Random quantum states and channels

Ion Nechita (CNRS, LPT Toulouse)

Le Teich, June 20th 2019

Outline

Quantum states. Entanglement

Mixed quantum states

Random quantum states

Block-modified random states

Quantum states. Entanglement

Quantum states - the big picture

- One system

States	Deterministic	Random mixture		
Classical	$x \in\{1,2, \ldots, d\}$	$\rho \in \mathbb{R}^{d}, p_{i} \geq 0, \sum_{i} p_{i}=1$		
Quantum	$\psi \in \mathbb{C}^{d},\\|\psi\\|=1$	$\rho \in \mathcal{M}_{d}(\mathbb{C}), \rho \geq 0, \operatorname{Tr} \rho=1$		

- Two (or more) classical systems: cartesian product of individual systems
- Two (or more) quantum systems: tensor product of individual systems (at the level of Hilbert spaces or at the level of matrices)

Axioms of Quantum Mechanics with pure states

- To every quantum mechanical system, we associate a Hilbert space $\mathcal{H} \cong \mathbb{C}^{d}$. The state of a system is described by a unit vector $|\psi\rangle \in \mathcal{H}$.

Example

The qubit - a two-dimensional Hilbert space $\mathcal{H}=\mathbb{C}^{2}$. States in superposition are allowed: $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$, where $\{|0\rangle,|1\rangle\}$ is an orthonormal basis of \mathbb{C}^{2}; we have $|\alpha|^{2}+|\beta|^{2}=1$.

- States evolve according to unitary transformations $U \in \mathcal{U}(d)$: $|\psi\rangle \mapsto U|\psi\rangle$. Physically, $U=\exp (-i t H)$ for an Hamiltonian H.
- Observable quantities correspond to Hermitian operators $A \in \mathcal{B}(\mathcal{H})$. Let $A=\sum_{i} \lambda_{i} P_{i}$ be the spectral decomposition of A. Born's rule asserts that, when measuring a quantum system in state $|\psi\rangle$,

$$
\mathbb{P}\left[\text { we observe } \lambda_{i}\right]=\langle\psi| P_{i}|\psi\rangle
$$

and that, conditionally on observing λ_{i}, the system's state collapses to

$$
\left|\psi^{\prime}\right\rangle=\frac{P_{i}|\psi\rangle}{\sqrt{\langle\psi| P_{i}|\psi\rangle}}
$$

Composite systems. Entanglement

For a system composed of two parts A (Alice, 8) and B (Bob, (), with Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B}, the total Hilbert space is the tensor product $\mathcal{H}_{A B}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
A general two-qubit state $|\psi\rangle_{A B} \in \mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$ is given by

$$
|\psi\rangle_{A B}=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle,
$$

where $|i j\rangle=|i\rangle \otimes|j\rangle$, and $\alpha_{i j}$ are complex amplitudes.

Definition

A pure state $|\psi\rangle_{A B}$ is called separable if $|\psi\rangle_{A B}=|\psi\rangle_{A} \otimes|\psi\rangle_{B}$. Non-separable states are called entangled.

Entangled states are a key resource in quantum information, needed to obtain the computational speedups or to guarantee security of cryptographic protocols.
Separable states: $|\psi\rangle_{A B}=|00\rangle$ or $|\varphi\rangle_{A B}=\frac{1}{\sqrt{2}}(|00\rangle+|01\rangle)$
Entangled state: the Bell state $|\Omega\rangle_{A B}=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Pure state entanglement is generic

Bipartite states can be seen as (rectangular matrices), via the isomorphism $\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}} \cong \mathcal{M}_{d_{A} \times d_{B}}(\mathbb{C})$.

Proposition - Schmidt decomposition

Given any quantum state $|\psi\rangle_{A B}$ there exist orthonormal families $\left\{\left|e_{i}\right\rangle\right\}_{i=1}^{r} \subseteq \mathbb{C}^{d_{A}},\left\{\left|f_{i}\right\rangle\right\}_{i=1}^{r} \subseteq \mathbb{C}^{d_{B}}$ and a probability vector p such that

$$
|\psi\rangle=\sum_{i=1}^{r} \sqrt{p_{i}}\left|e_{i}\right\rangle \otimes\left|f_{i}\right\rangle .
$$

A state is separable iff $p=(1,0, \ldots, 0)$ iff the corresp. matrix is rank one. The Shannon entropy of p is called the entanglement entropy of $|\psi\rangle$

$$
E(|\psi\rangle)=H(p)=-\sum p_{i} \log p_{i}
$$

All bi-partite quantum pure states have dimension $d_{A} d_{B}-1$, whereas product states have dimension $d_{A}+d_{B}-2$, which is strictly smaller \Longrightarrow a generic pure state is entangled!

Quantum entanglement for pure states

Separable pure states $=$ rank 1 tensors

Entangled pure states $=$ rank ≥ 2 tensors

Mixed quantum states

Mixed states and entanglement

Mixed quantum systems with d degrees of freedom are described by density matrices or mixed states

$$
\rho \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) ; \quad \operatorname{Tr} \rho=1 \text { and } \rho \geq 0 .
$$

Pure states are the particular case of rank one projectors, and correspond to unit vectors $\psi \in \mathbb{C}^{d}$

$$
|\psi\rangle\langle\psi| \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) .
$$

They are the extreme points of the convex body $\mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$.
Two quantum systems: $\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right)$.
A mixed state $\rho_{A B}$ is called separable if it can be written as a convex combination of product states

$$
\rho_{A B} \in \mathcal{S E P} \Longleftrightarrow \rho_{A B}=\sum_{i} t_{i} \sigma_{i}^{(A)} \otimes \sigma_{i}^{(B)}
$$

with $t_{i} \geq 0, \sum_{i} t_{i}=1, \sigma_{i}^{(A, B)} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A, B}}\right)$. Non-separable states are called entangled.

Mixed state entanglement is hard, but...

Deciding if a given $\rho_{A B}$ is separable is NP-hard. Detecting entanglement for general states is a difficult, central problem in QIT.

A map $f: \mathcal{M}\left(\mathbb{C}^{d}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d^{\prime}}\right)$ is called

- positive if $A \geq 0 \Longrightarrow f(A) \geq 0$;
- completely positive if $\mathrm{id}_{k} \otimes f$ is positive for all $k \geq 1$.

If $f: \mathcal{M}\left(\mathbb{C}^{d_{B}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{B}}\right)$ is $C P$, then for every state $\rho_{A B}$ one has $\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \geq 0$.

If $f: \mathcal{M}\left(\mathbb{C}^{d_{B}}\right) \rightarrow \mathcal{M}\left(\mathbb{C}^{d_{B}}\right)$ is only positive, then for every separable state $\rho_{A B}$, one has $\left[\operatorname{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \geq 0$.

Entanglement detection via positive, but not CP maps

- Positive, but not CP maps f yield entanglement criteria: given $\rho_{A B}$, if $\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \nsupseteq 0$, then $\rho_{A B}$ is entangled.
- The following converse holds: if, for all positive, but not CP maps f, $\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(\rho_{A B}\right) \geq 0$, then $\rho_{A B}$ is separable.
- The transposition map $\Theta(X)=X^{\top}$ is positive, but not CP. Put

$$
\mathcal{P P T}:=\left\{\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right) \mid\left[\operatorname{id}_{d_{A}} \otimes \Theta_{d_{B}}\right]\left(\rho_{A B}\right) \geq 0\right\} .
$$

- The reduction map $R(X)=\operatorname{Tr}(X) \cdot I-X$ is positive, but not CP.

$$
\mathcal{R E D}:=\left\{\rho_{A B} \in \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}\right) \mid\left[\operatorname{id}_{d_{A}} \otimes R_{d_{B}}\right]\left(\rho_{A B}\right) \geq 0\right\} .
$$

- Both criteria above detect pure entanglement: for $f=\Theta, R$,

$$
\left[\mathrm{id}_{d_{A}} \otimes f\right]\left(|\psi\rangle_{A B}\langle\psi|\right) \geq 0 \Longleftrightarrow|\psi\rangle_{A B} \text { is separable. }
$$

The PPT criterion at work

- Recall the Bell state $\rho_{12}=|\psi\rangle\langle\psi|$, where

$$
\mathbb{C}^{2} \otimes \mathbb{C}^{2} \ni|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)
$$

- Written as a matrix in $\mathcal{M}_{2.2}^{1,+}(\mathbb{C})$

$$
\rho_{A B}=\frac{1}{2}\left(\begin{array}{ll|ll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) .
$$

- Partial transposition: transpose each block $B_{i j}$:

$$
\left[\mathrm{id}_{2} \otimes \Theta\right]\left(\rho_{A B}\right)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- This matrix is no longer positive \Longrightarrow the state is entangled.

The problem we consider

$$
\begin{aligned}
& \mathcal{M}^{1,+}=\{\rho: \operatorname{Tr} \rho=1 \text { and } \rho \geq 0\} \\
& \mathcal{S E P}=\left\{\sum_{i} t_{i} \rho_{i}^{(A)} \otimes \rho_{i}^{(B)}\right\} \\
& \mathcal{P P} \mathcal{T}=\left\{\rho_{A B}:\left[\operatorname{id}_{d_{A}} \otimes \Theta_{d_{B}}\right]\left(\rho_{A B}\right) \geq 0\right\} \\
& \mathcal{R E D}=\left\{\rho_{A B}:\left[\operatorname{id}_{d_{A}} \otimes R_{d_{B}}\right]\left(\rho_{A B}\right) \geq 0\right\}
\end{aligned}
$$

Problem

Compare the convex sets

$$
\mathcal{S E P} \subseteq \mathcal{P P} \mathcal{T} \subseteq \mathcal{R E D} \subseteq \mathcal{M}^{1,+}\left(\mathbb{C}^{d_{A} d_{B}}\right)
$$

- For $\left(d_{A}, d_{B}\right) \in\{(2,2),(2,3),(3,2)\}$ we have $\mathcal{S E P}=\mathcal{P} \mathcal{P} \mathcal{T}$. In other dimensions, the inclusion $\mathcal{S E P} \subset \mathcal{P P \mathcal { P }}$ is strict.
- For $d_{B}=2$ we have $\mathcal{P P \mathcal { T }}=\mathcal{R E D}$. In other dimensions, the inclusion $\mathcal{P P T} \subset \mathcal{R E D}$ is strict.

Random quantum states

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- We want to measure volumes of subsets of $\mathcal{M}_{d}^{1,+}(\mathbb{C})$, with $d=d_{A} d_{B}$.
- A natural choice is to use the Lebesgue measure (see $\mathcal{M}_{d}^{1,+}(\mathbb{C})$ as a compact subset of $\mathcal{M}_{d}^{\text {sa }}(\mathbb{C})$). The set of separable states $\mathcal{S E P}$ has positive volume, since $\mathcal{S E P}$ contains an open ball around I / d.
- Another choice - open quantum systems point of view: assume your system Hilbert space $\mathbb{C}^{d}=\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}}$ is coupled to an environment $\mathbb{C}^{d_{C}}$.
- On the tri-partite system $\mathcal{H}_{A B C}=\mathbb{C}^{d_{A}} \otimes \mathbb{C}^{d_{B}} \otimes \mathbb{C}^{d_{C}}$, consider a random pure state $|\psi\rangle_{A B C}$, i.e. a uniform random point on the unit sphere of the total Hilbert space $\mathcal{H}_{A B C}$.
- Trace out the environment $\mathbb{C}^{d c}$ to get a random density matrix

$$
\rho_{A B}=\operatorname{Tr}_{C}|\psi\rangle_{A B C}\langle\psi| .
$$

- These probability measures have been introduced by Życzkowski and Sommers and they are called the induced measures of parameters $d=d_{A} d_{B}$ and $s=d_{C}$; we denote them by $\mu_{d, s}$.
- Remarkably, the Lebesgue measure is obtained for $s=d$.

Probability measures on $\mathcal{M}_{d}^{1,+}(\mathbb{C})$

- Here's an equivalent way of defining the measures $\mu_{d, s}$, in the spirit of Random Matrix Theory.
- Let $X \in \mathcal{M}_{d \times s}(\mathbb{C})$ be a $d \times s$ matrix with i.i.d. complex standard Gaussian entries (i.e. a Ginibre random matrix). Define

$$
W_{d, s}=X X^{*} \text { and } \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right) \ni \rho_{d, s}=\frac{X X^{*}}{\operatorname{Tr}\left(X X^{*}\right)}=\frac{W_{d, s}}{\operatorname{Tr} W_{d, s}} .
$$

- The random matrix $W_{d, s}$ is called a Wishart matrix and the distribution of $\rho_{d, s}$ is precisely $\mu_{d, s}$.
- The measure $\mu_{d, s}$ is unitarily invariant: if $\rho \sim \mu_{d, s}$ and U is a fixed unitary matrix, then $U_{\rho} U^{*} \sim \mu_{d, s}$.
- Density of $\mu_{d, s}: \operatorname{dP}(\rho)=C_{d, s} \operatorname{det}(\rho)^{s-d} \mathbf{1}_{\rho \geq 0, \operatorname{Tr} \rho=1} \mathrm{~d} \rho$.
- Integrating out the eigenvectors, we obtain the eigenvalue density formula for random quantum states:

$$
\mathrm{d} \mathbb{P}\left(\lambda_{1}, \ldots, \lambda_{d}\right)=C_{d, s}^{\prime}\left[\prod_{i} \lambda_{i}^{s-d}\right]\left[\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\right] \mathbf{1}_{\lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1} \mathrm{~d} \lambda
$$

Eigenvalues for induced measures

Figure 1: Induced measures for $d=3$ and $s=3,5,7,10$.

Eigenvalues for induced measures

Figure 2: Induced measures for $d=3$ and $s=3,5,7,10$.

Volume of convex sets under the induced measures

- Fix d, and let $C \subset \mathcal{M}^{1,+}\left(\mathbb{C}^{d}\right)$ a convex body, with $\mathrm{I}_{d} / d \in \operatorname{int}(C)$. Then

$$
\lim _{s \rightarrow \infty} \mu_{d, s}(C)=1
$$

In other words, the eigenvalues of a random density matrix $\rho_{A B} \sim \mu_{d, s}$ with d fixed and $s \rightarrow \infty$ converge to $1 / d$.

Definition

A pair of functions $\left(s_{0}(d), s_{1}(d)\right)$ are called a threshold for a family of convex sets $\left(K_{d}\right)_{d}$ if both conditions below hold
If $s(d) \lesssim s_{0}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(K_{d}\right)=0 ;
$$

If $s(d) \gtrsim s_{1}(d)$, then

$$
\lim _{d \rightarrow \infty} \mu_{d, s(d)}\left(K_{d}\right)=1
$$

Thresholds for entanglement criteria

- Below, the threshold functions $s_{0,1}(d)$ are of the form

$$
s_{0}(d)=s_{1}(d)=c d ; \quad \text { we put } r:=\min \left(d_{A}, d_{B}\right)
$$

Crit. \Reg.	$d_{A}=d_{B} \rightarrow \infty$	$d_{B} \rightarrow \infty$	$d_{A} \rightarrow \infty$
$\mathcal{S E P}$	$\infty\left(r \lesssim c \lesssim r \log ^{2} r\right)$	$?$	$?$
$\mathcal{P P \mathcal { T }}$	4	$2+2 \sqrt{1-\frac{1}{r^{2}}}$	$2+2 \sqrt{1-\frac{1}{r^{2}}}$
$\mathcal{R E D}$	0	0	$\frac{(1+\sqrt{r+1})^{2}}{r(r-1)}$

- The results in the table above can be interpreted in the following way: for a convex set K having a threshold c, a random density matrix $\rho_{A B} \sim \mu_{d, s}$ with large s, d will satisfy
- If $s / d>c, \mathbb{P}\left[\rho_{A B} \in K\right] \approx 1$
- If $s / d<c, \mathbb{P}\left[\rho_{A B} \in K\right] \approx 0$.

Proof elements

- The main task is to compute the probability that some random matrices are positive semidefinite or not.
- This is a very difficult computation to perform at fixed Hilbert space dimension; the asymptotic theory is much easier (one or both $\left.d_{A, B} \rightarrow \infty\right)$.
- To a selfadjoint matrix $X \in \mathcal{M}_{d}(\mathbb{C})$, with spectrum $x=\left(x_{1}, \ldots, x_{d}\right)$, associate its empirical spectral distribution

$$
\mu_{X}=\frac{1}{d} \sum_{i=1}^{d} \delta_{x_{i}} .
$$

- The probability measure μ_{X} contains all the information about the spectrum of X.
- A sequence of matrices X_{d} converges in moments towards a probability measure μ if, for all integer $p \geq 1$,

$$
\lim _{d \rightarrow \infty} \frac{1}{d} \operatorname{Tr}\left(X_{d}^{p}\right)=\lim _{d \rightarrow \infty} \int x^{p} d \mu_{X_{d}}(x)=\int x^{p} d \mu(x)
$$

Wishart matrices

Theorem (Marcenko-Pastur)

Let W be a complex Wishart matrix of parameters $(d, c d)$. Then, almost surely with $d \rightarrow \infty$, the empirical spectral distribution of W / d converges in moments to a free Poisson distribution (a.k.a. Marčenko-Pastur distribution) π_{c} of parameter c.

Figure 3: Eigenvalue distribution for Wishart matrices. In blue, the density of theoretical limiting distribution, π_{c}. In the two pictures, $d=1000$, and $c=1,5$.

Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn). Then, almost surely with $d \rightarrow \infty$, the empirical spectral distribution of $[\mathrm{id} \otimes \Theta]\left(W_{A B} / d\right)$ converges in moments to a free difference of free Poisson distributions of respective parameters $c n(n \pm 1) / 2$.

Corollary

The limiting measure above has positive support iff

$$
c>C_{P P T}:=2+2 \sqrt{1-\frac{1}{n^{2}}} .
$$

Partial transposition criterion - numerics

Figure 4: Wishart matrices before (left) and after (right) the application of the partial transposition. Here, $d=d_{A}=200, n=d_{B}=3$, and $c=5$ (top), $c=3$ (bottom). Note that $5>c_{P P T}=3.88562>3$.

Reduction of a Wishart matrix

Theorem (Jivulescu, Lupa, N.)

Let W be a complex Wishart matrix of parameters $(d n, c d n)$. Then, almost surely with $d \rightarrow \infty$, the empirical spectral distribution of $[\mathrm{id} \otimes R]\left(W_{A B} / d\right)$ converges in moments to a compound free Poisson distribution $\pi_{\nu_{n, c}}$ of parameter $\nu_{n, c}=c \delta_{1-n}+c\left(n^{2}-1\right) \delta_{1}$.

Corollary

The limiting measure above has positive support iff

$$
c>c_{R E D}:=\frac{(1+\sqrt{n+1})^{2}}{n(n-1)}
$$

Remark

We have, for $n=2, c_{P P T}=c_{\text {RED }}=2+\sqrt{3}$: the two criteria are know to be equivalent for qubit-qudit systems. For $n \geq 3$, we have $C_{P P T}>c_{\text {RED }}$: the reduction criterion is, in general, weaker than the PPT criterion.

Reduction criterion - numerics

Figure 5: Wishart matrices before (left) and after (right) the application of the partial reduction map. Here, $d=d_{A}=200, n=d_{B}=3$, and $c=2$ (top), $c=1$ (bottom). Note that $2>c_{R E D}=1.5>1$.

The free additive convolution of probability measures

- Given two self-adjoint matrices X, Y with spectra x, y, what is the spectrum of $X+Y$?
- In general, a very difficult problem, the answer depends on the relative position of the eigenspaces of X and Y (Horn problem).
- When the size of X, Y is large, and the eigenvectors are in general position, free probability theory gives the answer.
- Free additive convolution of two compactly supported probability distributions μ, ν : sample $x, y \in \mathbb{R}^{d}$ from μ, ν and consider

$$
Z:=\operatorname{diag}(x)+U \operatorname{diag}(y) U^{*},
$$

where U is a $d \times d$ Haar unitary random matrix. Then, as $d \rightarrow \infty$, the empirical eigenvalue distribution of Z converges to a probability measure denoted by $\mu \boxplus \nu$.

- The operation \boxplus is called free additive convolution, and it can be computed via the \mathcal{R}-transform (a kind of Fourier transform in the free world)

Free additive convolution - an example

- We have

$$
\left[\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right] \boxplus\left[\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right]=\frac{1}{\pi \sqrt{x(2-x)}} \mathbf{1}_{(0,2)}(x) \mathrm{d} x
$$

- Compare to the classical situation, where $*$ denotes the (additive) classical convolution

$$
\left[\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right] *\left[\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right]=\frac{1}{4} \delta_{0}+\frac{1}{2} \delta_{1}+\frac{1}{4} \delta_{2} .
$$

The free Poisson distribution

- The limiting distribution of Wishart matrices (and of random density matrices from $\mu_{d, c d}$) is the free Poisson distribution

$$
\pi_{c}:=\max (1-c, 0) \delta_{0}+\frac{\sqrt{4 c-(x-1-c)^{2}}}{2 \pi x} \mathbf{1}_{\left[(1-\sqrt{c})^{2},(1+\sqrt{c})^{2}\right]}(x) \mathrm{d} x
$$

- One can show a free Poisson Central Limit Theorem:

$$
\lim _{n \rightarrow \infty}\left[\left(1-\frac{c}{n}\right) \delta_{0}+\frac{c}{n} \delta_{1}\right]^{\boxplus n}=\pi_{c}
$$

- The limit measure for $[i d \otimes \Theta]\left(W_{A B} / d\right)$ is

$$
\pi_{c}^{P P T}:=\pi_{c n(n+1) / 2} \boxplus D_{-1} \pi_{c n(n-1) / 2}
$$

- The free compound Poisson measure of parameter ν is defined via a generalized free Poisson central limit theorem

$$
\lim _{n \rightarrow \infty}\left[\left(1-\frac{\nu(\mathbb{R})}{n}\right) \delta_{0}+\frac{1}{n} \nu\right]^{\boxplus n}=: \pi_{\nu}
$$

- The limit measure for $[\mathrm{id} \otimes R]\left(W_{A B} / d\right)$ is

$$
\pi_{c}^{R E D}:=\pi_{c \delta_{1-n}+c\left(n^{2}-1\right) \delta_{1}}
$$

Block-modified random states

Recap: how powerful are the entanglement criteria?

- Let $f: \mathbb{M}_{m} \rightarrow \mathbb{M}_{n}$ be a given positive linear map (usually, f not CP).
- If $[f \otimes \mathrm{id}](\rho) \nsupseteq 0$, then $\rho \in \mathbb{M}_{m} \otimes \mathbb{M}_{d}$ is entangled.
- If $[f \otimes \operatorname{id}](\rho) \geq 0$, then \ldots we do not know.
- Define

$$
\mathcal{K}_{f}:=\{\rho:[f \otimes \mathrm{id}](\rho) \geq 0\} \supseteq \mathcal{S E P} .
$$

- We would like to compare (e.g. using the volume) the sets \mathcal{K}_{f} and $\mathcal{S E P}$.
- Several probability measures on the set $\mathbb{M}_{m d}^{1,+}$: for any parameter $s \geq m d$, let W be a Wishart matrix of parameters ($m d, s$): $W=X X^{*}$, with $X \in \mathbb{M}_{m d \times s}$ a Ginibre random matrix (the entries of X are i.i.d. complex Gaussian random variables).
- Let \mathbb{P}_{s} be the probability measure obtained by pushing forward the Wishart measure by the map $W \mapsto W / \operatorname{Tr}(W)$.
- To compute $\mathbb{P}_{s}\left(\mathcal{K}_{f}\right)$, one needs to decide whether the spectrum of the random matrix $[f \otimes \mathrm{id}](W)$ is positive (here, d is large, m, n are fixed) \rightsquigarrow block modified matrices.

Block-modified random matrices - previous results

Many cases studied independently, using the method of moments for Wishart matrices; no unified approach, each case requires a separate analysis:

- [Aubrun '12]: the asymptotic spectrum of $W^{\ulcorner }:=[\mathrm{id} \otimes \mathrm{t}](W)$ is a shifted semicircular, for $W \in \mathbb{M}_{d} \otimes \mathbb{M}_{d}, d \rightarrow \infty$
- [Banica, N. '13]: the asymptotic spectrum of $W^{\ulcorner }:=[\mathrm{id} \otimes \mathrm{t}](W)$ is a free difference of free Poisson distributions, for $W \in \mathbb{M}_{m} \otimes \mathbb{M}_{d}$, $d \rightarrow \infty, m$ fixed
- [Banica, N . '15]: the asymptotic spectrum of $W^{f}:=[\operatorname{id} \otimes \mathrm{f}](W)$ is the free multiplicative convolution between a free compound Poisson distribution and the distribution of $f(I)$; the result requires f to come from a "wire diagram"
- [Jivulescu, Lupa, N. '14,'15]: the asymptotic spectrum of $W^{\text {red }}:=W-[\operatorname{Tr} \otimes \mathrm{id}](W) \otimes I$ is a compound free Poisson distribution, for $W \in \mathbb{M}_{m} \otimes \mathbb{M}_{d}, d \rightarrow \infty, m$ fixed (here, $\left.f(X)=X-\operatorname{Tr}(X) \cdot I\right)$
- etc...

The problem

- Consider a sequence of unitarily invariant random matrices

$$
X_{d} \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}:
$$

$$
\forall U \in \mathcal{U}_{n d}, \quad \operatorname{law}\left(X_{d}\right)=\operatorname{law}\left(U X_{d} U^{*}\right) .
$$

- Fix n and assume that, as $d \rightarrow \infty$, the matrices X_{d} have have limiting spectral distribution μ :

$$
\lim _{d \rightarrow \infty} \frac{1}{n d} \sum_{i=1}^{n d} \delta_{\lambda_{i}\left(X_{d}\right)}=\mu
$$

- Define the modified version of X_{d} :

$$
X_{d}^{f}=\left[f \otimes \operatorname{id}_{d}\right]\left(X_{d}\right) .
$$

- Our goal: compute μ^{f}, the limiting spectral distribution of X_{d}^{f}, as a function of

1. The initial distribution μ
2. The function f.

- Results: achieved this for all μ and a fairly large class of f.
- Tools: operator-valued free probability theory.

Taking the limit

- We can write

$$
X_{d}^{f}=[f \otimes \mathrm{id}]\left(X_{d}\right)=\sum_{i, j, k, l=1}^{n} c_{i j k l}\left(E_{i j} \otimes I_{d}\right) X_{d}\left(E_{k l} \otimes I_{d}\right) \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}
$$

for some coefficients $c_{i j k l} \in \mathbb{C}$, which are actually the entries of the Choi matrix of f (see tomorrow's talk).

- At the limit:

$$
x^{f}=\sum_{i, j, k, l=1}^{n} c_{i j k l} e_{i, j} \times e_{k, l},
$$

for some random variable x having the same distribution as the limit of X_{d} and some (abstract) matrix units $e_{i j}$.
\rightsquigarrow In the rectangular case $m \neq n$, one needs to use the techniques of Benaych-Georges; we will have freeness with amalgamation on $\left\langle p_{m}, p_{m}\right\rangle$.

The limiting distributions of block-modified matrices

Theorem

For "well-behaved" functions f, then the distribution of x^{f} has the following R-transform:

$$
R_{x^{f}}(z)=\sum_{i=1}^{s} d_{i} \rho_{i} R_{x}\left[\frac{\rho_{i}}{n} z\right]
$$

where ρ_{i} are the distinct eigenvalues of C and $n d_{i}$ are ranks of the corresponding eigenprojectors. In other words, if μ, resp. μ^{f}, are the respective distributions of x and x^{f}, then

$$
\mu^{f}=\boxplus_{i=1}^{S}\left(D_{\rho_{i} / n} \mu\right)^{\boxplus n d_{i}} .
$$

The transposition, $f(X)=X^{\top}$:

$$
\mu^{T}=\left(D_{1 / n} \mu^{\boxplus n(n+1) / 2}\right) \boxplus\left(D_{-1 / n} \mu^{\boxplus n(n-1) / 2}\right)
$$

Range of applications

The following functions are well behaved

1. Unitary conjugations $f(X)=U X U^{*}$
2. The trace and its dual $f(X)=\operatorname{Tr}(X), f(x)=x I_{n}$
3. The transposition $f(X)=X^{\top}$
4. The reduction map $f(X)=I_{n} \cdot \operatorname{Tr}(X)-X$
5. Linear combinations of the above $f(X)=\alpha X+\beta \operatorname{Tr}(X) I_{n}+\gamma X^{\top}$
6. Mixtures of orthogonal automorphisms

$$
f(X)=\sum_{i=1}^{n^{2}} \alpha_{i} U_{i} X U_{i}^{*},
$$

for orthogonal unitary operators U_{i}

$$
\operatorname{Tr}\left(U_{i} U_{j}^{*}\right)=n \delta_{i j}
$$

7. The Choi map

$$
f\left(\left[x_{i j}\right]\right)=\left[\begin{array}{ccc}
a x_{11}+b x_{22}+c x_{33} & -x_{12} & -x_{13} \\
-x_{21} & c x_{11}+a x_{22}+b x_{33} & -x_{23} \\
-x_{31} & -x_{32} & b x_{11}+c x_{22}+a x_{33}
\end{array}\right] .
$$

Support of the resulting measures

- Recall that we are interested ultimately in the positivity of the support of the resulting operators x^{f}
- It is in general hard to obtain analytical expressions for the support of x^{f} : one has to solve polynomials equations of large degree.
- Example: $\pi_{c}^{t_{n}}$ has positive support iff $c>2+2 \sqrt{1-\frac{1}{n^{2}}}$

Lemma (Collins, Fukuda, Zhong '15)

Let μ be a probability measure having mean m and variance σ^{2}, whose support is contained in $[A, B]$. Then, for any $T \geq 1$ such that $\mu^{\boxplus T}$ has no atoms, we have
$\operatorname{supp}\left(\mu^{\boxplus T}\right) \subseteq[A+m(T-1)-2 \sigma \sqrt{T-1}, B+m(T-1)+2 \sigma \sqrt{T-1}]$.

Proposition (I.N. '18)

Let μ be a non-atomic probability measure having mean m and variance σ^{2}, whose support is contained in the compact interval $[A, B]$. Then, provided that $n(m-2 \sigma)>B-A+2 \sigma$, we have $\operatorname{supp}\left(\mu^{\ulcorner }\right) \subset(0, \infty)$.

Marchenko-Pastur distribution

$$
\begin{aligned}
d \mu(x) & =\frac{\sqrt{x(4-x)}}{2 \pi x} \mathbf{1}_{(0,4]}(x) d x \\
f\left(\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\right) & =\left[\begin{array}{cc}
11 a_{11}+15 a_{22}-25 a_{12}-25 a_{21} & 36 a_{21} \\
36 a_{12} & 11 a_{11}-4 a_{22}
\end{array}\right]
\end{aligned}
$$

Wigner semicircle distribution

$$
d \mu(x)=\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathbf{1}_{[-2,2]}(x) d x
$$

Arcsine distribution

$$
d \mu(x)=\frac{1}{\pi \sqrt{x(1-x)}} \mathbf{1}_{(0,1)}(x) d x .
$$

Merci!

