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Random classical channels



Classical channels

Alice Bob

x = 0, 1, 1, 0, 0, . . . y = 0, 1, 0, 0, 0, . . .

channel

errors

• Two parties, Alice and Bob want to communicate classically letters from

the alphabet {1, 2, . . . , d}
• Their communication channel is noisy:

P[Bob receives j | Alice sent i ] = Mij

• Classical channels ≡ Markov matrices acting on probability vectors

• Positivity: for all i , j , Mij ≥ 0

• Mass preservation: for all i ,
∑

j Mij = 1

• Example: bit flip channel M =

[
1− ε ε

ε 1− ε

]



Random classical channels

• Main idea: choose the rows of M i.i.d. from a given distribution µ on

the probability simplex

∆d := {p ∈ Rd : pi ≥ 0 and
∑
i

pi = 1}

• One standard choice is to use the Dirichlet distribution with parameter s

(we write p ∼ Dirs(p1, . . . , pd)) if it has density proportional to

Dirs(p1, . . . , pd) = ps−1
1 ps−1

2 · · · ps−1
d−1(1− p1 − · · · − pd−1︸ ︷︷ ︸

pd

)s−1.

Dirichlet distributions (105 samples) on ∆3, for s = 1 (left, uniform

distribution on the simplex) and s = 3 (right)



Random classical channels - spectrum and gap

The behavior of the spectrum of a random Markov map has been studied

by Bordenave, Caputo, Chafai - Circular law theorem for random Markov

matrices - PTRF 2012. They show that if the rows of M are obtained by

normalizing an i.i.d. vector with entries Xij with σ2 = Var(Xij), then

https://doi.org/10.1007/s00440-010-0336-1


Random quantum channels



Quantum mechanics on one slide

• Pure quantum states of one particle: unit norm vectors inside a complex

Hilbert space H = Cd [classical states: x ∈ {1, 2, . . . , d}]
• Mixed quantum states (or density matrices): positive semidefinite

matrices of unit trace ρ ≥ 0, Tr ρ = 1 [classical mixed states: p ∈ ∆d

probability distribution]. Importantly, the set of quantum states is not a

simplex. Below, the situation for d = 2, segment vs. Bloch ball:

δ0 δ1

• Extreme points of the set of mixed states: Px = |x〉〈x |, with x ∈ Cd ,

‖x‖ = 1 [extreme classical mixed state: p = δx for x ∈ {1, 2, . . . , d}]
• More particles  take the tensor product of the Hilbert spaces [classical

states: {1, 2, . . . , d1} × {1, 2, . . . , d2}]
• Quantum marginal: partial trace operation ρ(1) := [id⊗Tr](ρ(12))

[classical marginal: p
(1)
i =

∑
j p

(12)
ij ]



Quantum channels

Channels Deterministic Noisy

Classical f : [d ]→ [d ] M Markov: Mij ≥ 0 and ∀i ,
∑

j Mij = 1

Quantum U ∈ U(d) Φ completely positive, trace pres. map

• Classical channels (acting on probability vectors):

• Positivity: for all i , j , Mij ≥ 0

• Mass preservation: for all j ,
∑

i Mij = 1.

• Quantum channels: CPTP linear maps Φ :Md1 →Md2

• CP - complete positivity: Φ⊗ idk is a positive map, ∀k ≥ 1. Positivity:

X positive semi-definite =⇒ Ψ(X ) positive semi-definite

• TP - trace preservation: Tr ◦ Φ = Tr.



Structure of quantum channels

Theorem [Stinespring-Kraus-Choi]

Let Φ :Md1 →Md2 be a linear map. TFAE:

1. The map Φ is completely positive and trace preserving (CPTP).

2. [Stinespring] There exist an integer s (s = d1d2 suffices) and an

isometry W : Cd1 → Cd2 ⊗ Cs such that

Φ(X ) = [idd2 ⊗ Trs ](WXW ∗).

3. [Kraus] There exist operators A1, . . . ,As ∈Md2×d1 satisfying∑
i A
∗
i Ai = Id1 such that

Φ(X ) =
s∑

i=1

AiXA
∗
i .

4. [Choi] The Choi matrix CΦ is positive semidefinite, where

CΦ :=
d1∑

i,j=1

Eij ⊗ Φ(Eij) ∈Md1 ⊗Md2

and [idd1 ⊗ Trd2 ](CΦ) = Id1 .



Examples and non-examples

• The identity channel id :Md →Md has the (un-normalized) Bell state

as its Choi matrix

Cid =
d∑

i,j=1

|ii〉〈jj | =
d∑

i,j=1

ei ⊗ ei · e∗j ⊗ e∗j .

• The totally depolarizing channel (or the conditional expectation on

scalars) ∆(X ) = (TrX )I/d has Choi matrix Id2/d

• The totally dephasing channel (or the conditional expectation on

diagonal matrices) D has Kraus decomposition

D(ρ) =
d∑

i=1

|i〉〈i |ρ|i〉〈i |.

• The transposition Θ(ρ) = ρ> is not a quantum channel, since it is not

completely positive. Its Choi matrix is CΘ = F , where F is the flip

operator Fx ⊗ y = y ⊗ x . F has eigenvalues +1 with multiplicity

d(d + 1)/2 and −1 with multiplicity d(d − 1)/2.



Random quantum channels

There exist several natural candidates for probability distributions on the

set of quantum channels {Φ :Md1 →Md2}

1. The Lebesgue measure: the set of quantum channels is convex and

compact, having real dimension d2
1d

2
2 − d2

1 . Normalize the volume

measure to obtain a probability distribution µLebesgue
d1,d2

2. Pick the isometry W in the Stinespring decomposition at random: W is

a Haar-random isometry Cd1 → Cd2 ⊗ Cs . We obtain a probability

distribution µStinespring
d1,d2;s , where s ≥ 1 is an integer such that d1 ≤ sd2

3. Pick the Kraus operators Ai at random: Gi are i.i.d. d2 × d1 Ginibre

matrices, define Ai = GiS
−1/2, with S =

∑s
i=1 G

∗
i Gi . We obtain a

probability distribution µKraus
d1,d2;s , where s ≥ 1 is an integer such that

d1 ≤ sd2

4. Pick the Choi matrix at random: C̃ is a Wishart matrix of parameters

d1d2, s), define C := [I ⊗ T−1/2]C̃ [I ⊗ T−1/2]∗, with T = [Tr⊗ id]C̃ .

We obtain a probability distribution µChoi
d1,d2;s , where s ≥ 1 is any real

number s ≥ d1d2, or an integer s ≥ d1/d2



Equivalence of probability measures

Theorem (Kukulski, N., Pawela, Puchala, Zyczkowski ’20)

The above distributions are identical, when the respective parameters

match:

µLebesgue
d1,d2

∈
{
µStinespring
d1,d2;s

}
s∈N

s≥d2/d1

=

{
µKraus
d1,d2;s

}
s∈N

s≥d2/d1

⊂
{
µChoi
d1,d2;s

}
s∈Sd1,d2

where

Sd1,d2 :=

{⌈
d1

d2

⌉
,

⌈
d1

d2

⌉
+ 1, . . . , d1d2 − 1

}
t [d1d2,+∞)

The Lebesgue measure is obtained for s = d1d2.

Computationally, the random Kraus operators procedure is the cheapest;

mathematically, the random isometry procedure is the more interesting

and easier to deal with, since no normalization procedure is needed, and

the structure of Haar random isometry is well understood



More on the distribution of random quantum channels

• The density of the normalized Choi matrix reads

f (C ) = δ([id⊗Tr](C )− Id1 ) detC s−d1d2dLeb

• For any fixed pure state Px = xx∗, the output matrix ρ = Φ(Px) follows

the induced distribution of parameters (d2, s), i.e. has the distribution of

a trace-normalized random Wishart matrix

• However, different inputs yield correlated outputs! It is an interesting

problem to study the distribution of the random output set

Φ({ρ ∈Md1 : ρ ≥ 0 and Tr ρ = 1})

• Open question: what are the properties of the Lebesgue distribution on

the set of unital quantum channels Φ(I ) = I? In the classical case

(bistochastic matrices) the problem has been studied by Chatterjee,

Diaconis, Sly - Properties of uniform doubly stochastic matrices -

arXiv:1010.6136

https://arxiv.org/abs/1010.6136


Spectral gap of random quantum

channels



Super-operators

• Given a quantum channel Φ :Md1 →Md2 , consider its super-operator

F , which is the matrix of Φ seen as a linear operator Φ : Cd2
1 → Cd2

2

F =
s∑

i=1

Ai ⊗ Ai ∈Md2
2×d2

1

• It is the matrix F which is analogous to the Markov matrix M of a

classical channel. Note that F is not self-adjoint (nor positive) in general

Theorem (Quantum Perron-Frobenius)

Let Φ :Md →Md be a positive map with spectral radius r . Then r is

an eigenvalue of F and there is a positive semi-definite matrix X ∈Md

such that Φ(X ) = rX .

• For quantum channels, the spectral radius is r = 1

• We shall be interested in the spectral gap: assuming Φ has an unique

fixed point

gap(Φ) = 1− max
λ∈spec F , λ 6=1

|λ|



Spectrum of the super-operator
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Figure 1: Eigenvalues of the superoperators of random quantum channels:

single sample of a random quantum channel Φ :Md →Md with d = 100.

The parameter s is, respectively, 2 and 50 for the top and bottom rows



Main result

• We shall work in the quantum expander regime:

s fixed, d2 = d →∞, d1 ∼ γd →∞, γ ∈ (0, s) fixed

Theorem (Gonzalez-Guillen, Junge, N. ’18, arXiv:1811.08847)

Consider a sequence of random quantum channels Φd :Md →Md (we

assume here γ = 1) and let Fd be the corresponding super-operator

sequence. Then, almost surely as d →∞, the second largest (in

absolute value) eigenvalue of Fd is asymptotically upper bounded:

lim sup
d→∞

|λ2(Fd)| ≤

(√
1 +

s − 1

s2
+ gs,1

)
gs,1

In particular, we have the following asymptotic (in s) lower bound for

the spectral gap:

lim inf
d→∞

1− |λ2(Fd)| & 1− 8√
s

• See also Cécilia Lancien, David Pérez-Garćıa - Correlation length in

random MPS and PEPS - arXiv:1906.11682

https://arxiv.org/abs/1811.08847
https://arxiv.org/abs/1906.11682


Proof strategy - 3 steps

1. Eigen vs. singular values: Weyl’s Majorant Theorem

∀p > 0 1 + |λ2(F )|p ≤ s1(F )p + s2(F )p

2. Lower bound on the largest singular value of F

Theorem (uses Weingarten calculus)

Consider a sequence of random quantum channels Φ :Md1 →Md2 and

let F be the corresponding super-operator. Define the overlap

R 3 f := Tr[ωd1 · F ∗F ],

where ωd1 is the maximally entangled quantum state

ωd1 =
1

d1

d1∑
i,j=1

|ii〉〈jj |

Then, for all integers p ≥ 1

lim
d1,2→∞

Ef p =

(
γ +

1

s
− γ

s2

)p

.

3. Upper bound on the norm of the restriction  · · ·



The upper bound

• We have guessed that the maximally entangled vector

Ωd1 =
1√
d1

d1∑
i=1

|ii〉

is close to the Perron-Frobenius (right) eigenvector of F

• We want now to upper bound the norm of the restriction F (Id2
1
− ωd1 )

• We use ideas from

• Hastings - Random unitaries give quantum expanders - PRA 2007

• Pisier - Quantum expanders and geometry of operator spaces - JEMS

2014

• Decoupling: F is defined via a Haar-isometry W  decouple the s

blocks of V to i.i.d. Ginibre matrices Yi  decouple∑
i (Yi ⊗ Ȳi )(I − ω) to

∑
i Yi ⊗ Zi

• The isometry W can be obtained from a Ginibre random matrix Y by

its polar decomposition Y = W |Y |. If E is the conditional expectation

on the σ-algebra generated by W , we have

E(Y ⊗ Y ) = E(W |Y | ⊗W |Y |) = (W ⊗W )E(|Y | ⊗ |Y |).

https://doi.org/10.1103/PhysRevA.76.032315
https://doi.org/10.4171/JEMS/458
https://doi.org/10.4171/JEMS/458


The upper bound

E(Y ⊗ Y ) = E(W |Y | ⊗W |Y |) = (W ⊗W )E(|Y | ⊗ |Y |).

One can compute

E(|Y | ⊗ |Y |) =
[
ωd1 + χd2s,d1 (Id2

1
− ωd1 )

]
,

where

χM,N :=
E‖Y ‖2

1 − 1

N2 − 1
.

For all M,N, we have χM,N ≥ 1/(N + 1) > 0. Moreover, in the limit

where N →∞ and M ∼ cN for some constant c ≥ 1,

lim
N→∞

χcN,N = χc := c−1

[∫ b

a

√
(x − a)(b − x)

2π
√
x

dx

]2

,

where a = (
√
c − 1)2 and b = (

√
c + 1)2.



The upper bound

Write Y =
∑s

i=1 Yi ⊗ |i〉.

Theorem

Let Y1, . . . ,Ys be independent d2 × d1 Ginibre matrices, and consider

independent copies Z1, . . . ,Zs having the same distributions. Then, for

all p ≥ 1 and all 1 ≤ q ≤ ∞, we have

E

∥∥∥∥∥
s∑

i=1

(Yi ⊗ Yi )(Id2
1
− ωd1 )

∥∥∥∥∥
p

q

≤ 2pE

∥∥∥∥∥
s∑

i=1

(Yi ⊗ Zi )(Id2
1
− ωd1 )

∥∥∥∥∥
p

q

Theorem

Let Y1, . . . ,Ys ,Z1, . . . ,Zs be independent Ginibre random matrices of

parameters (d2, d1; (d2s)−1). Then, for all even integers p ≥ 2,

E

∥∥∥∥∥
s∑

i=1

Yi ⊗ Zi

∥∥∥∥∥
p

∞

≤ d2
2

(
(1 +

√
γ)2

√
s

+ ε+ β

√
p

d2

)p

where ε→ 0 and β is bounded, as d1,2 →∞.



The take-home slide

Channels Deterministic Noisy

Classical f : [d ]→ [d ] M Markov: Mij ≥ 0 and ∀i ,
∑

j Mij = 1

Quantum U ∈ U(d) Φ completely positive, trace pres. map

• Random quantum channels: equivalent definitions

1. The Lebesgue measure: normalize the volume measure

2. Stinespring dilation: Φ(ρ) = [id⊗Tr](W ρW ∗) for a Haar-random

isometry W : Cd1 → Cd2 ⊗ Cs

3. Kraus decomposition: Φ(ρ) =
∑

i AiρA
∗
i with Ai random normalized

Ginibre matrices (Ai = GiS
−1/2, with S =

∑s
i=1 G

∗
i Gi )

4. Random Choi matrix: C̃ is a Wishart (d1d2, s) random matrix and

C = [I ⊗ T−1/2]C̃ [I ⊗ T−1/2]∗, with T = [Tr⊗ id]C̃

• The Lebesgue measure corresponds to s = d1d2

• Spectral gap: almost surely, as 1� s � d

lim inf
d→∞

1− |λ2(Fd)| & 1− 8√
s
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