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Quantum states. Entanglement



Quantum states - the big picture

e One system

States Deterministic Random mixture

Classical | x € {1,2,...,d} peERY p;>0,>pi=1

Quantum | ¥ € C? ||| =1 | pe My4(C), p>0, Trp=1

e Two (or more) classical systems: cartesian product of individual systems
e Two (or more) quantum systems: tensor product of individual systems
(at the level of Hilbert spaces or at the level of matrices)

¢

entanglement



Axioms of Quantum Mechanics with pure states

e To every quantum mechanical system, we associate a Hilbert space
H = C9. The state of a system is described by a unit vector |1/) € H.

The qubit - a two-dimensional Hilbert space H = C2. States in

superposition are allowed: |1)) = «|0) + 3|1), where {|0), [1)} is an
orthonormal basis of C2; we have |a|? + |3]> = 1.

e States evolve according to unitary transformations U € U(d):
[t) — Ul). Physically, U = exp(—itH) for an Hamiltonian H.

e Observable quantities correspond to Hermitian operators A € B(#H). Let
A =", \iP; be the spectral decomposition of A. Born's rule asserts
that, when measuring a quantum system in state |¢),

P[we observe \;] = (| Pi|¢)

and that, conditionally on observing \;, the system's state collapses to

v (WIPil)



Composite systems. Entanglement

For a system composed of two parts A (Alice, ') and B (Bob, &)
with Hilbert spaces H 4 and Hpg, the total Hilbert space is the tensor
product Hag = Ha Q@ Hp.

A general two-qubit state [))ap € C? @ C? = C* is given by
[) ag = apo|00) + ap1|01) + a10|10) + a11]11),

where |ij) = |i) ® |j), and «j; are complex amplitudes.

A pure state |1)) ag is called separable if () ag = |¥)a @ 1)) 5.

Non-separable states are called entangled.

Entangled states are a key resource in quantum information, needed to
obtain the computational speedups or to guarantee security of
cryptographic protocols.

Separable states: 1)) ag = [00) or |)ag

— 2.(/00) +[01))
Entangled state: the Bell state [Q)ag = %

(100) + [11))



Pure state entanglement is generic

Bipartite states can be seen as (rectangular matrices), via the
isomorphism C% ® C% 2 M, 4, (C).

Proposition — Schmidt decomposition

Given any quantum state |1)) ag there exist orthonormal families
{lei) iy € C%, {|f;)}7_; C C% and a probability vector p such that

¥ =3 Vaile) ©1f).
i=1

A state is separable iff p = (1,0,...,0) iff the corresp. matrix is rank
one. The Shannon entropy of p is called the entanglement entropy of
%)

E(l)) = H(p) == _ pilog p;.

All bi-partite quantum pure states have

dimension dadg — 1, whereas product states Ball surface
have dimension ds + dg — 2, which is Ases
strictly smaller = a generic pure state is

entangled!

{
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Quantum entanglement for pure states

Separable pure states = rank 1 tensors

Entangled pure states = rank > 2 tensors



Mixed quantum states



Mixed states and entanglement

Mixed quantum systems with d degrees of freedom are described by
density matrices or mixed states

p € MLH(CY); Trp=1and p > 0.
Pure states are the particular case of rank one projectors, and correspond
to unit vectors ¢ € C9
) (¥ € MBF(CY).
They are the extreme points of the convex body M+ (CH).
Two quantum systems: pag € MbT(C% o C%).

A mixed state pap is called separable if it can be written as a convex
combination of product states

paB € SEP <= pag = Z t,-afA) ® afB),

with t; >0, >, t; =1, afA’B) € ML+ (C%e#). Non-separable states are
called entangled.



Mixed state entanglement is hard, but...

Deciding if a given pag is separable is NP-hard. Detecting entanglement
for general states is a difficult, central problem in QIT.
A map f: M(C9) — M(C?) is called

e positive if A >0 = f(A) >0;
e completely positive if idx ® f is positive for all k > 1.

If f: M(C%) — M(C9) is CP, then for every state pag one has
[ida, ® f](pas) = 0.

If f: M(C%) — M(C9%) is only positive, then for every separable state
pag, one has [idg, ® f](pag) > 0.



Entanglement detection via positive, but not CP maps

Positive, but not CP maps f yield entanglement criteria: given pag, if
lidg, ® fl(pag) # 0, then pag is entangled.

The following converse holds: if, for all positive, but not CP maps f,
[idg, ® fl(pag) > 0, then pag is separable.

The transposition map ©(X) = X is positive, but not CP. Put
PPT = {pag € MV (C% @ C%)|[idy, ® Ods](pas) > 0}.

The reduction map R(X) = Tr(X) -/ — X is positive, but not CP.
RED = {pag € MVT(C% ® C%) | [idy, ® Ru,](pas) > 0}.

e Both criteria above detect pure entanglement: for f = ©, R,

lidg, @ fI(|Y) ag(¥]) > 0 <= |1} ap is separable.



The PPT criterion at work

e Recall the Bell state p12 = |¢) (1|, where
1
C?RC*3 ¢) = —=(10)a®[0)5 + |1)a®[1)5).
|4) ﬁ(| )A®1[0)5 +[1)a ® [1)5)

o Written as a matrix in M;;((C)

10
_1foo _1(Bu B
87270 o “2\By Bn)
10
e Partial transposition: transpose each block Bj:
1 000
110 0 1 0
id, ® © =z
lid2@Olpas) =315 1 ¢ o
0 0 01

e This matrix is no longer positive = the state is entangled.



MYT ={p: Trp=1and p >0}

The problem we consider

SEP = {Z tip’(_A) ® pl(_B)}

PPT ={pag : [idg, ® ©4,](pag) > 0}
RED = {pas : [idg, ® Ras](pas) > 0}
Compare the convex sets

SEP C PPT C RED C MUF(C%dk),

e For (da,dg) € {(2,2),(2,3),(3,2)} we have SEP = PPT. In other
dimensions, the inclusion SEP C PPT is strict.

e For dg = 2 we have PPT = RED. In other dimensions, the inclusion
PPT C RED is strict.



Random quantum states



Probability measures on M} (C)

e We want to measure volumes of subsets of M},’J”((C), with d = dadp.

e A natural choice is to use the Lebesgue measure (see M3’+(C) as a
compact subset of M3 (C)). The set of separable states SEP has
positive volume, since SEP contains an open ball around //d.

e Another choice - open quantum systems point of view: assume your
system Hilbert space C¢ = C% ® C% is coupled to an environment C9

e On the tri-partite system Hagc = C% ® C% ® C9, consider a random
pure state [¢))agc, i.e. a uniform random point on the unit sphere of the
total Hilbert space Hagc.

e Trace out the environment C9 to get a random density matrix

pag = Trc|Y) apc (Y.

e These probability measures have been introduced by Zyczkowski and
Sommers and they are called the induced measures of parameters
d = dadg and s = d¢; we denote them by /iy ..

e Remarkably, the Lebesgue measure is obtained for s = d.



Probability measures on M} (C)

e Here's an equivalent way of defining the measures 114 s, in the spirit of
Random Matrix Theory.

o Let X € Myxs(C) be a d x s matrix with i.i.d. complex standard
Gaussian entries (i.e. a Ginibre random matrix). Define
XX* Wy s

Tr(XX*) ~ TeW,,'

e The random matrix Wy s is called a Wishart matrix and the distribution
of pg.s is precisely pig s.

e The measure jiq s is unitarily invariant: if p ~ pg s and U is a fixed

Wy = XX* and MYH(CY) 3 py. =

unitary matrix, then UpU* ~ piqs.

e Density of pgs: dP(p) = Cys det(/))s’dlpzojrp:l dp.

e Integrating out the eigenvectors, we obtain the eigenvalue density
formula for random quantum states:

dP(Ag, ..., Ag) = Clq lH )\fd] H(/\,- —X)7 | L0, 5, a=1 dA.

i i<j



Eigenvalues for induced measures

Figure 1: Induced measures for d = 3 and s = 3,5,7, 10.




Eigenvalues for induced measures
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Figure 2: Induced measures for d = 3 and s = 3,5, 7, 10.



Volume of convex sets under the induced measures

e Fix d, and let C € ML+ (C9) a convex body, with I4/d € int(C). Then
slrgo pa,s(C) = 1.
In other words, the eigenvalues of a random density matrix pag ~ fid.s

with d fixed and s — oo converge to 1/d.

Definition
A pair of functions (so(d),s1(d)) are called a threshold for a family of
convex sets (Ky)q if both conditions below hold

If s(d) < so(d), then

li Ky) = 0;
dl)mooud,s(d)( 4) =0;

If s(d) 2 s1(d), then
Jim Hd,s(d)(Ka) = 1.



Thresholds for entanglement criteria

e Below, the threshold functions sp 1(d) are of the form

so(d) = s1(d) = cd; we put r := min(da, dg).

Crit. \ Reg. da = dg — 0 dg — 00 day — 00
SEP 0o (r<c<rlog?r) ? ?
PPT 4 242\/1-% [ 2+2/1- %
RED 0 0 /el

e The results in the table above can be interpreted in the following way:
for a convex set K having a threshold ¢, a random density matrix
PAB ~ [id,s With large s, d will satisfy

o Ifs/d>c, Plpas e K]x1
o If s/d < c, Plpas € K] = 0.



Proof elements

The main task is to compute the probability that some random matrices
are positive semidefinite or not.

This is a very difficult computation to perform at fixed Hilbert space
dimension; the asymptotic theory is much easier (one or both

dA73 = OO)

To a selfadjoint matrix X € My4(C), with spectrum x = (x, ..., Xq),
associate its empirical spectral distribution

1 d
HUx = E;éx,

The probability measure px contains all the information about the
spectrum of X.

A sequence of matrices Xy converges in moments towards a probability
measure p if, for all integer p > 1,

1
H P H P P
d||m fTr(Xd) = dllm /X d,UXd(X) = /X du(X).



Wishart matrices

Theorem (Marcenko-Pastu

Let W be a complex Wishart matrix of parameters (d, cd). Then,

almost surely with d — oo, the empirical spectral distribution of W /d
converges in moments to a free Poisson distribution
(a.k.a. Mar&enko-Pastur distribution) 7. of parameter c.

Eigenvalues of Wid Eigenvalues of Wid

25 0.25

) mﬂﬂﬂmwm -
0.0

x 0.00
0 1 2 3 4

Figure 3: Eigenvalue distribution for Wishart matrices. In blue, the density of
theoretical limiting distribution, 7. In the two pictures, d = 1000, and
e = i,5;



Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn). Then,
almost surely with d — oo, the empirical spectral distribution of
[id ® ©](Wag/d) converges in moments to a free difference of free
Poisson distributions of respective parameters cn(n+1)/2.

Corollary

The limiting measure above has positive support iff

/ 1
c>cppr =242 1—7
n



Partial transposition criterion

- numerics

Eigenvalues of W/d
Eigenvalues of [id ® O)(W/d)
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Figure 4: Wishart matrices before (left) and after (right) the application of the

partial transposition. Here, d = da =200, n = dg = 3, and ¢ =5 (top), c =3
(bottom). Note that 5 > cppr = 3.88562 > 3.



Reduction of a Wishart matrix

Theorem (Jivulescu, Lupa, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn). Then,
almost surely with d — oo, the empirical spectral distribution of

[id ® R](Wag/d) converges in moments to a compound free Poisson
distribution m,, .of parameter v, . = cd1_p + c(n® —1)d;.

Corollary
The limiting measure above has positive support iff

(1 ++/n+1)>
C>CRED i = —————.
n(n—1)

We have, for n = 2, cppr = Crep = 2 + V/3: the two criteria are know
to be equivalent for qubit-qudit systems. For n > 3, we have

CppT > CReD: the reduction criterion is, in general, weaker than the
PPT criterion.



Reduction criterion -

numerics

Eigenvalues of W/d

Eigenvalues of [id ® RI(W/d)
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Figure 5: Wishart matrices before (left) and after (right) the application of the

partial reduction map. Here, d = da =200, n = dg = 3, and ¢ = 2 (top),
¢ =1 (bottom). Note that 2 > crep = 1.5 > 1.



The free additive convolution of probability measures

e Given two self-adjoint matrices X, Y with spectra x, y, what is the
spectrum of X + Y7

e In general, a very difficult problem, the answer depends on the relative
position of the eigenspaces of X and Y (Horn problem).

e When the size of X, Y is large, and the eigenvectors are in general
position, free probability theory gives the answer.

e [ree additive convolution of two compactly supported probability
distributions s, v: sample x,y € R? from 1, and consider

Z = diag(x) + Udiag(y)U",

where U is a d x d Haar unitary random matrix. Then, as d — oo, the
empirical eigenvalue distribution of Z converges to a probability
measure denoted by p H v.

e The operation H is called free additive convolution, and it can be
computed via the 7R-transform (a kind of Fourier transform in the free
world)



Free additive convolution - an example

e We have
1 1 1 1 1
—0g+ =01| H |=0g+ =01 | = ————1 dx.
{2 o+2 1] [2 o+2 1} P P (0,2)(x) dx
Eigenvalues of P + U Q U*
20}
15
1.0
05}
00 05 1.0 15 20

e Compare to the classical situation, where * denotes the (additive)
classical convolution
1 1 1 1 1 1 1
—00+ =01| * [=00 + =01| = =dp + =61 + = 2.
{20+21} {20+21} 200t 501+ 702



The free Poisson distribution

The limiting distribution of Wishart matrices (and of random density
matrices from fi4.c4) is the free Poisson distribution

Vic—(x—1-c¢)?

21X

e :=max(l — ¢,0)dp +

Loy, vep(x) dx.

One can show a free Poisson Central Limit Theorem:

im [(1- ) o+ 8] = me.

n—oo
The limit measure for [id @O](Wag/d) is
FfPT ‘= Ten(nt1)/2 B Dflﬁcn(n—l)/2-
The free compound Poisson measure of parameter v is defined via a

generalized free Poisson central limit theorem

im (1= 2B 5+ Ly Hﬂ"::7r,,.
(-2 w3

n—oo

The limit measure for [id @R](Wag/d) is

__RED .__
G o= 7TC§17,7+C(I1271)51'




Block-modified random states




Recap: how powerful are the entanglement criteria?

e Let f: M,, - M, be a given positive linear map (usually, f not CP).
e If [f ®id](p) # 0, then p € M, ® My is entangled.
o If [f ®id](p) > 0, then ... we do not know.
e Define
Ke:={p : [f®id](p) > 0} D SEP.
e We would like to compare (e.g. using the volume) the sets K¢ and SEP.
e Several probability measures on the set M};J: for any parameter
s > md, let W be a Wishart matrix of parameters (md,s): W = XX*,
with X € M,4xs @ Ginibre random matrix (the entries of X are
i.i.d. complex Gaussian random variables).
e Let P, be the probability measure obtained by pushing forward the
Wishart measure by the map W — W /Tr(W).
e To compute Ps(/Cr), one needs to decide whether the spectrum of the
random matrix [f @ id](W) is positive (here, d is large, m, n are fixed)
~» block modified matrices.



Block-modified random matrices - previous results

Many cases studied independently, using the method of moments for
Wishart matrices; no unified approach, each case requires a separate
analysis:

e [Aubrun '12]: the asymptotic spectrum of W' := [id ® t](W) is a
shifted semicircular, for W € My ® My, d — oo

e [Banica, N. '13]: the asymptotic spectrum of W' := [id ® t](W) is a
free difference of free Poisson distributions, for W € M,,, ® My,
d — oo, m fixed

e [Banica, N. '15]: the asymptotic spectrum of W' := [id ® f](W) is the
free multiplicative convolution between a free compound Poisson
distribution and the distribution of f(/); the result requires f to come
from a “wire diagram”

e [Jivulescu, Lupa, N. '14,'15]: the asymptotic spectrum of
Wred .= W — [Tr ® id](W) ® I is a compound free Poisson distribution,
for W e M, ® My, d — oo, m fixed (here, f(X) =X —Tr(X) - /)

ONELC



The problem

Consider a sequence of unitarily invariant random matrices
Xq € M, ® My:

VU € Ung, law(Xy) = law(UXqU*).

Fix n and assume that, as d — oo, the matrices Xy have have limiting
spectral distribution p:

dll~>moo Td Zé)\ Xa) =
Define the modified version of Xd:

X} = [f ®1idd](Xa).

Our goal: compute uf, the limiting spectral distribution of X;, as a
function of

1. The initial distribution s

2. The function f.

Results: achieved this for all 12 and a fairly large class of f.
Tools: operator-valued free probability theory.



Taking the limit

o We can write
n

Xi=[feid(Xa)= > cjul(Ej® la)Xa(Ea® ls) € M, ® M,
i\j, k=1
for some coefficients cjjy € C, which are actually the entries of the Choi
matrix of f (see tomorrow'’s talk).

e At the limit:

n
-
X = E Cijkl €i j X €k I,

iJk,1=1
for some random variable x having the same distribution as the limit of
Xg and some (abstract) matrix units ej;.

~ In the rectangular case m # n, one needs to use the techniques of
Benaych-Georges; we will have freeness with amalgamation on (pm, pm)-



The limiting distributions of block-modified matrices

Theorem

For “well-behaved” functions f, then the distribution of x' has the
following R-transform:

Ry (z) = i dipiRx [%Z} :
=1

where p; are the distinct eigenvalues of C and nd; are ranks of the
corresponding eigenprojectors. In other words, if jui, resp. uf, are the
respective distributions of x and xf, then

uf = B:_,(D,, ,,/z)m”d".

The transposition, f(X) = X T:

ul = (Dl/nuﬁﬂn(n+1)/2> s (D_l/nuaan(nq)/z) .



Range of applications

The following functions are well behaved
Unitary conjugations f(X) = UXU*
The trace and its dual (X) = Tr(X), f(x) = xI,
The transposition f(X) = X"
The reduction map f(X) = /I, - Tr(X) — X
Linear combinations of the above f(X) = aX + BTr(X)l, + X"
Mixtures of orthogonal automorphisms

© 0k

n2
F(X) =) aiUiXUr,
i=1
for orthogonal unitary operators U;
TI‘(U,'UJ-*) = n6,J
7. The Choi map

axi1 + bxoo + cxa3 —X12 —X13
f([XU]) = —X21 cxq11 + axop + bxzz —X23
—X31 —X32 bxi1 + cxo + axs3



Support of the resulting measures

e Recall that we are interested ultimately in the positivity of the support

of the resulting operators x’

e It is in general hard to obtain analytical expressions for the support of
xf: one has to solve polynomials equations of large degree.

e Example: '» has positive support iff ¢ > 2+2,/1— %

Lemma (Collins, Fukuda, Zhong '15)

Let ;1 be a probability measure having mean m and variance o, whose
support is contained in [A. B|. Then, for any T > 1 such that pBT has

no atoms, we have

supp(u®T) C[A+ m(T —1) = 20VT —1,B+ m(T — 1)+ 20V/T —1].

Proposition (I.N. '18)

Let 1 be a non-atomic probability measure having mean m and variance
o2, whose support is contained in the compact interval [A, B]. Then,
provided that n(m — 20) > B — A+ 20, we have supp(u") C (0, 00).



Marchenko-Pastur distribution

x(4 — x)
du(x) = Y———=1 x) dx
1(x) o Loa(x)
£ a1l an . 11a11 + 15a2 — 25a1» — 2ban 36ar1
ani an?2 a 36312 11311 —4ay




Wigner semicircle distribution




Arcsine distribution

1
dp(x) = ———=10,1)(x) dx.
T/ x(1 = x)
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Merci!
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