On the (in-)compatibility of generic quantum measurements

Ion Nechita (CNRS, LPT Toulouse)

- joint work with Teiko Heinosaari and Maria Jivulescu

Bangkok, January 10th, 2020

Talk outline

Quantum measurements

Compatibility

Random POVMs

Quantum measurements

Quantum states - the big picture

States	Deterministic	Random mixture		
Classical	$x \in\{1,2, \ldots, k\}$	$\Delta_{k}=\left\{p \in \mathbb{R}^{k}, p_{i} \geq 0, \sum_{i} p_{i}=1\right\}$		
Quantum	$\psi \in \mathbb{C}^{d},\\|\psi\\|=1$	$\rho \in \mathcal{M}_{d}(\mathbb{C}), \rho \geq 0, \operatorname{Tr} \rho=1$		

Classical state space (simplex)

Quantum state space (spectrahedron)

Quantum measurements

- Quantum mechanics postulates: random measurement outcome and collapse of the wave function
- Here, we are only concerned with the measurement outcomes

- A quantum measurement is a linear functional $A: \mathcal{D}_{d} \rightarrow \Delta_{k}$; here d is the dimension (\# of degrees of freedom) of the quantum system and k is the number of outcomes of the measurement
- We have $A(\rho)=\left(\operatorname{Tr}\left[A_{1} \rho\right], \operatorname{Tr}\left[A_{2} \rho\right], \ldots, \operatorname{Tr}\left[A_{k} \rho\right]\right)$
- The measurement A is called a POVM (positive-operator-valued measure) and the operators $A_{i} \in M_{d}(\mathbb{C})$ are called effects
- They satisfy $A_{i} \geq 0$ for all $i=1,2, \ldots, k$ and $\sum_{i=1}^{k} A_{i}=I_{d}$

Examples

- Measurement in the computational basis: $A_{i}=E_{i i}=|i\rangle\langle i|$. The probability of obtaining outcome i is $\langle i| \rho|i\rangle=\rho_{i i}$
- Measurement a different basis, e.g.
- Trivial measurement: effects are scalar matrices $A_{i}=p_{i} I_{d}$

- General measurement
$\rightsquigarrow A_{1}=\left[\begin{array}{cc}0 & 0 \\ 0 & 2 / 3\end{array}\right], \quad A_{2,3}=\left[\begin{array}{cc}1 / 2 & \pm \sqrt{3} / 6 \\ \pm \sqrt{3} / 6 & 1 / 6\end{array}\right]$

Compatibility

Compatibility

Quantum mechanics predicts that some measurements cannot be performed at the same time

Two quantum measurements

$$
\begin{aligned}
& A=\left(A_{1}, A_{2}, \ldots, A_{k}\right) \\
& B=\left(B_{1}, B_{2}, \ldots, B_{l}\right)
\end{aligned}
$$

are compatible if there exists a third measurement $C=\left(C_{i j}\right)$ such that

$$
\begin{array}{ll}
\forall i, & A_{i}=\sum_{j=1}^{l} C_{i j} \\
\forall j, & B_{j}=\sum_{i=1}^{k} C_{i j}
\end{array}
$$

Compatibility

- A, B compatible iff. $\exists C$ POVM s.t. $A_{i}=\sum_{j} C_{i j}$ and $B_{j}=\sum_{i} C_{i j}$

- More generally, POVMs $A^{(1)}, A^{(2)}, \ldots, A^{(g)}$ are compatible iff there exists a POVM $C=\left(C_{i_{1} i_{2} \ldots i_{g}}\right)$ such that

$$
\forall n \in[g], \forall x \in\left[k_{n}\right], \quad A_{x}^{(n)}=\sum_{i_{1}, \ldots, i_{n-1}, i_{n+1}, \ldots, i_{g}} C_{i_{1} \ldots i_{n-1} \times i_{n+1} \ldots i_{g}}
$$

Examples

- Measurements in two different bases are incompatible: if
$C=\left(C_{i j}\right)$ is a joint m POVM for $\left(\left|e_{i}\right\rangle\left\langle e_{i}\right|\right)_{i}$ and $\left(\left|f_{j}\right\rangle\left\langle f_{j}\right|\right)_{j}$, then
$C_{i j}$ must be a multiple of both $\left|e_{i}\right\rangle\left\langle e_{i}\right|$ and $\left|f_{j}\right\rangle\left\langle f_{j}\right|$
- Trivial measurements are compatible with anything: if $A_{i}=p_{i} I_{d}$,

$$
\text { set } C_{i, j}=p_{i} B_{j} \geq 0
$$

- Adding noise produces compatibility: for any POVMs A, B, the noisy versions \tilde{A} and \tilde{B} are compatible

$$
\begin{aligned}
\tilde{A} & =\left(\frac{1}{2} A_{1}+\frac{I_{d}}{2 k}, \ldots, \frac{1}{2} A_{k}+\frac{I_{d}}{2 k}\right) \\
\tilde{B} & =\left(\frac{1}{2} B_{1}+\frac{I_{d}}{2 l}, \ldots, \frac{1}{2} B_{l}+\frac{I_{d}}{2 l}\right)
\end{aligned}
$$

Random POVMs

Random classical and quantum states

- Random classical states: Dirichelt distribution

$$
\Delta_{d} \ni p \sim \operatorname{Dir}(d, n) \text { if } \mathbb{P}\left(p_{1}, \ldots p_{d}\right) \sim p_{1}^{n-1} \cdots p_{d}^{n-1}
$$

- Random quantum states: normalized Wishart distribution $\mathcal{D}_{d} \ni \rho \sim \operatorname{NormWishart}(d, n)$ if $\rho=W /(\operatorname{Tr} W)$ where $W=G G^{*}, G \in M_{d \times n}(\mathbb{C})$ with i.i.d. Gaussian entries

$$
n=3
$$

$$
n=10
$$

$$
n=100
$$

- The diagonal of the random quantum states above $\sim \operatorname{Dir}(d, n)$

Random POVMs — definition

- A random POVM of parameters (d, k, n) is a k-tuple of random matrices $\left(A_{1}, \ldots, A_{k}\right)$ where

$$
A_{i}=S^{-1 / 2} W_{i} S^{-1 / 2}
$$

with $S=\sum_{i=1}^{k} W_{i}$ and $\left\{W_{i}\right\}_{i=1}^{k}$ is a family of independent
Wishart matrices of parameters (d, n)

- Equivalently, we can define

$$
A_{i}=V^{*}\left(|i\rangle\langle i| \otimes I_{n}\right) V
$$

where $V: \mathbb{C}^{d} \rightarrow \mathbb{C}^{k} \otimes \mathbb{C}^{n}$ is a Haar-distributed random isometry

- The joint probability distribution reads

$$
\mathbb{P}\left(A_{1}, \ldots, A_{k}\right) \sim \mathbf{1}_{\sum_{i} A_{i}=l_{d}} \prod_{i=1}^{k} \mathbf{1}_{A_{i} \geq 0}\left(\operatorname{det} A_{i}\right)^{n-d}
$$

- If $n=d$, we recover the Lebesgue measure on the convex body of POVMs on $M_{d}(\mathbb{C})$ with k outcomes

Random POVMs - effect eigenvalues

In the asymptotical regime where k is fixed and $d, n \rightarrow \infty$ in such a way that $d \sim t k n$ for some constant $t \in(0,1]$, the distribution of a random POVM element A_{i} converges in moments towards the probability measure (Jacobi ensemble)
$D_{t}\left[b_{k^{-1}}^{\boxplus t^{-1}}\right]=\max \left(0,1-t^{-1} k^{-1}\right) \delta_{0}+\max \left(0,1-t^{-1}+t^{-1} k^{-1}\right) \delta_{1}$

$$
+\frac{\sqrt{\left(x-\varphi_{-}\right)\left(\varphi_{+}-x\right)}}{2 \pi t x(1-x)} \mathbf{1}_{\left[\varphi_{-}, \varphi_{+}\right]}(x) \mathrm{d} x
$$

where

$$
\varphi_{ \pm}=t+k^{-1}-2 t k^{-1} \pm 2 \sqrt{t(1-t) k^{-1}\left(1-k^{-1}\right)}
$$

Above, D. is the dilation operator (if X has distribution μ, then $a X$ has distribution $D_{a} \mu$), b is the Bernoulli distribution ($b_{p}=(1-p) \delta_{0}+p \delta_{1}$), and \boxplus is the free additive convolution

Effect eigenvalues - simulations vs. theory

The histogram from each plot corresponds to the eigenvalues of a single sample. Since the first three examples are dichotomic POVMs $(k=2)$, the plots are symmetric with respect to $x=1 / 2$

Random POVMs - probability range

- For any fixed pure quantum state $|\psi\rangle$, the vector $\left[\langle\psi| M_{i}|\psi\rangle\right]_{i=1}^{k}$ has distribution $\operatorname{Dir}(k, n)$
- ProbRan $(M):=\left\{\left[\operatorname{Tr}\left(\rho M_{i}\right)\right]_{i=1}^{k}: \rho \geq 0, \operatorname{Tr} \rho=1\right\} \in \Delta_{k}$
- For a sequence of random POVMs $M^{(n)}$ with parameters (d_{n}, k, n) such that $d_{n} \sim t k n$ for $t \in(0,1)$, almost surely as $n \rightarrow \infty, \operatorname{ProbRan}\left(M^{(n)}\right) \rightarrow K_{k, t} \subseteq \Delta_{k}$, where

$$
K_{k, t}:=\left\{\lambda \in \Delta_{k}: \forall a \in \Delta_{k},\langle\lambda, a\rangle \leq\|a\|_{(t)}\right\}
$$

and the (t)-norm is defined as $\|a\|_{(t)}:=\left\|p_{t} a p_{t}\right\|$, where p_{t} is a projection of trace t free from a.

- Monte Carlo simulations: $d=k=3,10^{5}$ samples ρ

$$
n=1
$$

$$
n=3
$$

$$
n=10
$$

Random POVMs - compatibility criteria

- Open problem: compute $\lim _{d \rightarrow \infty} \mathbb{P}(A$ compatible avec $B)$
- Jordan product criterion: if two POVMs A and B are such that for all $i, j, A_{i} \circ B_{j}:=A_{i} B_{j}+B_{j} A_{i} \geq 0$, then A and B are compatible
- Noise content criterion: if two POVMs A and B are such that $\sum_{i} \lambda_{\min }\left(A_{i}\right)+\sum_{j} \lambda_{\min }\left(B_{j}\right) \geq 1$, then A and B are compatible
- In the asymptotical regime where $d \rightarrow \infty$, two independent random POVMs can be certified to be compatible by either the Jordan product or by the noise content criteria

Thank you!

1. T. Heinosaari, M. Jivulescu, I. Nechita - Random positive operator valued measures - arXiv:1902.04751, to appear in JMP
2. T. Heinosaari, T. Miyadera, M. Ziman - An invitation to quantum incompatibility - Journal of Physics A: Mathematical and Theoretical, 49(12), 123001 (2016)
3. B. Collins, I. Nechita - Random matrix techniques in quantum information theory - Journal of Mathematical Physics 57, 015215 (2016)
