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Summary from yesterday

• Pure quantum states of one particle: unit norm vectors inside a Hilbert

space

• More particles  take the tensor product of the Hilbert spaces

• Separable states = rank-1 tensors; entangled states = rank ≥ 2 tensors

• Random pure states: uniform point on the unit sphere

• Mixed quantum states (or density matrices): positive semidefinite

matrices of unit trace ρ ≥ 0, Tr ρ = 1

• Extreme points of the set of mixed states = Px , with x pure

• Separable (i.e. non-entangled state)

ρAB =
∑
i

tiσ
(A)
i ⊗ σ(B)

i

• Random mixed states: normalized Wishart matrix

• Partial transposition ρΓ
AB := [id⊗Θ](ρAB). If ρΓ

AB � 0, then ρAB is

entangled.
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Quantum channels



Quantum channels

Channels Deterministic Random mixture

Classical f : {1, . . . , d} → {1, . . . , d} Q Markov (stochastic)

Quantum U ∈ U(d) Φ CPTP map

• Classical channels (acting on probability vectors):

• Positivity: for all i , j , Qij ≥ 0

• Mass preservation: for all j ,
∑

i Qij = 1.

• Quantum channels: CPTP maps Φ :Md(C)→Md′(C)

• CP - complete positivity: Φ⊗ idr is a positive map, ∀r ≥ 1

• TP - trace preservation: Tr ◦ Φ = Tr.



Structure of quantum channels

Theorem [Stinespring-Kraus-Choi]

Let Φ :Md(C)→Md(C) be a linear map. TFAE:

1. The map Φ is completely positive and trace preserving (CPTP).

2. [Stinespring] There exist an integer n (n = d2 suffices) and an

isometry W : Cd → Cd ⊗ Cn such that

Φ(X ) = [idd ⊗ Trn](WXW ∗).

3. [Kraus] There exist operators A1, . . . ,An ∈Md(C) satisfying∑
i A
∗
i Ai = Id such that

Φ(X ) =
n∑

i=1

AiXA
∗
i .

4. [Choi] The Choi matrix CΦ is positive semidefinite, where

CΦ :=
d∑

i,j=1

Eij ⊗ Φ(Eij) ∈Md(C)⊗Md(C)

and [id⊗ Tr](CΦ) = Id .



Examples and non-examples

• The identity channel id :Md →Md has the (un-normalized) Bell state

as its Choi matrix

Cid =
d∑

i,j=1

|ii〉〈jj | =
d∑

i,j=1

ei ⊗ ei · e∗j ⊗ e∗j .

• The totally depolarizing channel (or the conditional expectation on

scalars) ∆(X ) = (TrX )I/d has Choi matrix Id2/d

• The totally dephasing channel (or the conditional expectation on

diagonal matrices) D has Kraus decomposition

D(ρ) =
d∑

i=1

|i〉〈i |ρ|i〉〈i |.

• The transposition Θ(ρ) = ρ> is not a quantum channel, since it is not

completely positive. Its Choi matrix is CΘ = F , where F is the flip

operator Fx ⊗ y = y ⊗ x . F has eigenvalues +1 with multiplicity

d(d + 1)/2 and −1 with multiplicity d(d − 1)/2.



Intermezzo: block modified random matrices

• Consider a sequence of unitarily invariant random matrices

Xd ∈Mn ⊗Md . Fix n and assume that, as d →∞, the matrices Xd

have have limiting spectral distribution µ: limd→∞
1
nd

∑nd
i=1 δλi (Xd ) = µ.

• Define the modified version of Xd :

X f
d = [f ⊗ idd ](Xd).

• Our goal: compute µf , the limiting spectral distribution of X f
d , as a

function of the initial distribution µ and the linear functional f .

Theorem (Arizmendi, Vargas, N. ’16)

If the Choi matrix Cf satisfies the unitarity condition, then

µf = �s
i=1(Dρi/nµ)�ndi ,

where ρi are the distinct eigenvalues of Cf and ndi are ranks of the

corresponding eigenprojectors Pi .

Unitarity condition: ∀i , [id⊗ Tr](Pi ) = di In.



Random quantum channels



Definition

There exist several natural candidates for probability distributions on the

convex set of quantum channels:

• The Lebesgue measure

• Pick the isometry W in the Stinespring decomposition at random: W is

a Haar-random isometry

• Pick the Kraus operators Ai at random: Gi are i.i.d. Ginibre matrices,

define Ai = GiS
−1/2, with S =

∑
i G
∗
i Gi

• Pick the Choi matrix at random: C̃ is a Wishart matrix, define

C := [I ⊗ T−1/2]C̃ [I ⊗ T−1/2]∗, with T = [Tr⊗ id]C̃ .

Theorem (Kukulski, N., Pawela, Puchala, Zyczkowski ’19)

The above distributions are identical, when the respective parameters

match.

Computationally, the random Kraus operators procedure is the cheapest;

mathematically, the random isometry procedure is the more interesting

and easier to deal with.



More on the distribution of random quantum channels

• For channels Φ :Md1 →Md2 , if s is an integer parameter, then:

• One has to take a Haar-random isometry W ;Cd1 → Cd2 ⊗ Cs

• One has to take Gi i.i.d. Ginibre matrices of size d2 × d1, for

i = 1, 2, . . . , s

• One has to take the un-normalized Choi matrix C̃ a Wishart matrix of

parameters d1d2, s

• The density of the normalized Choi matrix reads

f (C ) = δ([id⊗Tr](C )− Id1 ) detC s−d1d2dLeb.

• The Lebesgue measure is obtained for s = d1d2.

• For any fixed pure state Px = xx∗, the output matrix ρ = Φ(Px) follows

the induced distribution of parameters (d2, s), i.e. has the distribution of

a trace-normalized Wishart.

• However, different inputs yield correlated outputs!



Some notions of entropy

• Let ∆k = {λ ∈ Rk : λi ≥ 0,
∑

i λi = 1, } be the probability simplex.

We write ∆↓k for the set of ordered probability vectors, λ1 ≥ · · · ≥ λk .

• The Shannon entropy of a probability vector λ ∈ ∆k

H(λ) = −
k∑

i=1

λi log λi ∈ [0, log k].

• The von Neumann entropy of ρ ∈M1,+
k

H(ρ) = −Tr(ρ log ρ) = −
k∑

i=1

λi (ρ) log λi (ρ).

• For p ≥ 0, define the p-Rényi entropy

Hp(ρ) =
logTr(ρp)

1− p
=

log
∑

i λi (ρ)p

1− p
; H(·) = lim

p→1
Hp(·).

• The entropy is additive: Hp(ρ1 ⊗ ρ2) = Hp(ρ1) + Hp(ρ2).



Additivity of the minimum output entropy

The minimum output entropy of a quantum channel Φ is

Hmin
p (Φ) := min

ρ∈M1,+
d

Hp(Φ(ρ)).

Conjecture (Amosov, Holevo and Werner ’00)

The quantity Hmin
p is additive: for any quantum channels Φ1,Φ2

Hmin
p (Φ1 ⊗ Φ2) = Hmin

p (Φ1) + Hmin
p (Φ2).

• Additivity of Hmin
p=1 implies a simple formula for the capacity of channels

to transmit classical information; in particular, it implies the additivity

of the classical capacity C .

• C (Φ) = limr→∞
χ(Φ⊗r )

r , with the Holevo quantity

χ(Φ) := max
pi ,ρi

H(
∑
i

piΦ(ρi ))−
∑
i

piH(Φ(ρi ))

• Compare with the capacity of a classical channel Q:

C (Q) = min
X

I (X : Y ) where Y = Q(X ).



Additivity of the minimum output entropy

Conjecture (Amosov, Holevo and Werner ’00)

The quantity Hmin
p (Φ) = minρ∈M1,+

d
Hp(Φ(ρ)) is additive: for any

quantum channels Φ1,Φ2

Hmin
p (Φ1 ⊗ Φ2) = Hmin

p (Φ1) + Hmin
p (Φ2).

• Given Φ1,Φ2, the ≤ direction of the equality is trivial, take

ρ12 = ρ1 ⊗ ρ2.

• Additivity has been shown to hold for a large class of channels: unitary,

unital qubit, depolarizing, dephasing, entanglement breaking, ...

• But... the Additivity Conjecture is false ! [Hayden, Winter ’08 for

p > 1, Hastings ’09 for p = 1]

• Counterexamples: mostly random channels. Deterministic

counterexamples: ’02 Werner & Holevo (p > 4.79), ’07 Cubitt et al

(p < 0.11) and ’09 Grudka et al (p > 2).



Stinespring dilation

Theorem (Stinespring dilation)

For any channel :Md →Mk there exists an isometry

W : Cd → Ck ⊗ Cn such that

Φ(ρ) = [idk ⊗ Trn](W ρW ∗).

• By convexity properties, the minimum output entropy of Φ is attained

on pure states i.e. rank one projectors Px = xx∗ = |x〉〈x |.
• Since Φ(Px) = [idk ⊗ Trn](WPxW

∗) = [idk ⊗ Trn]PWx , the minimum

output entropy of the channel Φ is

Hmin(Φ) = min
x∈Cd , ‖x‖=1

H(Φ(Px)) = min
y∈ImW , ‖y‖=1

H([idk ⊗ Trn]Py ),

where V = ImW ⊂ Ck ⊗ Cn is a subspace of dimension d .

• The MOE Hmin(Φ) depends only on the subspace V .



Entanglement of subspaces



Eigen- and singular values

Singular value decomposition of a matrix X ∈Mk×n(C) (k ≤ n)

X = UΣV ∗ =
k∑

i=1

√
λi (XX ∗)ei f

∗
i ,

where ei , fi are orthonormal families in Ck , Cn, and λ1 ≥ · · · ≥ λk ≥ 0

are the (squares of the) singular values of X , or the eigenvalues of XX ∗.

Using the isomorphism Mk×n ' Ck ⊗Cn, X can be seen as a vector in a

tensor product x ∈ Ck ⊗ Cn. The singular value decomposition of X

corresponds to the Schmidt decomposition of x

x =
k∑

i=1

√
λi (x)ei ⊗ fi .

The numbers λi (x) are also eigenvalues of the reduced density matrix

XX ∗ = [idk ⊗ Trn]Px =
k∑

i=1

λi (x)eie
∗
i .



Entanglement of a vector

For a vector

x =
k∑

i=1

√
λi (x)ei ⊗ fi ,

define H(x) = H(λ(x)) = H(ρ) = −
∑

i λi (x) log λi (x), the entropy of

entanglement of the bipartite pure state x .

Note that

1. The state x is separable, x = e ⊗ f , iff. H(x) = 0.

2. The state x is maximally entangled, x = k−1/2
∑

i ei ⊗ fi , iff.

H(x) = log k.

Recall that we are interested in computing

Hmin(Φ) = min
x∈Cd , ‖x‖=1

H(Φ(Px)) = min
y∈ImW , ‖y‖=1

H([idk ⊗ Trn]Py )

= min
y∈ImW , ‖y‖=1

H(y).



Entanglement of a subspace

For a subspace V ⊂ Ck ⊗ Cn, define

Hmin(V ) := min
y∈V , ‖y‖=1

H(y),

the minimal entanglement of vectors in V .

A subspace V is called entangled if Hmin(V ) > 0, i.e. if it does not

contain separable vectors x ⊗ y .

Proposition (Parthasarathy ’03)

If V is entangled, then dimV ≤ (k − 1)(n − 1).

Example: Vent = {x : ∀r ,
∑

i+j=r xij = 0}.



Singular values of vectors from a subspace

Entropy is just a statistic, look at the set of all singular values directly !

For a subspace V ⊂ Ck ⊗ Cn of dimension dimV = d , define the set

eigen-/singular values or Schmidt coefficients

KV := {λ(x) : x ∈ V , ‖x‖ = 1}.

 Our goal is to understand KV .

• The set KV is a compact subset of the ordered probability simplex ∆↓k .

• Local invariance: K(U1⊗U2)V = KV , for unitary matrices U1 ∈ U(k) and

U2 ∈ U(n).

• Monotonicity: if V1 ⊂ V2, then KV1 ⊂ KV2 .

• Recovering minimum entropies:

Hmin
p (Φ) = Hmin

p (V ) = min
λ∈KV

Hp(λ).



Examples

The anti-symmetric subspace provides the (explicit) counter-example for

the additivity of the p-Rényi entropy.

• Let k = n and put V = Λ2(Ck)

• The subspace V is almost half of the total space: dimV = k(k − 1)/2.

• Example of a vector in V :

V 3 x =
1√
2

(e ⊗ f − f ⊗ e).

• Fact: singular values of vectors in V come in pairs.

• Hence, the least entropy vector in V is as above, with e ⊥ f and

H(x) = log 2.

• Thus, Hmin(V ) = log 2 and one can show that

KV = {(λ1, λ1, λ2, λ2, . . .) ∈ ∆k : λi ≥ 0,
∑
i

λi = 1/2}.



Examples

V = span{G1,G2}, where G1,2 are 3× 3 independent Ginibre random

matrices.



Examples

V = span{G1,G2}, where G1,2 are 3× 3 independent Ginibre random

matrices.



Examples

V = span{I3,G}, where G is a 3× 3 Ginibre random matrix.



Examples

V = span{I3,G}, where G is a 3× 3 Ginibre random matrix.



A big open problem

Find explicit examples of subspaces V with

1. large dimV ;

2. large Hmin(V ).



Random subspaces



Random subspaces

We are interested in random subspaces (or random channels).

• There is an uniform (or Haar) measure on the set of isometries

{W : Cd → Ck ⊗ Cn : WW ∗ = Id}: take a kn × kn Haar distributed

random unitary matrix U ∈ U(kn) and take W to be the restriction of

U to the first d coordinates.

• We call random quantum channels the probability distribution obtained

as the push-forward of this measure through the Stinespring dilation.

• A random subspace is the image of a random isometry, V = ImW .

• Equivalently, V = span{U1, . . . ,Ud}, where Ui are the columns of a

Haar random unitary matrix U ∈ U(kn).



Main result

For the rest of the talk, we consider the following asymptotic regime: k

fixed, n→∞, and d ∼ tkn, for a fixed parameter t ∈ (0, 1).

Theorem (Belinschi, Collins, N. ’10)

For a sequence of uniformly distributed random subspaces Vn, the set

KVn of singular values of unit vectors from Vn converges (almost surely,

in the Hausdorff distance) to a deterministic, convex subset Kk,t of the

probability simplex ∆k

Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.



Corollary: exact limit of the minimum output entropy

By the previous theorem, in the specific asymptotic regime t, k fixed,

n→∞, d ∼ tkn, we have the following a.s. convergence result for

random quantum channels Φ (defined via random isometries

W : Cd → Ck ⊗ Cn):

lim
n→∞

Hmin(Φ) = min
λ∈Kk,t

H(λ).

It is not just a bound, the exact limit value is obtained.

Theorem (Belinschi, Collins, N. ’13)

The minimum entropy element of Kk,t is of the form (a, b, b, . . . , b).

The lowest dimension for which a violation of the additivity for Hmin

can be observed is k = 183. For large k , violations of size 1− ε bits can

be obtained.



Free Probability Theory

Invented by Voiculescu in the 80s to solve problems in operator algebras.

• A non-commutative probability space (A, τ) is an algebra A with a

unital state τ : A → C. Elements a ∈ A are called random variables.

• Examples:

• classical probability spaces (L∞(Ω,F ,P),E);

• group algebras (CG , δe);

• matrices (Mn, n
−1Tr);

• random matrices (Mn(L∞−(Ω,F ,P)),E ◦ n−1Tr).

• Several notions of independence:

• classical independence, implies commutativity of the random variables;

• free independence.

• If a, b are freely independent random variables, the law of (a, b) can be

computed in terms of the laws of a and b. Freeness provides an

algorithm for computing joint moments in terms of marginals.

• Example: if {a1, a2} and {b1, b2} are free, then

τ(a1b1a2b2) = τ(a1a2)τ(b1)τ(b2) + τ(a1)τ(a2)τ(b1b2)

− τ(a1)τ(b1)τ(a2)τ(b2).



Asymptotic freeness of random matrices

Theorem (Voiculescu ’91)

Let (An) and (Bn) be sequences of n × n matrices such that An and Bn

converge in distribution (with respect to n−1Tr) for n→∞.

Furthermore, let (Un) be a sequence of Haar unitary n × n random

matrices. Then, An and UnBnU
∗
n are asymptotically free for n→∞.

If An,Bn are matrices of size n, whose spectra converge towards µa, µb,

the spectrum of An + UnBnU
∗
n converges to µa � µb; here, µa�µb is the

distribution of a + b, where a, b ∈ (A, τ) are free random variables

having distributions resp. µa, µb.

If An,Bn are matrices of size n such that An ≥ 0, whose spectra converge

towards µa, µb, the spectrum of A
1/2
n UnBnU

∗
nA

1/2
n converges to µa � µb.



Example: truncation of random matrices

Let Pn ∈Mn a projection of rank n/2; its eigenvalues are 0 and 1, with

multiplicity n/2. Hence, the distribution of Pn converges, when n→∞,

to the Bernoulli probability measure 1
2δ0 + 1

2δ1.

Let Cn ∈Mn/2 be the top n/2× n/2 corner of UnPnU
∗
n , with Un a Haar

random unitary matrix. What is the distribution of Cn ? Up to zero

blocks, Cn = Qn(UnPnU
∗
n )Qn, where Qn is the diagonal orthogonal

projection on the first n/2 coordinates of Cn. The distribution of Qn

converges to 1
2δ0 + 1

2δ1.

Free probability theory tells us that the distribution of Cn will converge to

(
1

2
δ0 +

1

2
δ1)� (

1

2
δ0 +

1

2
δ1) =

1

π
√

x(1− x)
1[0,1](x)dx ,

which is the arcsine distribution.



Example: truncation of random matrices

Histogram of eigenvalues of a truncated randomly rotated projector of

relative rank 1/2 and size n = 4000; in red, the density of the arcsine

distribution.
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The t-norm

Definition

For a positive integer k , embed Rk as a self-adjoint real subalgebra R
of a C∗-ncps (A, τ), so that τ(x) = (x1 + · · ·+ xk)/k . Let pt be a

projection of rank t ∈ (0, 1] in A, free from R. On the real vector space

Rk , we introduce the following norm, called the (t)-norm:

‖x‖(t) := ‖ptxpt‖∞,

where the vector x ∈ Rk is identified with its image in R.

• One can show that ‖ · ‖(t) is indeed a norm, which is permutation

invariant.

• When t > 1− 1/k , ‖ · ‖(t) = ‖ · ‖∞ on Rk .

• limt→0+ ‖x‖(t) = k−1|
∑

i xi |.



Corners of randomly rotated projections

Theorem (Collins ’05)

In Cn, choose at random according to the Haar measure two

independent subspaces Vn and V ′n of respective dimensions qn ∼ sn and

q′n ∼ tn where s, t ∈ (0, 1]. Let Pn (resp. P ′n) be the orthogonal

projection onto Vn (resp. V ′n). Then,

lim
n
‖PnP

′
nPn‖∞ = ϕ(s, t) = sup supp((1− s)δ0 + sδ1)� ((1− t)δ0 + tδ1),

with

ϕ(s, t) =

{
s + t − 2st + 2

√
st(1− s)(1− t) if s + t < 1;

1 if s + t ≥ 1.

Hence, we can compute

‖ 1, · · · , 1︸ ︷︷ ︸
j times

, 0, · · · , 0︸ ︷︷ ︸
k−j times

‖(t) = ϕ(
j

k
, t).



Idea of the proof

A simpler question: what is the largest maximal singular value

maxx∈V ,‖x‖=1 λ1(x) of vectors from the subspace V ?

max
x∈V ,‖x‖=1

λ1(x) = max
x∈V ,‖x‖=1

λ1([idk ⊗ Trn]Px)

= max
x∈V ,‖x‖=1

‖[idk ⊗ Trn]Px‖

= max
x∈V ,‖x‖=1

max
y∈Ck ,‖y‖=1

Tr [([idk ⊗ Trn]Px) · Py ]

= max
x∈V ,‖x‖=1

max
y∈Ck ,‖y‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck ,‖y‖=1

max
x∈V ,‖x‖=1

Tr [Px · Py ⊗ In]

= max
y∈Ck ,‖y‖=1

‖PV · Py ⊗ In‖∞.

Limit of ‖PV · Py ⊗ In‖∞ for fixed y and random V ?



The set Kk,t and t-norms

• Kk,t := {λ ∈ ∆k | ∀x ∈ ∆k , 〈λ, x〉 ≤ ‖x‖(t)}.
• Recall that

max
x∈V ,‖x‖=1

λ1(x) = max
y∈Ck ,‖y‖=1

‖PVPy ⊗ In‖∞.

• For fixed y , PV and Py ⊗ In are independent projectors of relative ranks

t and 1/k respectively.

• Thus, ‖PV · Py ⊗ In‖∞ → ϕ(t, 1/k) = ‖(1, 0, . . . , 0)‖(t).

• We can take the max over y at no cost, by considering a finite net of

y ’s, since k is fixed.

• To get the full result lim supn→∞ KVn ⊂ Kk,t , use 〈λ, x〉 (for all

directions x) instead of λ1.



The take-home slide

States Deterministic Random mixture

Classical x ∈ {1, 2, . . . , d} p ∈ Rd , pi ≥ 0,
∑

i pi = 1

Quantum ψ ∈ Cd , ‖ψ‖ = 1 ρ ∈Md(C), ρ ≥ 0, Tr ρ = 1

• Random quantum states: ρ = W /TrW , with W a Wishart matrix.

• Used e.g. to test the power of entanglement criteria, such as the partial

transposition [id⊗Θ](ρAB).

Channels Deterministic Random mixture

Classical f ∈ Sd Q Markov: Qij ≥ 0 and ∀i ,
∑

j Qij = 1

Quantum U ∈ U(d) Φ CPTP map

• Random quantum channels: Stinesrping dilation

Φ(ρ) = [id⊗Tr](V ρV ∗) for a Haar-random isometry

V : Cd → Ck ⊗ Cn.

• Used e.g. to disprove the additivity conjecture:

Hmin(Φ⊗Ψ) = Hmin(Φ) + Hmin(Ψ).



To go further - books

Nielsen, M., Chuang, I.

Quantum computation and quantum information

Cambridge University Press (2010)

Wilde, M.

Quantum information theory

Cambridge University Press (2017)

Watrous, J.

The theory of quantum information

Cambridge University Press (2018)

Aubrun, G., Szarek, S. J.

Alice and Bob meet Banach

Mathematical Surveys and Monographs 105 (2018)
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