | : x ∈ CdA , y ∈ CdB}

is hard to approximate

• A quantum state ρAB is said to be k-extendible if ∃σAB1···Bk
such that

σB1···Bk
∈ B(∨kCdB ) and σAB1 = ρAB

Theorem

A state ρAB is separable iff it is k-extendible for all k ≥ 1



The measure-and-prepare map

• Let d [n] := dimP
(d,n)
sym =

(
n+d−1
d−1

)
the dimension of the symmetric

subspace

• Define MPn→k : B(∨nCd)→ B(∨kCd) by

MPn→k(X ) = d [n]

∫
〈ϕ⊗n|X |ϕ⊗n〉|ϕ〉〈ϕ|⊗kdϕ,

where dϕ is the Lebesgue measure on the unit sphere of Cd , or even a

n + k spherical design

• The linear map MPn→k is completely positive, and it is normalized to be

trace preserving (i.e. it is a quantum channel):∫
|ϕ〉〈ϕ|⊗ndϕ =

P
(d,n)
sym

d [n]



Chiribella’s formula

• Assuming k ≤ n, let Trn→k : B(∨nCd)→ B(∨kCd) be the partial trace

map and Tr∗k→n : B(∨kCd)→ B(∨nCd) be its dual w.r.t. the

Hilbert-Schmidt scalar product

Tr∗k→n(X ) = P(d,n)
sym

[
X ⊗ I

⊗(n−k)
d

]
P(d,n)
sym

• Clonek→n := d [k]
d [n] Tr∗k→n is the optimal Keyl-Werner cloning quantum

channel

Theorem

For any k ≤ n, we have

MPn→k =
k∑

s=0

c(n, k , s) Clones→k ◦Trn→s ,

where c(n, k, s) =
(
n
s

)(
k+d−1
k−s

)
/
(
n+k+d−1

k

)
.

Fact: c(n, k , ·) is a probability distribution,
∑k

s=0 c(n, k, s) = 1



Proof of the quantum de Finetti theorem
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Proof of the quantum de Finetti theorem

• Let ‖ · ‖� be the S1 → S1 CB norm, aka the diamond norm

‖Φ‖� = sup
k

sup
‖X‖1≤1

‖[idk ⊗ Φ](X )‖1

• We have

‖Trn→k −MPn→k ‖�

= ‖(1− c(n, k , k)) Trn→k −
k−1∑
s=0

c(n, k , s) Clones→k ◦Trn→s ‖�

≤ 2(1− c(n, k , k))

≤ 2k(d + k)

n + d



Sums of squares and Reznick’s

Positivstellensatz



Hilbert’s 17th problem

• R[x ] 3 P(x) ≥ 0 ⇐⇒ P = Q1(x)2 + Q2(x)2, for Q1,2 ∈ R[x ]

• Pos(d , n) := {P ∈ R[x1, . . . , xd ] hom. of deg. 2n, P(x) ≥ 0, ∀x}
• SOS(d , n) := {

∑
i Q

2
i with Qi ∈ R[x1, . . . , xd ] hom. of deg. n}

• Hilbert 1888:

SOS(d , n) ⊆ Pos(d , n), eq. iff (d , n) ∈ {(d , 1), (2, n), (3, 2)}

• The Motzkin polynomial

M(x , y , z) = x4y2 + y4z2 + z4x2 − 3x2y2z2

is positive but not SOS

• Membership in SOS can be decided with a SDP: P ∈ SOS(d , n) iff

∃A ≥ 0 such that P = 〈vd,n|A|vd,n〉, where vd,n is the vector containing

all the hom. monomials in d variables of degree n



Reznick’s Positivstellensatz

• Hilbert 1900, Artin 1927:

P ≥ 0 ⇐⇒ P =
∑
i

Q2
i

R2
i

In particular, if P ≥ 0, there exists R such that R2P is SOS

• Polya 1928: P even, P ≥ 0 =⇒ ∃r such that (
∑

i x
2
i )rP has

non-negative coefficients (and thus is SOS)

Theorem. [Reznick 1995]

Let P ∈ Pos(d , k) such that m(P) := min‖x‖=1 P(x) > 0. Then, for all

n ≥ dk(2k − 1)

2 ln 2

M(P)

m(P)
− d

2

we have

‖x‖2(n−k)P(x) =
r∑

j=1

tj〈x , aj〉2n,

where tj > 0 and aj ∈ Rd



A complex version of Reznick’s PSS

• In the complex case, we are interested in bi-homogeneous polynomials

of degree n in d complex variables: P(z1, . . . , zd) is hom. in the

variables zi and also in z̄i .

• Bi-hom. polynomials are in one-to-one correspondence with operators on

∨nCd :

P(z1, . . . , zd) = 〈z⊗n|W |z⊗n〉

• Self-adjoint W are associated to real, bi-hom. polynomials

• Non-negative polynomials P are associated to block-positive matrices

W :

〈z⊗n|W |z⊗n〉 ≥ 0, ∀z ∈ Cd

• W PSD =⇒ P SOS: if W =
∑

j tj |aj〉〈aj |, then

P(z) =
∑
j

tj |〈z⊗n, aj〉|2

• ‖z‖2n = 〈z⊗n|P(d,n)
sym |z⊗n〉



A complex version of Reznick’s PSS

Theorem.

Consider W = W ∗ ∈ B(∨kCd ⊗ CD) with m(W ) > 0 and k ≥ 1.

Then, for any

n ≥ dk(2k − 1)

ln
(

1 + m(W )
M(W )

) − k (1)

with n ≥ k , we have

‖x‖2(n−k)pW (x , y) =

∫
pW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ

with pW̃ (ϕ, y) ≥ 0 for all ϕ ∈ Cd and y ∈ CD , where pW̃ (ϕ, y) is a

bihermitian form of degree k in ϕ and ϕ and degree 1 in y and y ,

explicitly computable in terms of W , and dϕ is any (n + k) spherical

design. In the case k = 1, the bound (1) can be improved

n ≥ d
M(W )

m(W )
− 1.

Similar result obtained by [To and Yeung] with worse bounds and in a

less general setting, by “complexifying” Reznick’s proof



The proof: inverting the

Chiribella formula



Proof strategy

• The equality

‖x‖2(n−k)pW (x , y) =

∫
pW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ

reads, in terms of linear maps over symmetric spaces

Clonek→n⊗ idD =
[
MPk→n ◦Ψ̃

]
⊗ idD

• The fact that the polynomial pW̃ is non-negative reads

W̃ := Ψ̃(W ) is block-positive ⇐⇒ 〈z⊗n|W̃ |z⊗n〉 ≥ 0

• Re-write the Chiribella identity as

MPn→k =
k∑

s=0

c(n, k , s) Clones→k ◦Trn→s

=
k∑

s=0

c(n, k , s) Clones→k ◦Trk→s ◦Trn→k

= Φ
(n)
k→k ◦ Trn→k



Proof strategy

• MPn→k = Φ
(n)
k→k ◦ Trn→k

Key fact.

The linear map Φ
(n)
k→k : ∨kCd → ∨kCd is invertible, with inverse

Ψ
(n)
k→k :=

k∑
s=0

q(n, k , s) Clones→k ◦Trk→s

with

q(n, k , s) := (−1)s+k

(
n+s
s

)(
k
s

)(
n
k

) d [k]

d [s]

• Hence, up to some constants, Clonek→n = MPk→n ◦Ψ(n)
k→k

• Final step: use hypotheses on n, k ,m(W ),M(W ) to ensure Ψ
(n)
k→k(W )

is block-positive



Proof strategy

Note: pTr∗k→n(W )(x) = ‖x‖2(n−k)pW (x)

Lemma.

For any W ∈ B(∨kCd), we have

pTrk→k−s (W ) = ((k)s)−2∆s
CpW ,

where ∆C is the Laplacian

∆C =
d∑

i=1

∂2

∂z̄i∂zi

Lemma.

For any W = W ∗ ∈ B(∨kCd) we have

∀‖z‖ = 1,
∣∣∣(∆s

CpW )(z)
∣∣∣ ≤ 4−s(2d)s(2k)2sM(W )



Proof strategy

• Assume, wlog, D = 1, i.e. there is no y

pW̃ (ϕ) =
k∑

s=0

q(n, k , s)〈ϕ⊗k |Clones→k ◦Trk→s(W )|ϕ⊗k〉

=
k∑

s=0

q(n, k , s)‖ϕ‖2(k−s)〈ϕ⊗s |Trk→s(W )|ϕ⊗s〉

=
k∑

s=0

q(n, k , s)‖ϕ‖2(k−s)pTrk→s (W )(ϕ)

=
k∑

s=0

q̂(n, k , s)‖ϕ‖2(k−s)(∆k−s
C pW )(ϕ)

• Use the complex version of the Bernstein inequality

pW̃ (ϕ) ≥

[
m(W )q̃(n, k , k)−M(W )

k−1∑
s=0

|q̃(n, k, s)|

]



How good are the bounds?

• Consider the modified Motzkin polynomial

pε(x , y , z) = x4y2 + y4z2 + z4x2 − 3x2y2z2 + ε(x2 + y2 + z2)

• We have m(pε) = ε; M(pε) = ε+ 4/27

• Let pn,ε(x , y , z) := (x2 + y2 + z2)n−3pε(x , y , z). If a PSS

decomposition holds, then the [2p, 2q, 2r ] coefficient of pn,ε must be

positive  lower bound on optimal n
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Thank you!
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