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Sums of squares and Reznick’s

Positivstellensatz



Hilbert’s 17th problem

• R[x ] 3 P(x) ≥ 0 ⇐⇒ P = Q1(x)2 + Q2(x)2, for Q1,2 ∈ R[x ]

• Pos(d , n) := {P ∈ R[x1, . . . , xd ] hom. of deg. 2n, P(x) ≥ 0, ∀x}
• SOS(d , n) := {

∑
i Q

2
i with Qi ∈ R[x1, . . . , xd ] hom. of deg. n}

• Hilbert 1888:

SOS(d , n) ⊆ Pos(d , n), eq. iff (d , n) ∈ {(d , 1), (2, n), (3, 2)}

• The Motzkin polynomial x4y2 + y4z2 + z4x2 − 3x2y2z2 is

positive but not SOS

• Membership in SOS can be efficiently decided with a semidefinite

program (SDP) and provides an algebraic certificate for positivity



More on the Motzkin polynomial

The non-homogeneous Motzkin polynomial

(set z = 1) x4y2 + y4 + x2 − 3x2y2 can be

seen to be positive by the AMGM inequality

There exist computer algebra packages to check SOS and perform

polynomial optimization using SOS ([NC]SOSTOOLS, Gloptipoly)

>> syms x y z; findsos(x^4*y^2 + y^4 + x^2 -

3*x^2*y^2)

Size: 49 19

...

No sum of squares decomposition is found.



Reznick’s Positivstellensatz

• Hilbert 1900, Artin 1927:

P ≥ 0 ⇐⇒ P =
∑
i

Q2
i

R2
i

In particular, if P ≥ 0, there exists R such that R2P is SOS

Theorem. [Reznick 1995]

Let P ∈ Pos(d , k) such that m(P) := min‖x‖=1 P(x) > 0. Let

also M(P) := max‖x‖=1 P(x). Then, for all

n ≥ dk(2k − 1)

2 ln 2

M(P)

m(P)
− d

2
,

we have

(x2
1 + · · ·+ x2

d )n−kP(x) =
r∑

j=1

(a
(j)
1 x1 + · · · a(j)

d xd)2n.

In particular, ‖x‖2(n−k)P is SOS.



Poylnomials vs. symmetric operators



From the symmetric subspace to polynomials — R

• Homogeneous polynomials of degree n in d real variables

x1, . . . , xd are in one-to-one correspondence with symmetric

tensors:

∨nRd 3 v  Pv (x1, . . . , xd) = 〈x⊗n, v〉

where x = (x1, . . . , xd) is the vector of variables

• n = 1, Pv (x) =
∑d

i=1 vixi

• |GHZ 〉 = |000〉+ |111〉 P|GHZ〉(x , y) = x3 + y3

• |W 〉 = |001〉+ |010〉+ |001〉 P|W 〉(x , y) = 3x2y

• If |Ω〉 =
∑d

i=1 |ii〉, then P|Ω〉⊗n(x1, . . . , xd) = (
∑d

i=1 x
2
i )n = ‖x‖2n

• We denote d [n] := dim∨nRd =
(n+d−1

n

)



From the symmetric subspace to polynomials — C

• In the complex case, we are interested in bi-homogeneous

polynomials of degree n in d complex variables: P(z1, . . . , zd) is

hom. in the variables zi and also in z̄i .

• Bi-hom. polynomials are in one-to-one correspondence with

operators on ∨nCd :

P(z1, . . . , zd) = 〈z⊗n|W |z⊗n〉

• Self-adjoint W are associated to real, bi-hom. polynomials

• ‖z‖2n = 〈z⊗n|P(d ,n)
sym |z⊗n〉

• More generally, polynomials which are bi-hom. of degree n in

complex variables z1, . . . , zd and, separately, bi-hom. of degree k

in complex variables u1, . . . , uD are in one-to-one correspondence

with operators on ∨nCd ⊗ ∨kCD :

Q(z1, . . . , zd , u1, . . . , uD) = 〈z⊗n ⊗ u⊗k |W |z⊗n ⊗ u⊗k〉



The different notions of positivity

A self-adjoint matrix W ∈ B(∨nCd) is called

• block-positive if 〈z⊗n|W |z⊗n〉 ≥ 0, ∀z ∈ Cd

• positive semidefinite (PSD) if 〈u|W |u〉 ≥ 0, ∀u ∈ ∨nCd

• separable if W ∈ conv{|z〉〈z |⊗n}z∈Cd

We have: W separable =⇒ W PSD =⇒ W block-positive

• W is block-positive ⇐⇒ PW is non-negative:

PW (z) = 〈z⊗n|W |z⊗n〉 ≥ 0, ∀z ∈ Cd

• W is PSD ⇐⇒ PW is Sum Of hom. Squares:

W =
∑
j

λj |wj〉〈wj | =⇒ PW (z) =
∑
j

λj |〈z⊗n,wj〉|2

• W is separable ⇐⇒ PW is Sum Of hom. Powers:

W =
∑
j

tj |aj〉〈aj |⊗n =⇒ PW (z) =
∑
j

tj |〈z , aj〉|2n



Tensoring with the identity

• For k ≤ n, let Tr∗k→n : B(∨kCd)→ B(∨nCd) be the map

Tr∗k→n(W ) = P
(d ,n)
sym

[
W ⊗ I

⊗(n−k)
d

]
P

(d ,n)
sym

• We have: PTr∗k→n(W )(z) = ‖z‖2(n−k)PW (z)

Clonek→n := d [k]
d [n] Tr∗k→n is the

optimal Keyl-Werner cloning

quantum channel: among all

quantum channels sending states

ρ⊗k to symmetric n-partite states

σ, it is the one which achieves

the largest fidelity between ρ and

Tr2···n σ

Clone1→2



The partial trace

For k ≤ n, let Trn→k : B(∨nCd)→ B(∨kCd) be the partial trace

Trn→k(W ) =
[
id⊗k ⊗Tr⊗(n−k)

]
(W )

Lemma.

We have: PTrn→k (W ) = ((n)n−k)−2∆n−k
C PW , where

(x)p = x(x − 1) · · · (x − p + 1) and ∆C is the complex Laplacian

∆C =
d∑

i=1

∂2

∂z̄i∂zi

Lemma (complex Bernstein inequality). ← we need analysis here

For any W = W ∗ ∈ B(∨nCd) we have

∀‖z‖ ≤ 1,
∣∣∣(∆s

CPW )(z)
∣∣∣ ≤ 4−s(2d)s(2n)2sM(W )



The Dictionary

Sym. operators ∈ B(∨nCd) Polynomials (d vars, bi-hom. deg. n)

W PW (z) = 〈z⊗n|W |z⊗n〉

Positivity notions

block-positive non-negative

positive semidefinite Sum Of Squares

separable Sum Of Powers

Operations

Tensor with identity mult. with the norm2

Partial trace complex Laplacian



The complex Positivstellensatz



A complex version of Reznick’s PSS

Theorem.

Consider W = W ∗ ∈ B(∨kCd ⊗CD) with m(W ) > 0 and k ≥ 1.

Then, for any

n ≥ dk(2k − 1)

ln
(

1 + m(W )
M(W )

) − k

with n ≥ k , we have

‖x‖2(n−k)PW (x , y) =

∫
PW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ

with PW̃ (ϕ, y) ≥ 0 for all ϕ ∈ Cd and y ∈ CD , where

W̃ ∈ B(∨kCd ⊗ CD) is explicitly computable in terms of W , and

dϕ is any (n + k)-spherical design. In the case k = 1, the bound

on n can be improved to n ≥ dM(W )/m(W )− 1.

A similar result was obtained by To and Yeung with worse bounds

and in a less general setting, by “complexifying” Reznick’s proof



Spherical designs

• A complex n-spherical design in dimension d is a probability

measure dϕ on the unit sphere of Cd which approximates the

uniform measure dz in the following sense: for any degree n

bi-hom. polynomial P(z) in d complex variables,∫
P(ϕ)dϕ =

∫
P(z)dz

• Equivalently,
∫
|ϕ〉〈ϕ|⊗ndϕ = P

(d ,n)
sym /d [n]

• For all d , n, there exist finite n-designs: the measure dϕ has

support of size ≤ (n + 1)2d ; in particular, the integral in the main

theorem can be a finite sum

• Designs of orders 60, 120, 216 in R3 c©John Burkardt



Proof idea

‖x‖2(n−k)PW (x , y) =

∫
PW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ

• We want to transform a non-negative polynomial into a sum of

powers by multiplying with some power of the norm

• In terms of operators, this amounts to transforming a

block-positive operator into a separable operator

• Ansatz: use the measure-and-prepare map

MPn→k : B(∨nCd)→ B(∨kCd)

X 7→ d [n]

∫
〈ϕ⊗n|X |ϕ⊗n〉|ϕ〉〈ϕ|⊗kdϕ,

for some (n + k)-spherical design dϕ

• The linear map MPn→k is completely positive, and it is

normalized to be trace preserving (i.e. it is a quantum channel)



Chiribella’s identity

Theorem [Chiribella 2010].

For any k ≤ n, we have

MPn→k =
k∑

s=0

c(n, k, s) Clones→k ◦Trn→s ,

where c(n, k , s) =
(n
s

)(k+d−1
k−s

)
/
(n+k+d−1

k

)
.

• c(n, k , ·) is a probability distribution:
∑k

s=0 c(n, k , s) = 1

• The proof is a straightforward computation in the group algebra

of G = Sn+k :

εG =

min(n,k)∑
s=0

(n
s

)(k
s

)(n+k
n

) εHσsεH
where εX is the average of the elements in X , H = Sn × Sk ≤ G

is a Young subgroup and σs is some permutation swapping s

elements from [1, n] with s elements from [n + 1, n + k]



The result is about the interplay between Clone and MP

• The equality ‖x‖2(n−k)PW (x , y) =
∫
PW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ reads,

in terms of linear maps over symmetric spaces

Clonek→n⊗ idD = [MPk→n ◦Ψ]⊗ idD

• The fact that the polynomial PW̃ is non-negative reads

W̃ := Ψ(W ) is block-positive ⇐⇒ 〈z⊗n|W̃ |z⊗n〉 ≥ 0

• Re-write the Chiribella identity as

MPn→k =
k∑

s=0

c(n, k, s) Clones→k ◦Trn→s

=
k∑

s=0

c(n, k, s) Clones→k ◦Trk→s ◦Trn→k

= Φ
(n)
k→k ◦ Trn→k



Invert the Chiribella formula

• MPn→k = Φ
(n)
k→k ◦ Trn→k

Key fact.

The linear map Φ
(n)
k→k : ∨kCd → ∨kCd is invertible, with inverse

Ψ
(n)
k→k :=

k∑
s=0

q(n, k , s) Clones→k ◦Trk→s

with

q(n, k , s) := (−1)s+k

(n+s
s

)(k
s

)(n
k

) d [k]

d [s]

• Hence, up to some constants, Clonek→n = MPk→n ◦Ψ
(n)
k→k

• Final step: use hypotheses on n, k,m(W ),M(W ) to ensure

Ψ
(n)
k→k(W ) is block-positive whenever W is (strictly)

block-positive



Use the Bernstein inequality to prove PW̃ non-negative

• Assume, wlog, D = 1, i.e. there is no y

PW̃ (ϕ) =
k∑

s=0

q(n, k , s)〈ϕ⊗k |Clones→k ◦Trk→s(W )|ϕ⊗k〉

=
k∑

s=0

q(n, k , s)‖ϕ‖2(k−s)〈ϕ⊗s |Trk→s(W )|ϕ⊗s〉

=
k∑

s=0

q(n, k , s)‖ϕ‖2(k−s)PTrk→s(W )(ϕ)

=
k∑

s=0

q̂(n, k , s)‖ϕ‖2(k−s)(∆k−s
C pW )(ϕ)

• Use the complex version of the Bernstein inequality to ensure that

PW̃ (ϕ) ≥

[
m(W )q̃(n, k , k)−M(W )

k−1∑
s=0

|q̃(n, k, s)|

]
≥ 0



How good are the bounds?

• Consider the modified Motzkin polynomial

Pε(x , y , z) = x4y2 + y4z2 + z4x2 − 3x2y2z2 + ε(x2 + y2 + z2)

• We have m(Pε) = ε; M(Pε) = ε+ 4/27

• Let Pn,ε(x , y , z) := (x2 + y2 + z2)n−3Pε(x , y , z). If a PSS

decomposition holds, then the [2p, 2q, 2r ] coefficient of Pn,ε must

be positive  lower bound on optimal n
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Thank you!
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