Random quantum states and channels

Ion Nechita (CNRS, LPT Toulouse)

Le Teich, June 21st 2019

Summary from yesterday

- Pure quantum states of one particle: unit norm vectors inside a Hilbert space
- More particles \rightsquigarrow take the tensor product of the Hilbert spaces
- Separable states $=$ rank- 1 tensors; entangled states $=$ rank ≥ 2 tensors
- Random pure states: uniform point on the unit sphere
- Mixed quantum states (or density matrices): positive semidefinite matrices of unit trace $\rho \geq 0, \operatorname{Tr} \rho=1$
- Extreme points of the set of mixed states $=P_{x}$, with x pure
- Separable (i.e. non-entangled state)

$$
\rho_{A B}=\sum_{i} t_{i} \sigma_{i}^{(A)} \otimes \sigma_{i}^{(B)}
$$

- Random mixed states: normalized Wishart matrix
- Partial transposition $\rho_{A B}^{\ulcorner }:=[$id $\otimes \Theta]\left(\rho_{A B}\right)$. If $\rho_{A B}^{\Gamma} \nsupseteq 0$, then $\rho_{A B}$ is entangled.

Outline

Quantum channels

Random quantum channels

Entanglement of subspaces

Random subspaces

Quantum channels

Quantum channels

Channels	Deterministic	Random mixture
Classical	$f:\{1, \ldots, d\} \rightarrow\{1, \ldots, d\}$	Q Markov (stochastic)
Quantum	$U \in \mathcal{U}(d)$	Φ CPTP map

- Classical channels (acting on probability vectors):
- Positivity: for all $i, j, Q_{i j} \geq 0$
- Mass preservation: for all $j, \sum_{i} Q_{i j}=1$.
- Quantum channels: CPTP maps $\Phi: \mathcal{M}_{d}(\mathbb{C}) \rightarrow \mathcal{M}_{d^{\prime}}(\mathbb{C})$
- CP - complete positivity: $\Phi \otimes \mathrm{id}_{r}$ is a positive map, $\forall r \geq 1$
- TP - trace preservation: $\operatorname{Tr} \circ \Phi=\operatorname{Tr}$.

Structure of quantum channels

Theorem [Stinespring-Kraus-Choi]

Let $\Phi: \mathcal{M}_{d}(\mathbb{C}) \rightarrow \mathcal{M}_{d}(\mathbb{C})$ be a linear map. TFAE:

1. The map Φ is completely positive and trace preserving (CPTP).
2. [Stinespring] There exist an integer n ($n=d^{2}$ suffices) and an isometry $W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{d} \otimes \mathbb{C}^{n}$ such that

$$
\Phi(X)=\left[\mathrm{id}_{d} \otimes \operatorname{Tr}_{n}\right]\left(W X W^{*}\right) .
$$

3. [Kraus] There exist operators $A_{1}, \ldots, A_{n} \in \mathcal{M}_{d}(\mathbb{C})$ satisfying $\sum_{i} A_{i}^{*} A_{i}=I_{d}$ such that

$$
\Phi(X)=\sum_{i=1}^{n} A_{i} X A_{i}^{*}
$$

4. [Choi] The Choi matrix C_{Φ} is positive semidefinite, where

$$
C_{\phi}:=\sum_{i, j=1}^{d} E_{i j} \otimes \Phi\left(E_{i j}\right) \in \mathcal{M}_{d}(\mathbb{C}) \otimes \mathcal{M}_{d}(\mathbb{C})
$$

and $[\mathrm{id} \otimes \operatorname{Tr}]\left(C_{\Phi}\right)=I_{d}$.

Examples and non-examples

- The identity channel id: $\mathcal{M}_{d} \rightarrow \mathcal{M}_{d}$ has the (un-normalized) Bell state as its Choi matrix

$$
C_{\mathrm{id}}=\sum_{i, j=1}^{d}|i i\rangle\langle j j|=\sum_{i, j=1}^{d} e_{i} \otimes e_{i} \cdot e_{j}^{*} \otimes e_{j}^{*} .
$$

- The totally depolarizing channel (or the conditional expectation on scalars) $\Delta(X)=(\operatorname{Tr} X) I / d$ has Choi matrix $I_{d^{2}} / d$
- The totally dephasing channel (or the conditional expectation on diagonal matrices) D has Kraus decomposition

$$
D(\rho)=\sum_{i=1}^{d}|i\rangle\langle i| \rho|i\rangle\langle i| .
$$

- The transposition $\Theta(\rho)=\rho^{\top}$ is not a quantum channel, since it is not completely positive. Its Choi matrix is $C_{\Theta}=F$, where F is the flip operator $F x \otimes y=y \otimes x . F$ has eigenvalues +1 with multiplicity $d(d+1) / 2$ and -1 with multiplicity $d(d-1) / 2$.

Intermezzo: block modified random matrices

- Consider a sequence of unitarily invariant random matrices $X_{d} \in \mathbb{M}_{n} \otimes \mathbb{M}_{d}$. Fix n and assume that, as $d \rightarrow \infty$, the matrices X_{d} have have limiting spectral distribution $\mu: \lim _{d \rightarrow \infty} \frac{1}{n d} \sum_{i=1}^{n d} \delta_{\lambda_{i}\left(X_{d}\right)}=\mu$.
- Define the modified version of X_{d} :

$$
X_{d}^{f}=\left[f \otimes \operatorname{id}_{d}\right]\left(X_{d}\right) .
$$

- Our goal: compute μ^{f}, the limiting spectral distribution of X_{d}^{f}, as a function of the initial distribution μ and the linear functional f.

Theorem (Arizmendi, Vargas, N. '16)

If the Choi matrix C_{f} satisfies the unitarity condition, then

$$
\mu^{f}=\boxplus_{i=1}^{s}\left(D_{\rho_{i} / n} \mu\right)^{\boxplus n d_{i}},
$$

where ρ_{i} are the distinct eigenvalues of C_{f} and nd d_{i} are ranks of the corresponding eigenprojectors P_{i}.

Unitarity condition: $\forall i,[\mathrm{id} \otimes \operatorname{Tr}]\left(P_{i}\right)=d_{i} I_{n}$.

Random quantum channels

Definition

There exist several natural candidates for probability distributions on the convex set of quantum channels:

- The Lebesgue measure
- Pick the isometry W in the Stinespring decomposition at random: W is a Haar-random isometry
- Pick the Kraus operators A_{i} at random: G_{i} are i.i.d. Ginibre matrices, define $A_{i}=G_{i} S^{-1 / 2}$, with $S=\sum_{i} G_{i}^{*} G_{i}$
- Pick the Choi matrix at random: \tilde{C} is a Wishart matrix, define $C:=\left[I \otimes T^{-1 / 2}\right] \tilde{C}\left[I \otimes T^{-1 / 2}\right]^{*}$, with $T=[\operatorname{Tr} \otimes \mathrm{id}] \tilde{C}$.

Theorem (Kukulski, N., Pawela, Puchala, Zyczkowski '19)

The above distributions are identical, when the respective parameters match.

Computationally, the random Kraus operators procedure is the cheapest; mathematically, the random isometry procedure is the more interesting and easier to deal with.

More on the distribution of random quantum channels

- For channels $\Phi: \mathcal{M}_{d_{1}} \rightarrow \mathcal{M}_{d_{2}}$, if s is an integer parameter, then:
- One has to take a Haar-random isometry $W ; \mathbb{C}^{d_{1}} \rightarrow \mathbb{C}^{d_{2}} \otimes \mathbb{C}^{s}$
- One has to take G_{i} i.i.d. Ginibre matrices of size $d_{2} \times d_{1}$, for $i=1,2, \ldots, s$
- One has to take the un-normalized Choi matrix \tilde{C} a Wishart matrix of parameters $d_{1} d_{2}, s$
- The density of the normalized Choi matrix reads

$$
f(C)=\delta\left([\operatorname{id} \otimes \operatorname{Tr}](C)-I_{d_{1}}\right) \operatorname{det} C^{s-d_{1} d_{2}} \text { dLeb. }
$$

- The Lebesgue measure is obtained for $s=d_{1} d_{2}$.
- For any fixed pure state $P_{x}=x x^{*}$, the output matrix $\rho=\Phi\left(P_{x}\right)$ follows the induced distribution of parameters $\left(d_{2}, s\right)$, i.e. has the distribution of a trace-normalized Wishart.
- However, different inputs yield correlated outputs!

Some notions of entropy

- Let $\Delta_{k}=\left\{\lambda \in \mathbb{R}^{k}: \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1,\right\}$ be the probability simplex. We write Δ_{k}^{\downarrow} for the set of ordered probability vectors, $\lambda_{1} \geq \cdots \geq \lambda_{k}$.
- The Shannon entropy of a probability vector $\lambda \in \Delta_{k}$

$$
H(\lambda)=-\sum_{i=1}^{k} \lambda_{i} \log \lambda_{i} \in[0, \log k] .
$$

- The von Neumann entropy of $\rho \in \mathcal{M}_{k}^{1,+}$

$$
H(\rho)=-\operatorname{Tr}(\rho \log \rho)=-\sum_{i=1}^{k} \lambda_{i}(\rho) \log \lambda_{i}(\rho) .
$$

- For $p \geq 0$, define the p-Rényi entropy

$$
H_{p}(\rho)=\frac{\log \operatorname{Tr}\left(\rho^{p}\right)}{1-p}=\frac{\log \sum_{i} \lambda_{i}(\rho)^{p}}{1-p} ; \quad H(\cdot)=\lim _{p \rightarrow 1} H_{p}(\cdot) .
$$

- The entropy is additive: $H_{p}\left(\rho_{1} \otimes \rho_{2}\right)=H_{p}\left(\rho_{1}\right)+H_{p}\left(\rho_{2}\right)$.

Additivity of the minimum output entropy

The minimum output entropy of a quantum channel Φ is

$$
H_{p}^{\min }(\Phi):=\min _{\rho \in \mathcal{M}_{d}^{1+}} H_{p}(\Phi(\rho)) .
$$

Conjecture (Amosov, Holevo and Werner '00)

The quantity $H_{p}^{\text {min }}$ is additive: for any quantum channels Φ_{1}, Φ_{2}

$$
H_{p}^{\min }\left(\Phi_{1} \otimes \Phi_{2}\right)=H_{p}^{\min }\left(\Phi_{1}\right)+H_{p}^{\min }\left(\Phi_{2}\right) .
$$

- Additivity of $H_{p=1}^{\min }$ implies a simple formula for the capacity of channels to transmit classical information; in particular, it implies the additivity of the classical capacity C.
- $C(\Phi)=\lim _{r \rightarrow \infty} \frac{\chi\left(\phi^{\otimes r}\right)}{r}$, with the Holevo quantity

$$
\chi(\Phi):=\max _{p_{i}, \rho_{i}} H\left(\sum_{i} p_{i} \Phi\left(\rho_{i}\right)\right)-\sum_{i} p_{i} H\left(\Phi\left(\rho_{i}\right)\right)
$$

- Compare with the capacity of a classical channel Q :

$$
C(Q)=\min _{X} I(X: Y) \quad \text { where } Y=Q(X)
$$

Additivity of the minimum output entropy

Conjecture (Amosov, Holevo and Werner '00)

The quantity $H_{p}^{\min }(\Phi)=\min _{\rho \in \mathcal{M}_{d}^{1,+}} H_{p}(\Phi(\rho))$ is additive: for any quantum channels Φ_{1}, Φ_{2}

$$
H_{p}^{m i n}\left(\Phi_{1} \otimes \Phi_{2}\right)=H_{p}^{\min }\left(\Phi_{1}\right)+H_{p}^{m i n}\left(\Phi_{2}\right)
$$

- Given Φ_{1}, Φ_{2}, the \leq direction of the equality is trivial, take $\rho_{12}=\rho_{1} \otimes \rho_{2}$.
- Additivity has been shown to hold for a large class of channels: unitary, unital qubit, depolarizing, dephasing, entanglement breaking, ...
- But... the Additivity Conjecture is false ! [Hayden, Winter '08 for $p>1$, Hastings '09 for $p=1$]
- Counterexamples: mostly random channels. Deterministic counterexamples: '02 Werner \& Holevo ($p>4.79$), '07 Cubitt et al $(p<0.11)$ and '09 Grudka et al $(p>2)$.

Stinespring dilation

Theorem (Stinespring dilation)

For any channel : $\mathcal{M}_{d} \rightarrow \mathcal{M}_{k}$ there exists an isometry
$W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ such that

$$
\Phi(\rho)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right]\left(W \rho W^{*}\right)
$$

- By convexity properties, the minimum output entropy of Φ is attained on pure states i.e. rank one projectors $P_{x}=x x^{*}=|x\rangle\langle x|$.
- Since $\Phi\left(P_{x}\right)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{\mathrm{n}}\right]\left(W P_{x} W^{*}\right)=\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{W_{x}}$, the minimum output entropy of the channel Φ is

$$
H^{\min }(\Phi)=\min _{x \in \mathbb{C}^{d},\|x\|=1} H\left(\Phi\left(P_{x}\right)\right)=\min _{y \in \operatorname{Im} W,\|y\|=1} H\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{y}\right),
$$

where $V=\operatorname{Im} W \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ is a subspace of dimension d.

- The MOE $H^{\text {min }}(\Phi)$ depends only on the subspace V.

Entanglement of subspaces

Eigen- and singular values

Singular value decomposition of a matrix $X \in \mathcal{M}_{k \times n}(\mathbb{C})(k \leq n)$

$$
X=U \Sigma V^{*}=\sum_{i=1}^{k} \sqrt{\lambda_{i}\left(X X^{*}\right)} e_{i} f_{i}^{*}
$$

where e_{i}, f_{i} are orthonormal families in $\mathbb{C}^{k}, \mathbb{C}^{n}$, and $\lambda_{1} \geq \cdots \geq \lambda_{k} \geq 0$ are the (squares of the) singular values of X, or the eigenvalues of $X X^{*}$.

Using the isomorphism $\mathcal{M}_{k \times n} \simeq \mathbb{C}^{k} \otimes \mathbb{C}^{n}, X$ can be seen as a vector in a tensor product $x \in \mathbb{C}^{k} \otimes \mathbb{C}^{n}$. The singular value decomposition of X corresponds to the Schmidt decomposition of x

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i} .
$$

The numbers $\lambda_{i}(x)$ are also eigenvalues of the reduced density matrix

$$
X X^{*}=\left[\operatorname{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}=\sum_{i=1}^{k} \lambda_{i}(x) e_{i} e_{i}^{*} .
$$

Entanglement of a vector

For a vector

$$
x=\sum_{i=1}^{k} \sqrt{\lambda_{i}(x)} e_{i} \otimes f_{i}
$$

define $H(x)=H(\lambda(x))=H(\rho)=-\sum_{i} \lambda_{i}(x) \log \lambda_{i}(x)$, the entropy of entanglement of the bipartite pure state x.

Note that

1. The state x is separable, $x=e \otimes f$, iff. $H(x)=0$.
2. The state x is maximally entangled, $x=k^{-1 / 2} \sum_{i} e_{i} \otimes f_{i}$, iff.

$$
H(x)=\log k .
$$

Recall that we are interested in computing

$$
\begin{aligned}
H^{\min }(\Phi) & =\min _{x \in \mathbb{C}^{d},\|x\|=1} H\left(\Phi\left(P_{x}\right)\right)=\min _{y \in \operatorname{Im} W,\|y\|=1} H\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{y}\right) \\
& =\min _{y \in \operatorname{Im} W,\|y\|=1} H(y) .
\end{aligned}
$$

Entanglement of a subspace

For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$, define

$$
H^{\min }(V):=\min _{y \in V,\|y\|=1} H(y),
$$

the minimal entanglement of vectors in V.
A subspace V is called entangled if $H^{\min }(V)>0$, i.e. if it does not contain separable vectors $x \otimes y$.

Proposition (Parthasarathy '03)

 If V is entangled, then $\operatorname{dim} V \leq(k-1)(n-1)$.Example: $V_{e n t}=\left\{x: \forall r, \sum_{i+j=r} x_{i j}=0\right\}$.

Singular values of vectors from a subspace

Entropy is just a statistic, look at the set of all singular values directly !
For a subspace $V \subset \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ of dimension $\operatorname{dim} V=d$, define the set eigen-/singular values or Schmidt coefficients

$$
K_{V}:=\{\lambda(x): x \in V,\|x\|=1\} .
$$

\rightsquigarrow Our goal is to understand K_{V}.

- The set K_{V} is a compact subset of the ordered probability simplex Δ_{k}^{\downarrow}.
- Local invariance: $K_{\left(U_{1} \otimes U_{2}\right) V}=K_{V}$, for unitary matrices $U_{1} \in \mathcal{U}(k)$ and $U_{2} \in \mathcal{U}(n)$.
- Monotonicity: if $V_{1} \subset V_{2}$, then $K_{V_{1}} \subset K_{V_{2}}$.
- Recovering minimum entropies:

$$
H_{p}^{\min }(\Phi)=H_{p}^{\min }(V)=\min _{\lambda \in K_{V}} H_{p}(\lambda) .
$$

Examples

The anti-symmetric subspace provides the (explicit) counter-example for the additivity of the p-Rényi entropy.

- Let $k=n$ and put $V=\Lambda^{2}\left(\mathbb{C}^{k}\right)$
- The subspace V is almost half of the total space: $\operatorname{dim} V=k(k-1) / 2$.
- Example of a vector in V :

$$
V \ni x=\frac{1}{\sqrt{2}}(e \otimes f-f \otimes e) .
$$

- Fact: singular values of vectors in V come in pairs.
- Hence, the least entropy vector in V is as above, with $e \perp f$ and $H(x)=\log 2$.
- Thus, $H^{\text {min }}(V)=\log 2$ and one can show that

$$
K_{V}=\left\{\left(\lambda_{1}, \lambda_{1}, \lambda_{2}, \lambda_{2}, \ldots\right) \in \Delta_{k}: \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1 / 2\right\} .
$$

Examples

$V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.

Examples

$V=\operatorname{span}\left\{G_{1}, G_{2}\right\}$, where $G_{1,2}$ are 3×3 independent Ginibre random matrices.

Examples

$$
V=\operatorname{span}\left\{I_{3}, G\right\} \text {, where } G \text { is a } 3 \times 3 \text { Ginibre random matrix. }
$$

Examples

$$
V=\operatorname{span}\left\{I_{3}, G\right\} \text {, where } G \text { is a } 3 \times 3 \text { Ginibre random matrix. }
$$

A big open problem

Find explicit examples of subspaces V with

1. large $\operatorname{dim} V$;
2. large $H^{\min }(V)$.

Random subspaces

Random subspaces

We are interested in random subspaces (or random channels).

- There is an uniform (or Haar) measure on the set of isometries $\left\{W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}: W W^{*}=I_{d}\right\}:$ take a $k n \times k n$ Haar distributed random unitary matrix $U \in \mathcal{U}(k n)$ and take W to be the restriction of U to the first d coordinates.
- We call random quantum channels the probability distribution obtained as the push-forward of this measure through the Stinespring dilation.
- A random subspace is the image of a random isometry, $V=\operatorname{Im} W$.
- Equivalently, $V=\operatorname{span}\left\{U_{1}, \ldots, U_{d}\right\}$, where U_{i} are the columns of a Haar random unitary matrix $U \in \mathcal{U}(k n)$.

Main result

For the rest of the talk, we consider the following asymptotic regime: k fixed, $n \rightarrow \infty$, and $d \sim t k n$, for a fixed parameter $t \in(0,1)$.

Theorem (Belinschi, Collins, N. '10)

For a sequence of uniformly distributed random subspaces V_{n}, the set $K_{V_{n}}$ of singular values of unit vectors from V_{n} converges (almost surely, in the Hausdorff distance) to a deterministic, convex subset $K_{k, t}$ of the probability simplex Δ_{k}

$$
\mathcal{K}_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\} .
$$

Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed, $n \rightarrow \infty, d \sim t k n$, we have the following a.s. convergence result for random quantum channels Φ (defined via random isometries $\left.W: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}\right)$:

$$
\lim _{n \rightarrow \infty} H^{\min }(\Phi)=\min _{\lambda \in K_{k, t}} H(\lambda) .
$$

It is not just a bound, the exact limit value is obtained.

Theorem (Belinschi, Collins, N. '13)

The minimum entropy element of $K_{k, t}$ is of the form (a, b, b, \ldots, b). The lowest dimension for which a violation of the additivity for $\mathrm{H}^{\text {min }}$ can be observed is $k=183$. For large k, violations of size $1-\varepsilon$ bits can be obtained.

Free Probability Theory

Invented by Voiculescu in the 80 s to solve problems in operator algebras.

- A non-commutative probability space (\mathcal{A}, τ) is an algebra \mathcal{A} with a unital state $\tau: \mathcal{A} \rightarrow \mathbb{C}$. Elements $a \in \mathcal{A}$ are called random variables.
- Examples:
- classical probability spaces $\left(L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}\right)$;
- group algebras ($\mathbb{C} G, \delta_{e}$);
- matrices $\left(\mathcal{M}_{n}, n^{-1} \mathrm{Tr}\right)$;
- random matrices $\left(\mathcal{M}_{n}\left(L^{\infty-}(\Omega, \mathcal{F}, \mathbb{P})\right), \mathbb{E} \circ n^{-1} \mathrm{Tr}\right)$.
- Several notions of independence:
- classical independence, implies commutativity of the random variables;
- free independence.
- If a, b are freely independent random variables, the law of (a, b) can be computed in terms of the laws of a and b. Freeness provides an algorithm for computing joint moments in terms of marginals.
- Example: if $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$ are free, then

$$
\begin{aligned}
& \tau\left(a_{1} b_{1} a_{2} b_{2}\right)=\tau\left(a_{1} a_{2}\right) \tau\left(b_{1}\right) \tau\left(b_{2}\right)+\tau\left(a_{1}\right) \tau\left(a_{2}\right) \tau\left(b_{1} b_{2}\right) \\
&-\tau\left(a_{1}\right) \tau\left(b_{1}\right) \tau\left(a_{2}\right) \tau\left(b_{2}\right)
\end{aligned}
$$

Asymptotic freeness of random matrices

Theorem (Voiculescu '91)

Let $\left(A_{n}\right)$ and $\left(B_{n}\right)$ be sequences of $n \times n$ matrices such that A_{n} and B_{n} converge in distribution (with respect to $n^{-1} \operatorname{Tr}$) for $n \rightarrow \infty$.
Furthermore, let $\left(U_{n}\right)$ be a sequence of Haar unitary $n \times n$ random matrices. Then, A_{n} and $U_{n} B_{n} U_{n}^{*}$ are asymptotically free for $n \rightarrow \infty$.

If A_{n}, B_{n} are matrices of size n, whose spectra converge towards μ_{a}, μ_{b}, the spectrum of $A_{n}+U_{n} B_{n} U_{n}^{*}$ converges to $\mu_{\mathrm{a}} \boxplus \mu_{b}$; here, $\mu_{\mathrm{a}} \boxplus \mu_{b}$ is the distribution of $a+b$, where $a, b \in(\mathcal{A}, \tau)$ are free random variables having distributions resp. μ_{a}, μ_{b}.

If A_{n}, B_{n} are matrices of size n such that $A_{n} \geq 0$, whose spectra converge towards $\mu_{\mathrm{a}}, \mu_{b}$, the spectrum of $A_{n}^{1 / 2} U_{n} B_{n} U_{n}^{*} A_{n}^{1 / 2}$ converges to $\mu_{\mathrm{a}} \boxtimes \mu_{b}$.

Example: truncation of random matrices

Let $P_{n} \in \mathcal{M}_{n}$ a projection of rank $n / 2$; its eigenvalues are 0 and 1 , with multiplicity $n / 2$. Hence, the distribution of P_{n} converges, when $n \rightarrow \infty$, to the Bernoulli probability measure $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.

Let $C_{n} \in \mathcal{M}_{n / 2}$ be the top $n / 2 \times n / 2$ corner of $U_{n} P_{n} U_{n}^{*}$, with U_{n} a Haar random unitary matrix. What is the distribution of C_{n} ? Up to zero blocks, $C_{n}=Q_{n}\left(U_{n} P_{n} U_{n}^{*}\right) Q_{n}$, where Q_{n} is the diagonal orthogonal projection on the first $n / 2$ coordinates of \mathbb{C}^{n}. The distribution of Q_{n} converges to $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$.

Free probability theory tells us that the distribution of C_{n} will converge to

$$
\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right) \boxtimes\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right)=\frac{1}{\pi \sqrt{x(1-x)}} \mathbf{1}_{[0,1]}(x) d x,
$$

which is the arcsine distribution.

Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of relative rank $1 / 2$ and size $n=4000$; in red, the density of the arcsine distribution.

The t-norm

Definition

For a positive integer k, embed \mathbb{R}^{k} as a self-adjoint real subalgebra \mathcal{R} of a C^{*}-ncps (\mathcal{A}, τ), so that $\tau(x)=\left(x_{1}+\cdots+x_{k}\right) / k$. Let p_{t} be a projection of rank $t \in(0,1]$ in \mathcal{A}, free from \mathcal{R}. On the real vector space \mathbb{R}^{k}, we introduce the following norm, called the (t)-norm:

$$
\|x\|_{(t)}:=\left\|p_{t} x p_{t}\right\|_{\infty},
$$

where the vector $x \in \mathbb{R}^{k}$ is identified with its image in \mathcal{R}.

- One can show that $\|\cdot\|_{(t)}$ is indeed a norm, which is permutation invariant.
- When $t>1-1 / k,\|\cdot\|_{(t)}=\|\cdot\|_{\infty}$ on \mathbb{R}^{k}.
- $\lim _{t \rightarrow 0^{+}}\|x\|_{(t)}=k^{-1}\left|\sum_{i} x_{i}\right|$.

Corners of randomly rotated projections

Theorem (Collins '05)

In \mathbb{C}^{n}, choose at random according to the Haar measure two independent subspaces V_{n} and V_{n}^{\prime} of respective dimensions $q_{n} \sim s n$ and $q_{n}^{\prime} \sim t n$ where $s, t \in(0,1]$. Let $P_{n}\left(r e s p . P_{n}^{\prime}\right)$ be the orthogonal projection onto $V_{n}\left(\right.$ resp. $\left.V_{n}^{\prime}\right)$. Then,
$\lim _{n}\left\|P_{n} P_{n}^{\prime} P_{n}\right\|_{\infty}=\varphi(s, t)=\sup \operatorname{supp}\left((1-s) \delta_{0}+s \delta_{1}\right) \boxtimes\left((1-t) \delta_{0}+t \delta_{1}\right)$, with

$$
\varphi(s, t)= \begin{cases}s+t-2 s t+2 \sqrt{s t(1-s)(1-t)} & \text { if } s+t<1 \\ 1 & \text { if } s+t \geq 1\end{cases}
$$

Hence, we can compute

$$
\|\underbrace{1, \cdots, 1}_{j \text { times }}, \underbrace{0, \cdots, 0}_{k-j \text { times }}\|_{(t)}=\varphi\left(\frac{j}{k}, t\right) .
$$

Idea of the proof

A simpler question: what is the largest maximal singular value $\max _{x \in V,\|x\|=1} \lambda_{1}(x)$ of vectors from the subspace V ?

$$
\begin{aligned}
\max _{x \in V,\|x\|=1} \lambda_{1}(x) & =\max _{x \in V,\|x\|=1} \lambda_{1}\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \\
& =\max _{x \in V,\|x\|=1}\left\|\left[\operatorname{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right\| \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[\left(\left[\mathrm{id}_{k} \otimes \operatorname{Tr}_{n}\right] P_{x}\right) \cdot P_{y}\right] \\
& =\max _{x \in V,\|x\|=1} \max _{y \in \mathbb{C}^{k},\|y\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1} \max _{x \in V,\|x\|=1} \operatorname{Tr}\left[P_{x} \cdot P_{y} \otimes \mathrm{I}_{n}\right] \\
& =\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
\end{aligned}
$$

Limit of $\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty}$ for fixed y and random V ?

The set $K_{k, t}$ and t-norms

- $K_{k, t}:=\left\{\lambda \in \Delta_{k} \mid \forall x \in \Delta_{k},\langle\lambda, x\rangle \leq\|x\|_{(t)}\right\}$.
- Recall that

$$
\max _{x \in V,\|x\|=1} \lambda_{1}(x)=\max _{y \in \mathbb{C}^{k},\|y\|=1}\left\|P_{V} P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} .
$$

- For fixed y, P_{V} and $P_{y} \otimes \mathrm{I}_{n}$ are independent projectors of relative ranks t and $1 / k$ respectively.
- Thus, $\left\|P_{V} \cdot P_{y} \otimes \mathrm{I}_{n}\right\|_{\infty} \rightarrow \varphi(t, 1 / k)=\|(1,0, \ldots, 0)\|_{(t)}$.
- We can take the max over y at no cost, by considering a finite net of y 's, since k is fixed.
- To get the full result $\lim \sup _{n \rightarrow \infty} K_{V_{n}} \subset K_{k, t}$, use $\langle\lambda, x\rangle$ (for all directions x) instead of λ_{1}.

The take-home slide

States	Deterministic	Random mixture		
Classical	$x \in\{1,2, \ldots, d\}$	$p \in \mathbb{R}^{d}, p_{i} \geq 0, \sum_{i} p_{i}=1$		
Quantum	$\psi \in \mathbb{C}^{d},\\|\psi\\|=1$	$\rho \in \mathcal{M}_{d}(\mathbb{C}), \rho \geq 0, \operatorname{Tr} \rho=1$		

- Random quantum states: $\rho=W / \operatorname{Tr} W$, with W a Wishart matrix.
- Used e.g. to test the power of entanglement criteria, such as the partial transposition $[i d \otimes \Theta]\left(\rho_{A B}\right)$.

Channels	Deterministic	Random mixture
Classical	$f \in \mathcal{S}_{d}$	Q Markov: $Q_{i j} \geq 0$ and $\forall i, \sum_{j} Q_{i j}=1$
Quantum	$U \in \mathcal{U}(d)$	ϕ CPTP map

- Random quantum channels: Stinesrping dilation
$\Phi(\rho)=[$ id $\otimes \operatorname{Tr}]\left(V \rho V^{*}\right)$ for a Haar-random isometry $V: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$.
- Used e.g. to disprove the additivity conjecture:
$H^{\min }(\Phi \otimes \Psi)=H^{\min }(\Phi)+H^{\min }(\Psi)$.

To go further - books

Nielsen, M., Chuang, I.
Quantum computation and quantum information
Cambridge University Press (2010)

MarkM wice
Wilde, M.
Quantum information theory Cambridge University Press (2017)

Watrous, J.
The theory of quantum information
Cambridge University Press (2018)

Aubrun, G., Szarek, S. J.
Alice and Bob meet Banach
Mathematical Surveys and Monographs 105 (2018)

Merci!

