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SNU, October 28th, 2020

http://arxiv.org/abs/2010.06365


Talk outline

Entanglement in quantum theory

Tensor norms in Banach spaces

Entanglement testers

The power of testers



Entanglement in quantum theory



Quantum states — single systems

Pure quantum states of one particle: unit norm vectors inside a complex

Hilbert space H = Cd

Mixed quantum states (or density matrices): positive semidefinite

matrices of unit trace ρ ≥ 0, Tr ρ = 1. Importantly, the set of quantum

states is not a simplex (as in classical probability)

In other words

quantum states = PSDd ∩ {Tr = 1}

PSDd

0

Tr = 1

quantum states

Metric point of view: {X ∈Msa
d (C) : TrX = ‖X‖Sd

1
= 1}  Sd

1

Extreme points: pure states Px = |x〉〈x |, with x ∈ Cd , ‖x‖ = 1



More systems

More particles  tensor product of the Hilbert spaces Cd1 ⊗ · · · ⊗ Cdm

Notion of positivity?

PSDd1⊗minPSDd2 ⊆ R+·{quantum states on Cd1⊗Cd2} ⊆ PSDd1⊗maxPSDd2

Nature chose intermediate setting

{quantum states on Cd1 ⊗ Cd2} = PSDd1d2 ∩ {Tr = 1}

Elements in the min tensor product are called separable

ρ =
r∑

k=1

pkρ
1
k ⊗ ρ2

k

with ρ1,2
k ∈ PSDd1,2 and Tr ρ1,2

k = 1 and p a probability distribution

Separable states can be prepared locally (+ shared randomness)

Non-separable states PSDd1d2 \ PSDd1⊗minPSDd2 are called entangled

Example: the maximally entangled state ωd := 1
d

∑d
i,j=1 |ei ⊗ ei 〉〈ej ⊗ ej |

Pure state ρ = |x〉〈x | is separable iff x = x1 ⊗ x2



Entanglement vs separability

Deciding whether a given state is separable or entangled

(i.e. membership in PSD⊗min PSD) is NP-hard [Gurvits]

Necessary conditions for separability (or sufficient conditions for

entanglement), which are computationally efficient

Partial transposition criterion (PPT) [Peres, Horodecki3]: given ρ

bipartite quantum state (> is the transposition map)

ρ separable =⇒ ρΓ := [id⊗>](ρ) ≥ 0

ρ
ρΓ =

PPT is also sufficient in dimensions 2× 2 and 2× 3 [Woronowicz]

Since Tr ρΓ = Tr ρ = 1, we have ρΓ ≥ 0 ⇐⇒ ‖ρΓ‖
Sd2

1
= 1

Hence ρ separable =⇒ ‖ρΓ‖
Sd2

1
= 1



Realignment criterion

Realignment criterion [Chen, Wu; Rudolph]: define the realignment ρR

of ρ ∈Md ⊗Md as ρRij,kl = ρik,jl

ρρR =

ρ separable =⇒ ‖ρR‖
Sd2

1
≤ 1

Matrices ρΓ and ρR correspond to permutations of the tensor legs of ρ

ρ separable

‖ρΓ‖
Sd2

1
= 1 ‖ρR‖

Sd2
1
≤ 1

Both PPT and realignment criteria detect all pure entangled states



Tensor norms in Banach spaces



Injective and projective tensor norms

Definition

Consider m Banach spaces A1, . . . ,Am. For a tensor x ∈ A1 ⊗ · · · ⊗ Am,

we define its projective tensor norm

‖x‖π := inf

{
r∑

k=1

‖a1
k‖ · · · ‖amk ‖ : aik ∈ Ai , x =

r∑
k=1

a1
k ⊗ · · · ⊗ amk

}
and its injective tensor norm

‖x‖ε := sup
{
|〈α1 ⊗ · · · ⊗ αm, x〉| : αi ∈ A∗i , ‖αi‖ ≤ 1

}
The projective and injective norms are examples of tensor norms (aka

reasonable cross-norms):

‖a1 ⊗ · · · ⊗ am‖π = ‖a1 ⊗ · · · ⊗ am‖ε = ‖a1‖ · · · ‖am‖

‖α1 ⊗ · · · ⊗ αm‖π∗ = ‖α1 ⊗ · · · ⊗ αm‖ε∗ = ‖α1‖∗ · · · ‖αm‖∗
For any other tensor norm ‖ · ‖ on A1 ⊗ · · · ⊗ Am, we have

∀ x ∈ A1 ⊗ · · · ⊗ Am, ‖x‖ε ≤ ‖x‖ ≤ ‖x‖π

The injective and projective norms are dual to each other



Operator and nuclear norms

For an operator X ∈Md(C), the operator norm (or the Schatten ∞
norm) is defined as

‖X‖Sd
∞

= sup
‖a‖,‖b‖≤1

|〈a,Xb〉|

Seeing X as a 2-tensor X̃ ∈ `d2 ⊗ `d2 , we have

‖X‖Sd
∞

= sup
‖a‖,‖b‖≤1

|〈a⊗ b, X̃ 〉| = ‖X̃‖`d2⊗ε`d2

The nuclear norm of X (or the Schatten 1 norm) is dual to the operator

norm, so we have

‖X‖Sd
1

= ‖X̃‖`d2⊗π`d2
This can be seen directly from the SVD: ‖X‖Sd

1
=
∑d

i=1 σi for

X =
d∑

i=1

σi |ai 〉〈bi | ⇐⇒ X̃ =
d∑

i=1

σiai ⊗ bi

for non-negative σi and orthonormal bases {ai}, {bi}
Computing the ‖ · ‖`d2⊗ε`d2 and ‖ · ‖`d2⊗π`d2 norms is efficient (SVD)



Entanglement with tensor norms

Proposition

A pure quantum state ψ ∈ Cd1 ⊗ · · · ⊗ Cdm , ‖ψ‖2 = 1, is separable iff

‖ψ‖
`
d1
2 ⊗ε···⊗ε`

dm
2

= ‖ψ‖
`
d1
2 ⊗π···⊗π`

dm
2

= 1

The geometric measure of entanglement:

G (ψ) := − log sup
ϕi∈Hi , ‖ϕi‖=1

|〈ϕ1 ⊗ · · · ⊗ ϕm, ψ〉|2 = −2 log ‖ψ‖ε

Theorem

For a multipartite mixed quantum state ρ ∈Md1 (C)⊗ · · · ⊗Mdm(C),

ρ ≥ 0, Tr ρ = 1, the following assertions are equivalent:

ρ is separable

‖ρ‖
S
d1
1,sa⊗π···⊗πS

dm
1,sa

= 1

‖ρ‖
S
d1
1 ⊗π···⊗πS

dm
1

= 1

Caveat: computing tensor norms (≥ 3 factors) is NP-hard [Hillar, Lam]



A new perspective on the PPT and realignment criteria

Let ρ ∈Md ⊗Md be a bipartite quantum state, ρ : AB → A′B ′

ρ
A

B

A′

B′

d1

d2

d1

d2

ρ separable ⇐⇒ ‖ρ‖SA→A′
1 ⊗πSB→B′

1
= 1 ⇐⇒ ‖ρ‖`A2⊗π`A′2 ⊗π`B2⊗π`B

′
2

= 1

Main idea: group the four `2 spaces 2 by 2, and use

‖ · ‖`X2 ⊗π`Y2 ≥ ‖ · ‖`XY2

The above is true since the euclidean norm on X ⊗ Y is a tensor norm

(AB |A′B ′): ρ sep. =⇒ 1 ≥ ‖ρ‖`AB2 ⊗π`A
′B′

2
= ‖ρ‖SAB→A′B′

1
= Tr ρ = 1

(AB ′ |A′B)  PPT criterion:

ρ separable =⇒ 1 ≥ ‖ρ‖`AB′2 ⊗π`A
′B

2
= ‖ρ‖SAB′→A′B

1
= ‖ρΓ‖

Sd2
1
⇐⇒ ρΓ ≥ 0

(AA′ |BB ′)  realignment criterion:

ρ separable =⇒ 1 ≥ ‖ρ‖`AA′2 ⊗π`BB′
2

= ‖ρ‖SAA′→BB′
1

= ‖ρR‖
Sd2

1



Entanglement testers



Entanglement testers

Definition

To a n-tuple of matrices (E1, . . . ,En) ∈Md(C)n,

we associate the linear map

E :Md(C)→ Cn

X 7→
n∑

k=1

〈Ek ,X 〉|k〉

where {|k〉}nk=1 is some orthonormal basis of Cn.

The map E is called an entanglement tester if

‖E‖Sd
1→`n2 = 1

E

E
X

The main idea of this work is to use m testers E1 ⊗ · · · ⊗ Em to embed

the projective tensor product of S1 spaces inside the projective tensor

product of the (simpler, commutative) `2 spaces

In other words, we reduce the problem of multipartite mixed

entanglement to that of multipartite pure entanglement



Detecting entanglement

Proposition

If E1, . . . , Em are entanglement testers, then, for

any multipartite quantum state ρ, we have

ρ separable ⇐⇒ ‖ρ‖
S
d1
1 ⊗π···⊗πS

dm
1

= 1 =⇒

‖E1 ⊗ · · · ⊗ Em(ρ)‖`n1
2 ⊗π···⊗π`

nm
2
≤ 1

Reciprocally, we have the following entanglement

criterion:

‖E1 ⊗ · · · ⊗ Em(ρ)‖`n1
2 ⊗π···⊗π`

nm
2
> 1

=⇒ ρ is entangled

ρ

d1 d1

d2 d2

dm dm

E1

E2

Em

n1

n2

nm

We reduce the evaluation of the tensor norm

Sd1
1 ⊗π · · · ⊗π Sdm

1
∼= (`d1

2 ⊗π `
d1
2 )⊗π · · · ⊗π (`dm2 ⊗π `

dm
2 ) [2m factors]

to that of

`n1
2 ⊗π · · · ⊗π `

nm
2 [m factors]



Example 1: Realignment

Recall the realignment criterion: ‖ρR‖
Sd2

1
> 1 =⇒ ρ entangled

Let R = id :Md(C)→ Cd2

. R is a tester: ‖R‖
Sd

1→`d
2

2
∼=Sd

2
= 1

R =

We have

ρR = [R⊗R](ρ)

ρ

Sd
2

1

ρ

`d
2

2 ⊗π `d
2

2

=

Hence, the realignment criterion corresponds to the R⊗R tester

Natural generalization to the multipartite setting: R⊗m



Example 2: SIC POVM

A spherical 2-design {|xk〉}Nk=1 is a finite subset of the unit sphere of Cd

having the same first 2 moments as the Haar measure

1

N

N∑
k=1

|xk〉〈xk |⊗2 =
Psym

d(d + 1)/2

Spherical 2-designs with N = d2 are known as

SIC POVMs. we have |〈xi , xj〉|2 = 1/(d + 1) for

i 6= j

Existence is conjectured in every dimension,

proven for d = 1, . . . , 16, 19, 24, 35, 48

Any 2-design with d2 elements defines a tester

S : X 7→
√

d + 1

2d

d2∑
k=1

〈xk |X |xk〉|k〉

S =



The power of testers



Perfect testers

Definition

A tester E : Sd
1 → `n2 is called perfect if, for any pure states

ϕ, χ ∈ Cd ⊗ Cd , at least one of them entangled,

‖E⊗2(|ϕ〉〈χ|)‖`n2⊗π`n2 > 1

Theorem

For a linear map E : Sd
1 → `n2 the following statements are equivalent:

E is a perfect tester

The norm ‖E‖Sd
1→`d2 = 1 is attained at all the extremal points of the

unit ball of Sd
1 : for all unit vectors x , y ∈ Cd we have

‖E(|x〉〈y |)‖2 = 1

E is an isometry Sd
2 → `n2

The realignment tester R is perfect, while the SIC POVM map S is a

R-perfect tester, detecting all pure self-adjoint entanglement



Realignment vs. SIC POVM

In [SAZG18] the authors conjectured that any entangled state detected

by the realignment criterion in also detected by the SIC POVM criterion

Theorem

For any quantum state ρ on Cd ⊗ Cd , we have

‖S⊗2(ρ)‖
`d

2
2 ⊗π`d

2
2
≥
‖R⊗2(ρ)‖

`d
2

2 ⊗π`d
2

2
+ 1

2

Proof idea: perturbation theory for S1 norm by non-unitary conjugations

S =
n∑

i=1

γi |ai 〉〈bi | =⇒ ‖SXS∗‖1 ≥ ‖X‖1 +
n∑

i=1

(|γi |2 − 1)〈bi |X |bi 〉

For many families of quantum states, such as

isotropic states: ρ = pωd + (1 − p)I/d2

Werner states ρ = qP̂sym + (1 − q)P̂asym

the inequality is saturated



Completeness of the testers for mixed bipartite states

Theorem

Let ρ be an entangled state on Cd ⊗ Cd . Then, there exists a tester

E : Sd
1 → `d

2

2 such that∥∥[E] ⊗ E ] (ρ̃)
∥∥
`d

2
2 ⊗π`d

2
2
> 1,

where E] : Sd
1 → `d

2

2 is the tester whose operators are the adjoints of

those of E , and ρ̃ is obtained by permuting the legs of ρ as follows:

ρρ̃ =

Note that ‖ρ‖Sd
1⊗πSd

1
= ‖ρ̃‖Sd

1⊗πSd
1

Start from an entanglement witness W such that 〈W , ρ〉 > 1 and

‖W ‖Sd
∞⊗εSd

∞
= 1

Massage W and take E =
√
W ′



Completeness for multiparite pure states

Recall

‖ϕ‖(`d2 )⊗εm = sup
‖ψi‖≤1

〈ψ1 ⊗ · · · ⊗ ψm, ϕ〉

Theorem

For any unit vector ϕ ∈ (Cd)⊗m,∥∥R⊗m(|ϕ〉〈ϕ|)
∥∥

(`d
2

2 )⊗πm ≥
1

‖ϕ‖(`d2 )⊗εm

If in addition ϕ is non-negative (meaning that its coefficients in the

canonical basis of (Cd)⊗m are all non-negative), then∥∥R⊗m(|ϕ〉〈ϕ|)
∥∥

(`d
2

2 )⊗πm ≥
1

‖ϕ‖2
(`d2 )⊗εm

In particular, we have

ϕ entangled =⇒
∥∥R⊗m(|ϕ〉〈ϕ|)

∥∥
(`d

2
2 )⊗πm > 1



The take-home slide

ρ

d1 d1

d2 d2

dm dm

E1

E2

Em

n1

n2

nm

Mixed quantum state: ρ ∈Md(C), ρ ≥ 0, Tr ρ = 1

Multipartite quantum state ρ is separable if

ρ =
r∑

k=1

pkρ
1
k ⊗ · · · ⊗ ρmk

Equiv. charact. in terms of projective tensor norm

‖ρ‖
S
d1
1 ⊗π···⊗πS

dm
1

= 1

Entanglement tester: contraction E : Sd
1 → `n2

Ent. criterion: ‖[E1 ⊗ · · · ⊗ Em](ρ)‖`n1
2 ⊗π···⊗π`

nm
2
> 1 =⇒ ρ entangled

General framework, encompasses (and extends) many known criteria

(PPT, realignment R, SIC POVM S). Proof of conjecture R ⊂ S
Testers complete for mixed bipartite states∗ and pure multipartite states

Open problems

Completeness for mixed multipartite states

Imperfect testers E : Sd
1 → `n2 with n� d2
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