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Quantum states. Entanglement



Quantum states - the big picture

• One system

States Deterministic Random mixture

Classical x ∈ {1, 2, . . . , d} p ∈ Rd , pi ≥ 0,
∑

i pi = 1

Quantum ψ ∈ Cd , ‖ψ‖ = 1 ρ ∈Md(C), ρ ≥ 0, Tr ρ = 1

• Two (or more) classical systems: cartesian product of individual systems

• Two (or more) quantum systems: tensor product of individual systems

(at the level of Hilbert spaces or at the level of matrices)

⇓

entanglement



Axioms of Quantum Mechanics with pure states

• To every quantum mechanical system, we associate a Hilbert space

H ∼= Cd . The state of a system is described by a unit vector |ψ〉 ∈ H.

Example

The qubit - a two-dimensional Hilbert space H = C2. States in

superposition are allowed: |ψ〉 = α|0〉+ β|1〉, where {|0〉, |1〉} is an

orthonormal basis of C2; we have |α|2 + |β|2 = 1.

• States evolve according to unitary transformations U ∈ U(d):

|ψ〉 7→ U|ψ〉. Physically, U = exp(−itH) for an Hamiltonian H.

• Observable quantities correspond to Hermitian operators A ∈ B(H). Let

A =
∑

i λiPi be the spectral decomposition of A. Born’s rule asserts

that, when measuring a quantum system in state |ψ〉,

P[ we observe λi ] = 〈ψ|Pi |ψ〉

and that, conditionally on observing λi , the system’s state collapses to

|ψ′〉 =
Pi |ψ〉√
〈ψ|Pi |ψ〉

.



Composite systems. Entanglement

For a system composed of two parts A (Alice, ) and B (Bob, ),

with Hilbert spaces HA and HB , the total Hilbert space is the tensor

product HAB = HA ⊗HB .

A general two-qubit state |ψ〉AB ∈ C2 ⊗ C2 ∼= C4 is given by

|ψ〉AB = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉,

where |ij〉 = |i〉 ⊗ |j〉, and αij are complex amplitudes.

Definition

A pure state |ψ〉AB is called separable if |ψ〉AB = |ψ〉A ⊗ |ψ〉B .

Non-separable states are called entangled.

Entangled states are a key resource in quantum information, needed to

obtain the computational speedups or to guarantee security of

cryptographic protocols.

Separable states: |ψ〉AB = |00〉 or |ϕ〉AB = 1√
2

(|00〉+ |01〉)
Entangled state: the Bell state |Ω〉AB = 1√

2
(|00〉+ |11〉)



Pure state entanglement is generic

Bipartite states can be seen as (rectangular matrices), via the

isomorphism CdA ⊗ CdB ∼=MdA×dB (C).

Proposition — Schmidt decomposition

Given any quantum state |ψ〉AB there exist orthonormal families

{|ei 〉}ri=1 ⊆ CdA , {|fi 〉}ri=1 ⊆ CdB and a probability vector p such that

|ψ〉 =
r∑

i=1

√
pi |ei 〉 ⊗ |fi 〉.

A state is separable iff p = (1, 0, . . . , 0) iff the corresp. matrix is rank

one. The Shannon entropy of p is called the entanglement entropy of

|ψ〉
E (|ψ〉) = H(p) = −

∑
pi log pi .

All bi-partite quantum pure states have

dimension dAdB − 1, whereas product states

have dimension dA + dB − 2, which is

strictly smaller =⇒ a generic pure state is

entangled!



Quantum entanglement for pure states

Separable pure states = rank 1 tensors

Entangled pure states = rank ≥ 2 tensors



Mixed quantum states



Mixed states and entanglement

Mixed quantum systems with d degrees of freedom are described by

density matrices or mixed states

ρ ∈M1,+(Cd); Trρ = 1 and ρ ≥ 0.

Pure states are the particular case of rank one projectors, and correspond

to unit vectors ψ ∈ Cd

|ψ〉〈ψ| ∈ M1,+(Cd).

They are the extreme points of the convex body M1,+(Cd).

Two quantum systems: ρAB ∈M1,+(CdA ⊗ CdB ).

A mixed state ρAB is called separable if it can be written as a convex

combination of product states

ρAB ∈ SEP ⇐⇒ ρAB =
∑
i

tiσ
(A)
i ⊗ σ(B)

i ,

with ti ≥ 0,
∑

i ti = 1, σ
(A,B)
i ∈M1,+(CdA,B ). Non-separable states are

called entangled.



Mixed state entanglement is hard, but...

Deciding if a given ρAB is separable is NP-hard. Detecting entanglement

for general states is a difficult, central problem in QIT.

A map f :M(Cd)→M(Cd′) is called

• positive if A ≥ 0 =⇒ f (A) ≥ 0;

• completely positive if idk ⊗ f is positive for all k ≥ 1.

If f :M(CdB )→M(CdB ) is CP, then for every state ρAB one has

[iddA ⊗ f ](ρAB) ≥ 0.

If f :M(CdB )→M(CdB ) is only positive, then for every separable state

ρAB , one has [iddA ⊗ f ](ρAB) ≥ 0.



Entanglement detection via positive, but not CP maps

• Positive, but not CP maps f yield entanglement criteria: given ρAB , if

[iddA ⊗ f ](ρAB) � 0, then ρAB is entangled.

• The following converse holds: if, for all positive, but not CP maps f ,

[iddA ⊗ f ](ρAB) ≥ 0, then ρAB is separable.

• The transposition map Θ(X ) = X> is positive, but not CP. Put

PPT := {ρAB ∈M1,+(CdA ⊗ CdB ) | [iddA ⊗ΘdB ](ρAB) ≥ 0}.

• The reduction map R(X ) = Tr(X ) · I − X is positive, but not CP.

RED := {ρAB ∈M1,+(CdA ⊗ CdB ) | [iddA ⊗ RdB ](ρAB) ≥ 0}.

• Both criteria above detect pure entanglement: for f = Θ,R,

[iddA ⊗ f ](|ψ〉AB〈ψ|) ≥ 0 ⇐⇒ |ψ〉AB is separable.



The PPT criterion at work

• Recall the Bell state ρ12 = |ψ〉〈ψ|, where

C2 ⊗ C2 3 |ψ〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B).

• Written as a matrix in M1,+
2·2 (C)

ρAB =
1

2


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 =
1

2

(
B11 B12

B21 B22

)
.

• Partial transposition: transpose each block Bij :

[id2 ⊗Θ](ρAB) =
1

2


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 .

• This matrix is no longer positive =⇒ the state is entangled.



The problem we consider

M1,+ = {ρ : Trρ = 1 and ρ ≥ 0}

SEP =

{∑
i

tiρ
(A)
i ⊗ ρ(B)

i

}
PPT = {ρAB : [iddA ⊗ΘdB ](ρAB) ≥ 0}
RED = {ρAB : [iddA ⊗ RdB ](ρAB) ≥ 0}

M1,+

SEP

PPT

RED

Problem

Compare the convex sets

SEP ⊆ PPT ⊆ RED ⊆M1,+(CdAdB ).

• For (dA, dB) ∈ {(2, 2), (2, 3), (3, 2)} we have SEP = PPT . In other

dimensions, the inclusion SEP ⊂ PPT is strict.

• For dB = 2 we have PPT = RED. In other dimensions, the inclusion

PPT ⊂ RED is strict.



Random quantum states



Probability measures on M1,+
d (C)

• We want to measure volumes of subsets of M1,+
d (C), with d = dAdB .

• A natural choice is to use the Lebesgue measure (see M1,+
d (C) as a

compact subset of Msa
d (C)). The set of separable states SEP has

positive volume, since SEP contains an open ball around I/d .

• Another choice - open quantum systems point of view: assume your

system Hilbert space Cd = CdA ⊗CdB is coupled to an environment CdC .

• On the tri-partite system HABC = CdA ⊗ CdB ⊗ CdC , consider a random

pure state |ψ〉ABC , i.e. a uniform random point on the unit sphere of the

total Hilbert space HABC .

• Trace out the environment CdC to get a random density matrix

ρAB = TrC |ψ〉ABC 〈ψ|.

• These probability measures have been introduced by Życzkowski and

Sommers and they are called the induced measures of parameters

d = dAdB and s = dC ; we denote them by µd,s .

• Remarkably, the Lebesgue measure is obtained for s = d .



Probability measures on M1,+
d (C)

• Here’s an equivalent way of defining the measures µd,s , in the spirit of

Random Matrix Theory.

• Let X ∈Md×s(C) be a d × s matrix with i.i.d. complex standard

Gaussian entries (i.e. a Ginibre random matrix). Define

Wd,s = XX ∗ and M1,+(Cd) 3 ρd,s =
XX ∗

Tr(XX ∗)
=

Wd,s

TrWd,s
.

• The random matrix Wd,s is called a Wishart matrix and the distribution

of ρd,s is precisely µd,s .

• The measure µd,s is unitarily invariant: if ρ ∼ µd,s and U is a fixed

unitary matrix, then UρU∗ ∼ µd,s .

• Density of µd,s : dP(ρ) = Cd,s det(ρ)s−d1ρ≥0,Tr ρ=1 dρ.

• Integrating out the eigenvectors, we obtain the eigenvalue density

formula for random quantum states:

dP(λ1, . . . , λd) = C ′d,s

[∏
i

λs−di

]∏
i<j

(λi − λj)2

 1λi≥0,
∑

i λi=1 dλ.



Eigenvalues for induced measures

Figure 1: Induced measures for d = 3 and s = 3, 5, 7, 10.



Eigenvalues for induced measures
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Figure 2: Induced measures for d = 3 and s = 3, 5, 7, 10.



Volume of convex sets under the induced measures

• Fix d , and let C ⊂M1,+(Cd) a convex body, with Id/d ∈ int(C ). Then

lim
s→∞

µd,s(C ) = 1.

In other words, the eigenvalues of a random density matrix ρAB ∼ µd,s

with d fixed and s →∞ converge to 1/d .

Definition

A pair of functions (s0(d), s1(d)) are called a threshold for a family of

convex sets (Kd)d if both conditions below hold

If s(d) . s0(d), then

lim
d→∞

µd,s(d)(Kd) = 0;

If s(d) & s1(d), then

lim
d→∞

µd,s(d)(Kd) = 1.



Thresholds for entanglement criteria

• Below, the threshold functions s0,1(d) are of the form

s0(d) = s1(d) = cd ; we put r := min(dA, dB).

Crit. \ Reg. dA = dB →∞ dB →∞ dA →∞

SEP ∞ (r . c . r log2 r) ? ?

PPT 4 2 + 2
√

1− 1
r2 2 + 2

√
1− 1

r2

RED 0 0 (1+
√
r+1)2

r(r−1)

• The results in the table above can be interpreted in the following way:

for a convex set K having a threshold c , a random density matrix

ρAB ∼ µd,s with large s, d will satisfy

• If s/d > c, P[ρAB ∈ K ] ≈ 1

• If s/d < c, P[ρAB ∈ K ] ≈ 0.



Proof elements

• The main task is to compute the probability that some random matrices

are positive semidefinite or not.

• This is a very difficult computation to perform at fixed Hilbert space

dimension; the asymptotic theory is much easier (one or both

dA,B →∞).

• To a selfadjoint matrix X ∈Md(C), with spectrum x = (x1, . . . , xd),

associate its empirical spectral distribution

µX =
1

d

d∑
i=1

δxi .

• The probability measure µX contains all the information about the

spectrum of X .

• A sequence of matrices Xd converges in moments towards a probability

measure µ if, for all integer p ≥ 1,

lim
d→∞

1

d
Tr(X p

d ) = lim
d→∞

∫
xpdµXd

(x) =

∫
xpdµ(x).



Wishart matrices

Theorem (Marcenko-Pastur)

Let W be a complex Wishart matrix of parameters (d , cd). Then,

almost surely with d →∞, the empirical spectral distribution of W /d

converges in moments to a free Poisson distribution

(a.k.a. Marčenko-Pastur distribution) πc of parameter c .
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Figure 3: Eigenvalue distribution for Wishart matrices. In blue, the density of

theoretical limiting distribution, πc . In the two pictures, d = 1000, and

c = 1, 5.



Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn). Then,

almost surely with d →∞, the empirical spectral distribution of

[id⊗Θ](WAB/d) converges in moments to a free difference of free

Poisson distributions of respective parameters cn(n ± 1)/2.

Corollary

The limiting measure above has positive support iff

c > cPPT := 2 + 2

√
1− 1

n2
.



Partial transposition criterion - numerics
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Figure 4: Wishart matrices before (left) and after (right) the application of the

partial transposition. Here, d = dA = 200, n = dB = 3, and c = 5 (top), c = 3

(bottom). Note that 5 > cPPT = 3.88562 > 3.



Reduction of a Wishart matrix

Theorem (Jivulescu, Lupa, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn). Then,

almost surely with d →∞, the empirical spectral distribution of

[id⊗ R](WAB/d) converges in moments to a compound free Poisson

distribution πνn,c of parameter νn,c = cδ1−n + c(n2 − 1)δ1.

Corollary

The limiting measure above has positive support iff

c > cRED :=
(1 +

√
n + 1)2

n(n − 1)
.

Remark

We have, for n = 2, cPPT = cRED = 2 +
√

3: the two criteria are know

to be equivalent for qubit-qudit systems. For n ≥ 3, we have

cPPT > cRED : the reduction criterion is, in general, weaker than the

PPT criterion.



Reduction criterion - numerics
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Figure 5: Wishart matrices before (left) and after (right) the application of the

partial reduction map. Here, d = dA = 200, n = dB = 3, and c = 2 (top),

c = 1 (bottom). Note that 2 > cRED = 1.5 > 1.



The free additive convolution of probability measures

• Given two self-adjoint matrices X ,Y with spectra x , y , what is the

spectrum of X + Y ?

• In general, a very difficult problem, the answer depends on the relative

position of the eigenspaces of X and Y (Horn problem).

• When the size of X ,Y is large, and the eigenvectors are in general

position, free probability theory gives the answer.

• Free additive convolution of two compactly supported probability

distributions µ, ν: sample x , y ∈ Rd from µ, ν and consider

Z := diag(x) + Udiag(y)U∗,

where U is a d × d Haar unitary random matrix. Then, as d →∞, the

empirical eigenvalue distribution of Z converges to a probability

measure denoted by µ� ν.

• The operation � is called free additive convolution, and it can be

computed via the R-transform (a kind of Fourier transform in the free

world)



Free additive convolution - an example

• We have[
1

2
δ0 +

1

2
δ1

]
�

[
1

2
δ0 +

1

2
δ1

]
=

1

π
√

x(2− x)
1(0,2)(x) dx .

0.5 1.0 1.5 2.0
x0.0
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• Compare to the classical situation, where ∗ denotes the (additive)

classical convolution[
1

2
δ0 +

1

2
δ1

]
∗
[

1

2
δ0 +

1

2
δ1

]
=

1

4
δ0 +

1

2
δ1 +

1

4
δ2.



The free Poisson distribution

• The limiting distribution of Wishart matrices (and of random density

matrices from µd,cd) is the free Poisson distribution

πc := max(1− c , 0)δ0 +

√
4c − (x − 1− c)2

2πx
1[(1−

√
c)2,(1+

√
c)2](x) dx .

• One can show a free Poisson Central Limit Theorem:

lim
n→∞

[(
1− c

n

)
δ0 +

c

n
δ1

]�n

= πc .

• The limit measure for [id⊗Θ](WAB/d) is

πPPT
c := πcn(n+1)/2 � D−1πcn(n−1)/2.

• The free compound Poisson measure of parameter ν is defined via a

generalized free Poisson central limit theorem

lim
n→∞

[(
1− ν(R)

n

)
δ0 +

1

n
ν

]�n

=: πν .

• The limit measure for [id⊗R](WAB/d) is

πRED
c := πcδ1−n+c(n2−1)δ1

.



Block-modified random states



Recap: how powerful are the entanglement criteria?

• Let f : Mm →Mn be a given positive linear map (usually, f not CP).

• If [f ⊗ id](ρ) � 0, then ρ ∈Mm ⊗Md is entangled.

• If [f ⊗ id](ρ) ≥ 0, then . . . we do not know.

• Define

Kf := {ρ : [f ⊗ id](ρ) ≥ 0} ⊇ SEP.

• We would like to compare (e.g. using the volume) the sets Kf and SEP.

• Several probability measures on the set M1,+
md : for any parameter

s ≥ md , let W be a Wishart matrix of parameters (md , s): W = XX ∗,

with X ∈Mmd×s a Ginibre random matrix (the entries of X are

i.i.d. complex Gaussian random variables).

• Let Ps be the probability measure obtained by pushing forward the

Wishart measure by the map W 7→W /Tr(W ).

• To compute Ps(Kf ), one needs to decide whether the spectrum of the

random matrix [f ⊗ id](W ) is positive (here, d is large, m, n are fixed)

 block modified matrices.



Block-modified random matrices - previous results

Many cases studied independently, using the method of moments for

Wishart matrices; no unified approach, each case requires a separate

analysis:

• [Aubrun ’12]: the asymptotic spectrum of W Γ := [id⊗ t](W ) is a

shifted semicircular, for W ∈Md ⊗Md , d →∞
• [Banica, N. ’13]: the asymptotic spectrum of W Γ := [id⊗ t](W ) is a

free difference of free Poisson distributions, for W ∈Mm ⊗Md ,

d →∞, m fixed

• [Banica, N. ’15]: the asymptotic spectrum of W f := [id⊗ f](W ) is the

free multiplicative convolution between a free compound Poisson

distribution and the distribution of f (I ); the result requires f to come

from a “wire diagram”

• [Jivulescu, Lupa, N. ’14,’15]: the asymptotic spectrum of

W red := W − [Tr⊗ id](W )⊗ I is a compound free Poisson distribution,

for W ∈Mm ⊗Md , d →∞, m fixed (here, f (X ) = X − Tr(X ) · I )
• etc...

 we propose a general, unified framework for such problems



The problem

• Consider a sequence of unitarily invariant random matrices

Xd ∈Mn ⊗Md :

∀U ∈ Und , law(Xd) = law(UXdU
∗).

• Fix n and assume that, as d →∞, the matrices Xd have have limiting

spectral distribution µ:

lim
d→∞

1

nd

nd∑
i=1

δλi (Xd ) = µ.

• Define the modified version of Xd :

X f
d = [f ⊗ idd ](Xd).

• Our goal: compute µf , the limiting spectral distribution of X f
d , as a

function of

1. The initial distribution µ

2. The function f .

• Results: achieved this for all µ and a fairly large class of f .

• Tools: operator-valued free probability theory.



Taking the limit

• We can write

X f
d = [f ⊗ id](Xd) =

n∑
i,j,k,l=1

cijkl(Eij ⊗ Id)Xd(Ekl ⊗ Id) ∈Mn ⊗Md ,

for some coefficients cijkl ∈ C, which are actually the entries of the Choi

matrix of f (see tomorrow’s talk).

• At the limit:

x f =
n∑

i,j,k,l=1

cijklei,jxek,l ,

for some random variable x having the same distribution as the limit of

Xd and some (abstract) matrix units eij .

 In the rectangular case m 6= n, one needs to use the techniques of

Benaych-Georges; we will have freeness with amalgamation on 〈pm, pm〉.



The limiting distributions of block-modified matrices

Theorem

For “well-behaved” functions f , then the distribution of x f has the

following R-transform:

Rx f (z) =
s∑

i=1

diρiRx

[ρi
n
z
]
,

where ρi are the distinct eigenvalues of C and ndi are ranks of the

corresponding eigenprojectors. In other words, if µ, resp. µf , are the

respective distributions of x and x f , then

µf = �s
i=1(Dρi/nµ)�ndi .

The transposition, f (X ) = X>:

µT =
(
D1/nµ

�n(n+1)/2
)
�
(
D−1/nµ

�n(n−1)/2
)
.



Range of applications

The following functions are well behaved

1. Unitary conjugations f (X ) = UXU∗

2. The trace and its dual f (X ) = Tr(X ), f (x) = xIn
3. The transposition f (X ) = X>

4. The reduction map f (X ) = In · Tr(X )− X

5. Linear combinations of the above f (X ) = αX + βTr(X )In + γX>

6. Mixtures of orthogonal automorphisms

f (X ) =
n2∑
i=1

αiUiXU
∗
i ,

for orthogonal unitary operators Ui

Tr(UiU
∗
j ) = nδij .

7. The Choi map

f ([xij ]) =

ax11 + bx22 + cx33 −x12 −x13

−x21 cx11 + ax22 + bx33 −x23

−x31 −x32 bx11 + cx22 + ax33

 .



Support of the resulting measures

• Recall that we are interested ultimately in the positivity of the support

of the resulting operators x f

• It is in general hard to obtain analytical expressions for the support of

x f : one has to solve polynomials equations of large degree.

• Example: πtn
c has positive support iff c > 2 + 2

√
1− 1

n2

Lemma (Collins, Fukuda, Zhong ’15)

Let µ be a probability measure having mean m and variance σ2, whose

support is contained in [A,B]. Then, for any T ≥ 1 such that µ�T has

no atoms, we have

supp(µ�T ) ⊆ [A + m(T − 1)− 2σ
√
T − 1,B + m(T − 1) + 2σ

√
T − 1].

Proposition (I.N. ’18)

Let µ be a non-atomic probability measure having mean m and variance

σ2, whose support is contained in the compact interval [A,B]. Then,

provided that n(m − 2σ) > B − A + 2σ, we have supp(µΓ) ⊂ (0,∞).



Marchenko-Pastur distribution

dµ(x) =

√
x(4− x)

2πx
1(0,4](x) dx

f

([
a11 a12

a21 a22

])
=

[
11a11 + 15a22 − 25a12 − 25a21 36a21

36a12 11a11 − 4a22

]



Wigner semicircle distribution

dµ(x) =
1

2π

√
4− x21[−2,2](x) dx .



Arcsine distribution

dµ(x) =
1

π
√
x(1− x)

1(0,1)(x) dx .



Merci!
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