Multipartite entanglement detection via projective tensor norms

Ion Nechita (CNRS, LPT Toulouse)
— joint work with Maria Jivulescu and Cécilia Lancien arXiv:2010.06365

SNU, October 28th, 2020

Talk outline

Entanglement in quantum theory

Tensor norms in Banach spaces

Entanglement testers

The power of testers

Entanglement in quantum theory

Quantum states - single systems

- Pure quantum states of one particle: unit norm vectors inside a complex Hilbert space $\mathcal{H}=\mathbb{C}^{d}$
- Mixed quantum states (or density matrices): positive semidefinite matrices of unit trace $\rho \geq 0, \operatorname{Tr} \rho=1$. Importantly, the set of quantum states is not a simplex (as in classical probability)
- In other words

$$
\text { quantum states }=\mathrm{PSD}_{d} \cap\{\operatorname{Tr}=1\}
$$

- Metric point of view: $\left\{X \in \mathcal{M}_{d}^{\text {sa }}(\mathbb{C}): \operatorname{Tr} X=\|X\|_{S_{1}^{d}}=1\right\} \rightsquigarrow S_{1}^{d}$
- Extreme points: pure states $P_{x}=|x\rangle\langle x|$, with $x \in \mathbb{C}^{d},\|x\|=1$

More systems

- More particles \rightsquigarrow tensor product of the Hilbert spaces $\mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{m}}$
- Notion of positivity?
$\mathrm{PSD}_{d_{1}} \otimes_{\text {min }} \mathrm{PSD}_{d_{2}} \subseteq \mathbb{R}_{+} \cdot\left\{\right.$ quantum states on $\left.\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right\} \subseteq \mathrm{PSD}_{d_{1}} \otimes_{\max } \mathrm{PSD}_{d_{2}}$
- Nature chose intermediate setting

$$
\left\{\text { quantum states on } \mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}}\right\}=\mathrm{PSD}_{d_{1} d_{2}} \cap\{\operatorname{Tr}=1\}
$$

- Elements in the min tensor product are called separable

$$
\rho=\sum_{k=1}^{r} p_{k} \rho_{k}^{1} \otimes \rho_{k}^{2}
$$

with $\rho_{k}^{1,2} \in \operatorname{PSD}_{d_{1,2}}$ and $\operatorname{Tr} \rho_{k}^{1,2}=1$ and p a probability distribution

- Separable states can be prepared locally (+ shared randomness)
- Non-separable states $\mathrm{PSD}_{d_{1} d_{2}} \backslash \mathrm{PSD}_{d_{1}} \otimes_{\min } \mathrm{PSD}_{d_{2}}$ are called entangled
- Example: the maximally entangled state $\omega_{d}:=\frac{1}{d} \sum_{i, j=1}^{d}\left|e_{i} \otimes e_{i}\right\rangle\left\langle e_{j} \otimes e_{j}\right|$
- Pure state $\rho=|x\rangle\langle x|$ is separable iff $x=x^{1} \otimes x^{2}$

Entanglement vs separability

- Deciding whether a given state is separable or entangled (i.e. membership in PSD $\otimes_{\min }$ PSD) is NP-hard [Gurvits]
- Necessary conditions for separability (or sufficient conditions for entanglement), which are computationally efficient
- Partial transposition criterion (PPT) [Peres, Horodecki]: given ρ bipartite quantum state (T is the transposition map)

$$
\rho \text { separable } \Longrightarrow \rho^{\Gamma}:=[\operatorname{id} \otimes \top](\rho) \geq 0
$$

- PPT is also sufficient in dimensions 2×2 and 2×3 [Woronowicz]
- Since $\operatorname{Tr} \rho^{\ulcorner }=\operatorname{Tr} \rho=1$, we have $\rho^{\ulcorner } \geq 0 \Longleftrightarrow\left\|\rho^{\ulcorner }\right\|_{S_{1}^{d^{2}}}=1$
- Hence ρ separable $\Longrightarrow\left\|\rho^{\ulcorner }\right\|_{S_{1}^{d^{2}}}=1$

Realignment criterion

- Realignment criterion [Chen, Wu; Rudolph]: define the realignment ρ^{R} of $\rho \in \mathcal{M}_{d} \otimes \mathcal{M}_{d}$ as $\rho_{i j, k l}^{R}=\rho_{i k, j l}$

- ρ separable $\Longrightarrow\left\|\rho^{R}\right\|_{S_{1}^{a^{2}}} \leq 1$
- Matrices $\rho^{\ulcorner }$and ρ^{R} correspond to permutations of the tensor legs of ρ

- Both PPT and realignment criteria detect all pure entangled states

Tensor norms in Banach spaces

Injective and projective tensor norms

Definition

Consider m Banach spaces A_{1}, \ldots, A_{m}. For a tensor $x \in A_{1} \otimes \cdots \otimes A_{m}$, we define its projective tensor norm

$$
\|x\|_{\pi}:=\inf \left\{\sum_{k=1}^{r}\left\|a_{k}^{1}\right\| \cdots\left\|a_{k}^{m}\right\|: a_{k}^{i} \in A_{i}, x=\sum_{k=1}^{r} a_{k}^{1} \otimes \cdots \otimes a_{k}^{m}\right\}
$$

and its injective tensor norm

$$
\|x\|_{\varepsilon}:=\sup \left\{\left|\left\langle\alpha^{1} \otimes \cdots \otimes \alpha^{m}, x\right\rangle\right|: \alpha^{i} \in A_{i}^{*},\left\|\alpha^{i}\right\| \leq 1\right\}
$$

- The projective and injective norms are examples of tensor norms (aka reasonable cross-norms):

$$
\begin{gathered}
\left\|a^{1} \otimes \cdots \otimes a^{m}\right\|_{\pi}=\left\|a^{1} \otimes \cdots \otimes a^{m}\right\|_{\varepsilon}=\left\|a^{1}\right\| \cdots\left\|a^{m}\right\| \\
\left\|\alpha^{1} \otimes \cdots \otimes \alpha^{m}\right\|_{\pi_{*}}=\left\|\alpha^{1} \otimes \cdots \otimes \alpha^{m}\right\|_{\varepsilon *}=\left\|\alpha^{1}\right\|_{*} \cdots\left\|\alpha^{m}\right\|_{*}
\end{gathered}
$$

- For any other tensor norm $\|\cdot\|$ on $A_{1} \otimes \cdots \otimes A_{m}$, we have

$$
\forall x \in A_{1} \otimes \cdots \otimes A_{m}, \quad\|x\|_{\varepsilon} \leq\|x\| \leq\|x\|_{\pi}
$$

- The injective and projective norms are dual to each other

Operator and nuclear norms

- For an operator $X \in \mathcal{M}_{d}(\mathbb{C})$, the operator norm (or the Schatten ∞ norm) is defined as

$$
\|X\|_{S_{\infty}^{d}}=\sup _{\|a\|,\|b\| \leq 1}|\langle a, X b\rangle|
$$

- Seeing X as a 2 -tensor $\tilde{X} \in \ell_{2}^{d} \otimes \ell_{2}^{d}$, we have

$$
\|X\|_{S_{\infty}^{d}}=\sup _{\|a\|,\|b\| \leq 1}|\langle a \otimes b, \tilde{X}\rangle|=\|\tilde{X}\|_{\ell_{2}^{d} \otimes_{e} \ell_{2}^{d}}
$$

- The nuclear norm of X (or the Schatten 1 norm) is dual to the operator norm, so we have

$$
\|X\|_{S_{1}^{d}}=\|\tilde{X}\|_{\ell_{2}^{d} \otimes_{\pi} \ell_{2}^{d}}
$$

- This can be seen directly from the SVD: $\|X\|_{S_{1}^{d}}=\sum_{i=1}^{d} \sigma_{i}$ for

$$
X=\sum_{i=1}^{d} \sigma_{i}\left|a_{i}\right\rangle\left\langle b_{i}\right| \quad \Longleftrightarrow \quad \tilde{X}=\sum_{i=1}^{d} \sigma_{i} a_{i} \otimes b_{i}
$$

for non-negative σ_{i} and orthonormal bases $\left\{a_{i}\right\},\left\{b_{i}\right\}$

- Computing the $\|\cdot\|_{\ell_{2}^{d} \otimes_{\varepsilon} \ell_{2}^{d}}$ and $\|\cdot\|_{\ell_{2}^{d} \otimes_{\pi} \ell_{2}^{d}}$ norms is efficient (SVD)

Entanglement with tensor norms

Proposition

A pure quantum state $\psi \in \mathbb{C}^{d_{1}} \otimes \cdots \otimes \mathbb{C}^{d_{m}},\|\psi\|_{2}=1$, is separable iff

$$
\|\psi\|_{\ell_{2}^{d_{1}} \otimes_{e} \cdots \otimes_{e} \ell_{2}^{d_{m}}}=\|\psi\|_{\ell_{2}^{d_{1}} \otimes_{\pi} \cdots \otimes_{\pi} \ell_{2}^{d_{m}}}=1
$$

- The geometric measure of entanglement:

$$
G(\psi):=-\log \sup _{\varphi_{i} \in H_{i},\left\|\varphi_{i}\right\|=1}\left|\left\langle\varphi_{1} \otimes \cdots \otimes \varphi_{m}, \psi\right\rangle\right|^{2}=-2 \log \|\psi\|_{\varepsilon}
$$

Theorem

For a multipartite mixed quantum state $\rho \in \mathcal{M}_{d_{1}}(\mathbb{C}) \otimes \cdots \otimes \mathcal{M}_{d_{m}}(\mathbb{C})$, $\rho \geq 0, \operatorname{Tr} \rho=1$, the following assertions are equivalent:

- ρ is separable
- $\|\rho\|_{S_{1, s a}^{d_{1}} \otimes_{\pi} \cdots \otimes_{\pi} S_{1, s a}^{d_{m}}}=1$
- $\|\rho\|_{S_{1}^{d_{1}} \otimes_{\pi} \cdots \otimes_{\pi} S_{1}^{d_{m}}}=1$
- Caveat: computing tensor norms (≥ 3 factors) is NP-hard [Hillar, Lam]

A new perspective on the PPT and realignment criteria

- Let $\rho \in \mathcal{M}_{d} \otimes \mathcal{M}_{d}$ be a bipartite quantum state, $\rho: A B \rightarrow A^{\prime} B^{\prime}$

- ρ separable $\Longleftrightarrow\|\rho\|_{S_{1}^{A \rightarrow A^{\prime}} \otimes_{\pi} S_{1}^{B \rightarrow B^{\prime}}}=1 \Longleftrightarrow\|\rho\|_{\ell_{2}^{A} \otimes_{\pi} \ell_{2}^{A^{\prime}} \otimes_{\pi} \ell_{2}^{B} \otimes_{\pi} \ell_{2}^{B^{\prime}}}=1$
- Main idea: group the four ℓ_{2} spaces 2 by 2 , and use

$$
\|\cdot\|_{\ell_{2}^{x} \otimes_{\pi} \ell_{2}^{Y}} \geq\|\cdot\|_{\ell_{2}^{X Y}}
$$

The above is true since the euclidean norm on $X \otimes Y$ is a tensor norm

- $\left(A B \mid A^{\prime} B^{\prime}\right): \rho$ sep. $\Longrightarrow 1 \geq\|\rho\|_{e_{2}^{A B} \otimes_{\pi} \pi_{2}^{A^{\prime} B^{\prime}}}=\|\rho\|_{S_{1}^{A B \rightarrow A^{\prime} B^{\prime}}}=\operatorname{Tr} \rho=1$
- $\left(A B^{\prime} \mid A^{\prime} B\right) \rightsquigarrow$ PPT criterion:
ρ separable $\Longrightarrow 1 \geq\|\rho\|_{\ell_{2}^{A B^{\prime}} \otimes_{\pi} \ell_{2}^{\Lambda^{\prime} B}}=\|\rho\|_{S_{1}^{A B^{\prime} \rightarrow A^{\prime} B}}=\left\|\rho^{\Gamma}\right\|_{S_{1}^{d^{2}}} \Longleftrightarrow \rho^{\ulcorner } \geq 0$
- $\left(A A^{\prime} \mid B B^{\prime}\right) \rightsquigarrow$ realignment criterion:

$$
\rho \text { separable } \Longrightarrow 1 \geq\|\rho\|_{\ell_{2}^{A A^{\prime}} \otimes_{\pi} \ell_{2}^{\ell B^{\prime}}}=\|\rho\|_{S_{1}^{A A^{\prime} \rightarrow B B^{\prime}}}=\left\|\rho^{R}\right\|_{S_{1}^{d^{2}}}
$$

Entanglement testers

Entanglement testers

Definition

To a n-tuple of matrices $\left(E_{1}, \ldots, E_{n}\right) \in \mathcal{M}_{d}(\mathbb{C})^{n}$, we associate the linear map

$$
\begin{aligned}
\mathcal{E}: \mathcal{M}_{d}(\mathbb{C}) & \rightarrow \mathbb{C}^{n} \\
X & \mapsto \sum_{k=1}^{n}\left\langle E_{k}, X\right\rangle|k\rangle
\end{aligned}
$$

where $\{|k\rangle\}_{k=1}^{n}$ is some orthonormal basis of \mathbb{C}^{n}. The map \mathcal{E} is called an entanglement tester if

$$
\|\mathcal{E}\|_{S_{1}^{d} \rightarrow \ell_{2}^{n}}=1
$$

- The main idea of this work is to use m testers $\mathcal{E}_{1} \otimes \cdots \otimes \mathcal{E}_{m}$ to embed the projective tensor product of S_{1} spaces inside the projective tensor product of the (simpler, commutative) ℓ_{2} spaces
- In other words, we reduce the problem of multipartite mixed entanglement to that of multipartite pure entanglement

Detecting entanglement

Proposition

If $\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}$ are entanglement testers, then, for any multipartite quantum state ρ, we have

$$
\begin{gathered}
\rho \text { separable } \Longleftrightarrow\|\rho\|_{S_{1}^{d_{1}} \otimes_{\pi} \cdots \otimes_{\pi} S_{1}^{d_{m}}}=1 \Longrightarrow \\
\left\|\mathcal{E}_{1} \otimes \cdots \otimes \mathcal{E}_{m}(\rho)\right\|_{\ell_{2}^{n_{1}} \otimes_{\pi} \cdots \otimes_{\pi} \ell_{2}^{n_{m}}} \leq 1
\end{gathered}
$$

Reciprocally, we have the following entanglement criterion:

$$
\begin{aligned}
& \left\|\mathcal{E}_{1} \otimes \cdots \otimes \mathcal{E}_{m}(\rho)\right\|_{\ell_{2}^{n_{1}} \otimes_{\pi} \cdots \otimes_{\pi} \ell_{2}^{n_{m}}}>1 \\
& \quad \Longrightarrow \rho \text { is entangled }
\end{aligned}
$$

- We reduce the evaluation of the tensor norm

$$
S_{1}^{d_{1}} \otimes_{\pi} \cdots \otimes_{\pi} S_{1}^{d_{m}} \cong\left(\ell_{2}^{d_{1}} \otimes_{\pi} \ell_{2}^{d_{1}}\right) \otimes_{\pi} \cdots \otimes_{\pi}\left(\ell_{2}^{d_{m}} \otimes_{\pi} \ell_{2}^{d_{m}}\right) \quad \text { [2m factors] }
$$

to that of

$$
\ell_{2}^{n_{1}} \otimes_{\pi} \cdots \otimes_{\pi} \ell_{2}^{n_{m}}
$$

Example 1: Realignment

- Recall the realignment criterion: $\left\|\rho^{R}\right\|_{S_{1}^{d^{2}}}>1 \Longrightarrow \rho$ entangled
- Let $\mathcal{R}=\mathrm{id}: \mathcal{M}_{d}(\mathbb{C}) \rightarrow \mathbb{C}^{d^{2}} . \mathcal{R}$ is a tester: $\|\mathcal{R}\|_{S_{1}^{d} \rightarrow \ell_{2}^{d^{2}} \cong S_{2}^{d}}=1$

- We have

$$
\rho^{R}=[\mathcal{R} \otimes \mathcal{R}](\rho)
$$

- Hence, the realignment criterion corresponds to the $\mathcal{R} \otimes \mathcal{R}$ tester
- Natural generalization to the multipartite setting: $\mathcal{R}^{\otimes m}$

Example 2: SIC POVM

- A spherical 2-design $\left\{\left|x_{k}\right\rangle\right\}_{k=1}^{N}$ is a finite subset of the unit sphere of \mathbb{C}^{d} having the same first 2 moments as the Haar measure

$$
\frac{1}{N} \sum_{k=1}^{N}\left|x_{k}\right\rangle\left\langle\left. x_{k}\right|^{\otimes 2}=\frac{P_{s y m}}{d(d+1) / 2}\right.
$$

- Spherical 2-designs with $N=d^{2}$ are known as SIC POVMs. we have $\left|\left\langle x_{i}, x_{j}\right\rangle\right|^{2}=1 /(d+1)$ for $i \neq j$
- Existence is conjectured in every dimension, proven for $d=1, \ldots, 16,19,24,35,48$

- Any 2-design with d^{2} elements defines a tester

$$
\mathcal{S}: X \mapsto \sqrt{\frac{d+1}{2 d}} \sum_{k=1}^{d^{2}}\left\langle x_{k}\right| X\left|x_{k}\right\rangle|k\rangle
$$

The power of testers

Perfect testers

Definition

A tester $\mathcal{E}: S_{1}^{d} \rightarrow \ell_{2}^{n}$ is called perfect if, for any pure states $\varphi, \chi \in \mathbb{C}^{d} \otimes \mathbb{C}^{d}$, at least one of them entangled,

$$
\left\|\mathcal{E}^{\otimes 2}(|\varphi\rangle\langle\chi|)\right\|_{\ell_{2}^{n} \otimes_{\pi} \ell_{2}^{n}}>1
$$

Theorem

For a linear map $\mathcal{E}: S_{1}^{d} \rightarrow \ell_{2}^{n}$ the following statements are equivalent:

- \mathcal{E} is a perfect tester
- The norm $\|\mathcal{E}\|_{S_{1}^{d} \rightarrow \ell_{2}^{d}}=1$ is attained at all the extremal points of the unit ball of S_{1}^{d} : for all unit vectors $x, y \in \mathbb{C}^{d}$ we have $\|\mathcal{E}(|x\rangle\langle y|)\|_{2}=1$
- \mathcal{E} is an isometry $S_{2}^{d} \rightarrow \ell_{2}^{n}$
- The realignment tester \mathcal{R} is perfect, while the SIC POVM map \mathcal{S} is a \mathbb{R}-perfect tester, detecting all pure self-adjoint entanglement

Realignment vs. SIC POVM

- In [SAZG18] the authors conjectured that any entangled state detected by the realignment criterion in also detected by the SIC POVM criterion

Theorem

For any quantum state ρ on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$, we have

$$
\left\|\mathcal{S}^{\otimes 2}(\rho)\right\|_{\ell_{2}^{d^{2}} \otimes_{\pi} \ell_{2}^{d^{2}}} \geq \frac{\left\|\mathcal{R}^{\otimes 2}(\rho)\right\|_{\ell_{2}^{d^{2}} \otimes_{\pi} \ell_{2}^{d^{2}}}+1}{2}
$$

- Proof idea: perturbation theory for S_{1} norm by non-unitary conjugations

$$
S=\sum_{i=1}^{n} \gamma_{i}\left|a_{i}\right\rangle\left\langle b_{i}\right| \Longrightarrow\left\|S X S^{*}\right\|_{1} \geq\|X\|_{1}+\sum_{i=1}^{n}\left(\left|\gamma_{i}\right|^{2}-1\right)\left\langle b_{i}\right| X\left|b_{i}\right\rangle
$$

- For many families of quantum states, such as
- isotropic states: $\rho=p \omega_{d}+(1-p) I / d^{2}$
- Werner states $\rho=q \hat{P}_{\text {sym }}+(1-q) \hat{P}_{\text {asym }}$
the inequality is saturated

Completeness of the testers for mixed bipartite states

Theorem

Let ρ be an entangled state on $\mathbb{C}^{d} \otimes \mathbb{C}^{d}$. Then, there exists a tester $\mathcal{E}: S_{1}^{d} \rightarrow \ell_{2}^{d^{2}}$ such that

$$
\left\|\left[\mathcal{E}^{\sharp} \otimes \mathcal{E}\right](\tilde{\rho})\right\|_{\ell_{2}^{d^{2}} \otimes_{\pi} \ell_{2}^{d^{2}}}>1
$$

where $\mathcal{E}^{\sharp}: S_{1}^{d} \rightarrow \ell_{2}^{d^{2}}$ is the tester whose operators are the adjoints of those of \mathcal{E}, and $\tilde{\rho}$ is obtained by permuting the legs of ρ as follows:

- Note that $\|\rho\|_{S_{1}^{d} \otimes_{\pi} S_{1}^{d}}=\|\tilde{\rho}\|_{S_{1}^{d} \otimes_{\pi} S_{1}^{d}}$
- Start from an entanglement witness W such that $\langle W, \rho\rangle>1$ and $\|W\|_{S_{\infty}^{d} \otimes_{\varepsilon} S_{\infty}^{d}}=1$
- Massage W and take $\mathcal{E}=\sqrt{W^{\prime}}$

Completeness for multiparite pure states

- Recall

$$
\|\varphi\|_{\left(\ell_{2}^{d}\right)^{\infty} \otimes_{\varepsilon} m}=\sup _{\left\|\psi_{i}\right\| \leq 1}\left\langle\psi_{1} \otimes \cdots \otimes \psi_{m}, \varphi\right\rangle
$$

Theorem

For any unit vector $\varphi \in\left(\mathbb{C}^{d}\right)^{\otimes m}$,

$$
\left\|\mathcal{R}^{\otimes m}(|\varphi\rangle\langle\varphi|)\right\|_{\left(\ell_{2}^{f^{2}}\right) \otimes \pi m} \geq \frac{1}{\|\varphi\|_{\left(\ell_{2}^{d}\right)^{\otimes \varepsilon}}}
$$

If in addition φ is non-negative (meaning that its coefficients in the canonical basis of $\left(\mathbb{C}^{d}\right)^{\otimes m}$ are all non-negative), then

$$
\left\|\mathcal{R}^{\otimes m}(|\varphi\rangle\langle\varphi|)\right\|_{\left(\ell_{2}^{d^{2}}\right) \otimes \pi m} \geq \frac{1}{\|\varphi\|_{\left(\ell_{2}^{d}\right)_{\varepsilon} m}^{2}}
$$

In particular, we have

$$
\varphi \text { entangled } \Longrightarrow\left\|\mathcal{R}^{\otimes m}(|\varphi\rangle\langle\varphi|)\right\|_{\left(\ell_{2}^{d^{2}}\right) \otimes \pi m}>1
$$

The take-home slide

- Mixed quantum state: $\rho \in \mathcal{M}_{d}(\mathbb{C}), \rho \geq 0, \operatorname{Tr} \rho=1$
- Multipartite quantum state ρ is separable if

$$
\rho=\sum_{k=1}^{r} p_{k} \rho_{k}^{1} \otimes \cdots \otimes \rho_{k}^{m}
$$

- Equiv. charact. in terms of projective tensor norm

$$
\|\rho\|_{S_{1}^{d_{1}} \otimes_{\pi} \cdots \otimes_{\pi} S_{1}^{d_{m}}}=1
$$

- Entanglement tester: contraction $\mathcal{E}: S_{1}^{d} \rightarrow \ell_{2}^{n}$
- Ent. criterion: $\left\|\left[\mathcal{E}_{1} \otimes \cdots \otimes \mathcal{E}_{m}\right](\rho)\right\|_{\ell_{2}^{n_{1}} \otimes_{\pi} \cdots \otimes_{\pi} \ell_{2}^{n_{m}}}>1 \Longrightarrow \rho$ entangled
- General framework, encompasses (and extends) many known criteria (PPT, realignment \mathcal{R}, SIC POVM \mathcal{S}). Proof of conjecture $\mathcal{R} \subset \mathcal{S}$
- Testers complete for mixed bipartite states* and pure multipartite states

Open problems

- Completeness for mixed multipartite states
- Imperfect testers $\mathcal{E}: S_{1}^{d} \rightarrow \ell_{2}^{n}$ with $n \ll d^{2}$

