Multipartite entanglement detection via projective tensor norms

Ion Nechita (CNRS, LPT Toulouse) — joint work with Maria Jivulescu and Cécilia Lancien arXiv:2010.06365

SNU, October 28th, 2020

Entanglement in quantum theory

Tensor norms in Banach spaces

Entanglement testers

The power of testers

Entanglement in quantum theory

Quantum states — single systems

- Pure quantum states of one particle: unit norm vectors inside a complex Hilbert space H = C^d
- Mixed quantum states (or density matrices): positive semidefinite matrices of unit trace $\rho \ge 0$, Tr $\rho = 1$. Importantly, the set of quantum states is not a simplex (as in classical probability)
- In other words

quantum states = $PSD_d \cap \{Tr = 1\}$

- Metric point of view: $\{X \in \mathcal{M}_d^{\mathrm{sa}}(\mathbb{C}) : \operatorname{Tr} X = \|X\|_{S_1^d} = 1\} \rightsquigarrow S_1^d$
- Extreme points: pure states $P_x = |x\rangle\langle x|$, with $x \in \mathbb{C}^d$, ||x|| = 1

More systems

- More particles \rightsquigarrow tensor product of the Hilbert spaces $\mathbb{C}^{d_1} \otimes \cdots \otimes \mathbb{C}^{d_m}$
- Notion of positivity?

 $\mathsf{PSD}_{d_1} \otimes_{\mathsf{min}} \mathsf{PSD}_{d_2} \subseteq \mathbb{R}_+ \cdot \{ \mathsf{quantum states on } \mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \} \subseteq \mathsf{PSD}_{d_1} \otimes_{\mathsf{max}} \mathsf{PSD}_{d_2}$

• Nature chose intermediate setting

 $\{$ quantum states on $\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}\}=\mathsf{PSD}_{d_1d_2}\cap\{\mathsf{Tr}=1\}$

• Elements in the min tensor product are called separable

$$\rho = \sum_{k=1}^{r} p_k \rho_k^1 \otimes \rho_k^2$$

with $\rho_k^{1,2}\in \mathsf{PSD}_{d_{1,2}}$ and $\mathsf{Tr}\,\rho_k^{1,2}=1$ and p a probability distribution

- Separable states can be prepared locally (+ shared randomness)
- Non-separable states $\mathsf{PSD}_{d_1d_2} \setminus \mathsf{PSD}_{d_1} \otimes_{\min} \mathsf{PSD}_{d_2}$ are called entangled
- Example: the maximally entangled state $\omega_d := \frac{1}{d} \sum_{i,j=1}^d |e_i \otimes e_i\rangle \langle e_j \otimes e_j|$
- Pure state $\rho = |x\rangle \langle x|$ is separable iff $x = x^1 \otimes x^2$

Entanglement vs separability

- Deciding whether a given state is separable or entangled (i.e. membership in PSD ⊗_{min} PSD) is NP-hard [Gurvits]
- Necessary conditions for separability (or sufficient conditions for entanglement), which are computationally efficient
- Partial transposition criterion (PPT) [Peres, Horodecki³]: given ρ bipartite quantum state (⊤ is the transposition map)

$$\rho \text{ separable } \implies \rho^{\Gamma} := [\mathsf{id} \otimes \top](\rho) \ge 0$$

- PPT is also sufficient in dimensions 2×2 and 2×3 [Woronowicz]
- Since $\operatorname{Tr} \rho^{\Gamma} = \operatorname{Tr} \rho = 1$, we have $\rho^{\Gamma} \ge 0 \iff \|\rho^{\Gamma}\|_{S^{d^2}_{t}} = 1$
- Hence ρ separable $\Longrightarrow \|\rho^{\Gamma}\|_{S^{d^2}_1} = 1$

Realignment criterion

• Realignment criterion [Chen, Wu; Rudolph]: define the realignment ρ^R of $\rho \in \mathcal{M}_d \otimes \mathcal{M}_d$ as $\rho^R_{ij,kl} = \rho_{ik,jl}$

- ρ separable $\implies \|\rho^R\|_{S_1^{d^2}} \le 1$
- Matrices ρ^{Γ} and ρ^{R} correspond to permutations of the tensor legs of ρ

Both PPT and realignment criteria detect all pure entangled states

Tensor norms in Banach spaces

Injective and projective tensor norms

Definition

Consider *m* Banach spaces A_1, \ldots, A_m . For a tensor $x \in A_1 \otimes \cdots \otimes A_m$, we define its projective tensor norm

$$\|x\|_{\pi} := \inf \left\{ \sum_{k=1}^r \|a_k^1\| \cdots \|a_k^m\| : a_k^i \in A_i, \, x = \sum_{k=1}^r a_k^1 \otimes \cdots \otimes a_k^m \right\}$$

and its injective tensor norm

$$\|x\|_{\varepsilon} := \sup\left\{ |\langle \alpha^1 \otimes \cdots \otimes \alpha^m, x \rangle| \, : \, \alpha^i \in A^*_i, \, \|\alpha^i\| \leq 1 \right\}$$

• The projective and injective norms are examples of tensor norms (aka reasonable cross-norms):

$$\|a^{1} \otimes \cdots \otimes a^{m}\|_{\pi} = \|a^{1} \otimes \cdots \otimes a^{m}\|_{\varepsilon} = \|a^{1}\| \cdots \|a^{m}\|$$
$$\alpha^{1} \otimes \cdots \otimes \alpha^{m}\|_{\pi*} = \|\alpha^{1} \otimes \cdots \otimes \alpha^{m}\|_{\varepsilon*} = \|\alpha^{1}\|_{*} \cdots \|\alpha^{m}\|_{*}$$

• For any other tensor norm $\|\cdot\|$ on $A_1\otimes\cdots\otimes A_m$, we have

$$\forall x \in A_1 \otimes \cdots \otimes A_m, \qquad \|x\|_{\varepsilon} \le \|x\| \le \|x\|_{\pi}$$

• The injective and projective norms are dual to each other

Operator and nuclear norms

• For an operator $X \in \mathcal{M}_d(\mathbb{C})$, the operator norm (or the Schatten ∞ norm) is defined as

$$\|X\|_{\mathcal{S}^d_{\infty}} = \sup_{\|a\|, \|b\| \le 1} |\langle a, Xb \rangle|$$

• Seeing X as a 2-tensor $\tilde{X} \in \ell_2^d \otimes \ell_2^d$, we have

$$\|X\|_{S^d_{\infty}} = \sup_{\|a\|, \|b\| \le 1} |\langle a \otimes b, \tilde{X} \rangle| = \|\tilde{X}\|_{\ell^d_2 \otimes_{\varepsilon} \ell^d_2}$$

• The nuclear norm of X (or the Schatten 1 norm) is dual to the operator norm, so we have

$$\|X\|_{S^d_1} = \|\tilde{X}\|_{\ell^d_2 \otimes_\pi \ell^d_2}$$

• This can be seen directly from the SVD: $||X||_{S_1^d} = \sum_{i=1}^d \sigma_i$ for

$$X = \sum_{i=1}^{d} \sigma_i |a_i\rangle \langle b_i| \qquad \Longleftrightarrow \qquad \tilde{X} = \sum_{i=1}^{d} \sigma_i a_i \otimes b_i$$

for non-negative σ_i and orthonormal bases $\{a_i\}, \{b_i\}$

• Computing the $\|\cdot\|_{\ell_2^d \otimes_{\varepsilon} \ell_2^d}$ and $\|\cdot\|_{\ell_2^d \otimes_{\pi} \ell_2^d}$ norms is efficient (SVD)

Entanglement with tensor norms

Proposition

A pure quantum state $\psi \in \mathbb{C}^{d_1} \otimes \cdots \otimes \mathbb{C}^{d_m}$, $\|\psi\|_2 = 1$, is separable iff

$$\|\psi\|_{\ell_2^{d_1}\otimes_{\varepsilon}\cdots\otimes_{\varepsilon}\ell_2^{d_m}}=\|\psi\|_{\ell_2^{d_1}\otimes_{\pi}\cdots\otimes_{\pi}\ell_2^{d_m}}=1$$

• The geometric measure of entanglement:

$$G(\psi) := -\log \sup_{\varphi_i \in H_i, \ \|\varphi_i\|=1} |\langle \varphi_1 \otimes \cdots \otimes \varphi_m, \psi \rangle|^2 = -2\log \|\psi\|_{\varepsilon}$$

Theorem

For a multipartite mixed quantum state $\rho \in \mathcal{M}_{d_1}(\mathbb{C}) \otimes \cdots \otimes \mathcal{M}_{d_m}(\mathbb{C})$, $\rho \geq 0$, Tr $\rho = 1$, the following assertions are equivalent:

• ρ is separable

•
$$\|\rho\|_{S^{d_1}_{1,sa}\otimes_\pi\cdots\otimes_\pi S^{d_m}_{1,sa}} = 1$$

•
$$\|\rho\|_{S_1^{d_1}\otimes_\pi\cdots\otimes_\pi S_1^{d_m}}=1$$

• Caveat: computing tensor norms (\geq 3 factors) is NP-hard [Hillar, Lam]

A new perspective on the PPT and realignment criteria

• Let $\rho \in \mathcal{M}_d \otimes \mathcal{M}_d$ be a bipartite quantum state, $\rho : AB \to A'B'$

- ρ separable $\iff \|\rho\|_{S_1^{\mathbf{A} \to \mathbf{A}'} \otimes_{\pi} S_1^{\mathbf{B} \to \mathbf{B}'}} = 1 \iff \|\rho\|_{\ell_2^{\mathbf{A}} \otimes_{\pi} \ell_2^{\mathbf{A}'} \otimes_{\pi} \ell_2^{\mathbf{B}} \otimes_{\pi} \ell_2^{\mathbf{B}'}} = 1$
- \bullet Main idea: group the four ℓ_2 spaces 2 by 2, and use

 $\|\cdot\|_{\ell_2^X\otimes_\pi \ell_2^Y} \ge \|\cdot\|_{\ell_2^{XY}}$

The above is true since the euclidean norm on $X \otimes Y$ is a tensor norm

- $(AB \mid A'B')$: ρ sep. $\implies 1 \ge \|\rho\|_{\ell_2^{AB} \otimes_{\pi} \ell_2^{A'B'}} = \|\rho\|_{S_1^{AB \to A'B'}} = \operatorname{Tr} \rho = 1$
- $(AB' | A'B) \rightsquigarrow PPT$ criterion:

 $\rho \text{ separable } \implies 1 \ge \|\rho\|_{\ell_2^{AB'} \otimes_{\pi} \ell_2^{A'B}} = \|\rho\|_{S_1^{AB'} \to A'B} = \|\rho^{\Gamma}\|_{S_1^{d^2}} \iff \rho^{\Gamma} \ge 0$

(AA' | BB') → realignment criterion:

 $\rho \text{ separable } \implies 1 \geq \|\rho\|_{\ell_2^{\mathbf{A}\mathbf{A}'} \otimes_\pi \ell_2^{\mathbf{B}\mathbf{B}'}} = \|\rho\|_{S_1^{\mathbf{A}\mathbf{A}'} \to \mathbf{B}\mathbf{B}'} = \|\rho^R\|_{S_1^{\mathbf{a}\mathbf{A}'}}$

Entanglement testers

Entanglement testers

Definition

To a *n*-tuple of matrices $(E_1, \ldots, E_n) \in \mathcal{M}_d(\mathbb{C})^n$, we associate the linear map

$$\mathcal{E}: \mathcal{M}_d(\mathbb{C}) o \mathbb{C}^n$$

 $X \mapsto \sum_{k=1}^n \langle E_k, X \rangle | k
angle$

where $\{|k\rangle\}_{k=1}^{n}$ is some orthonormal basis of \mathbb{C}^{n} . The map \mathcal{E} is called an entanglement tester if

$$\|\mathcal{E}\|_{\mathcal{S}^d_1 \to \ell^n_2} = 1$$

- The main idea of this work is to use *m* testers *E*₁ ⊗ · · · ⊗ *E*_m to embed the projective tensor product of *S*₁ spaces inside the projective tensor product of the (simpler, commutative) *ℓ*₂ spaces
- In other words, we reduce the problem of multipartite mixed entanglement to that of multipartite pure entanglement

Detecting entanglement

Proposition

If $\mathcal{E}_1, \ldots, \mathcal{E}_m$ are entanglement testers, then, for any multipartite quantum state ρ , we have

 $\rho \text{ separable } \iff \|\rho\|_{S_1^{d_1} \otimes_\pi \cdots \otimes_\pi S_1^{d_m}} = 1 \implies \\ \|\mathcal{E}_1 \otimes \cdots \otimes \mathcal{E}_m(\rho)\|_{\ell_1^{n_1} \otimes_\pi \cdots \otimes_\pi \ell_n^{n_m}} \le 1$

Reciprocally, we have the following entanglement criterion:

$$\begin{split} \|\mathcal{E}_1 \otimes \cdots \otimes \mathcal{E}_m(\rho)\|_{\ell_2^{n_1} \otimes_{\pi} \cdots \otimes_{\pi} \ell_2^{n_m}} > 1 \\ \implies \rho \text{ is entangled} \end{split}$$

• We reduce the evaluation of the tensor norm

 $S_1^{d_1} \otimes_{\pi} \cdots \otimes_{\pi} S_1^{d_m} \cong (\ell_2^{d_1} \otimes_{\pi} \ell_2^{d_1}) \otimes_{\pi} \cdots \otimes_{\pi} (\ell_2^{d_m} \otimes_{\pi} \ell_2^{d_m}) \qquad [2m \text{ factors}]$ to that of

$$\ell_2^{n_1} \otimes_{\pi} \cdots \otimes_{\pi} \ell_2^{n_m}$$

[*m* factors]

Example 1: Realignment

- Recall the realignment criterion: $\|\rho^R\|_{S^{d^2}} > 1 \implies \rho$ entangled
- Let $\mathcal{R} = \operatorname{id} : \mathcal{M}_d(\mathbb{C}) \to \mathbb{C}^{d^2}$. \mathcal{R} is a tester: $\|\mathcal{R}\|_{S_1^d \to \ell_2^{d^2} \cong S_2^d} = 1$ $\mathcal{R} = \mathcal{R}$

• We have

- \bullet Hence, the realignment criterion corresponds to the $\mathcal{R}\otimes\mathcal{R}$ tester
- Natural generalization to the multipartite setting: $\mathcal{R}^{\otimes m}$

Example 2: SIC POVM

• A spherical 2-design $\{|x_k\rangle\}_{k=1}^N$ is a finite subset of the unit sphere of \mathbb{C}^d having the same first 2 moments as the Haar measure

$$\frac{1}{N}\sum_{k=1}^{N}|x_k\rangle\langle x_k|^{\otimes 2}=\frac{P_{sym}}{d(d+1)/2}$$

- Spherical 2-designs with $N = d^2$ are known as SIC POVMs. we have $|\langle x_i, x_i \rangle|^2 = 1/(d+1)$ for $i \neq j$
- Existence is conjectured in every dimension, proven for $d = 1, \dots, 16, 19, 24, 35, 48$

• Any 2-design with d^2 elements defines a tester

The power of testers

Perfect testers

Definition

A tester $\mathcal{E}: S_1^d \to \ell_2^n$ is called perfect if, for any pure states $\varphi, \chi \in \mathbb{C}^d \otimes \mathbb{C}^d$, at least one of them entangled,

 $\|\mathcal{E}^{\otimes 2}(|arphi
angle \langle \chi|)\|_{\ell_2^n\otimes_\pi \ell_2^n}>1$

Theorem

For a linear map $\mathcal{E}: S_1^d \to \ell_2^n$ the following statements are equivalent:

- \mathcal{E} is a perfect tester
- The norm ||E||_{S¹→ℓ^d₂} = 1 is attained at all the extremal points of the unit ball of S^d₁: for all unit vectors x, y ∈ C^d we have ||E(|x⟩⟨y|)|₂ = 1
- \mathcal{E} is an isometry $S_2^d \to \ell_2^n$
- The realignment tester \mathcal{R} is perfect, while the SIC POVM map \mathcal{S} is a **R**-perfect tester, detecting all pure self-adjoint entanglement

Realignment vs. SIC POVM

• In [SAZG18] the authors conjectured that any entangled state detected by the realignment criterion in also detected by the SIC POVM criterion

Theorem

For any quantum state ρ on $\mathbb{C}^d \otimes \mathbb{C}^d$, we have

$$\|\mathcal{S}^{\otimes 2}(\rho)\|_{\ell_{2}^{d^{2}}\otimes_{\pi}\ell_{2}^{d^{2}}} \geq \frac{\|\mathcal{R}^{\otimes 2}(\rho)\|_{\ell_{2}^{d^{2}}\otimes_{\pi}\ell_{2}^{d^{2}}} + 1}{2}$$

• Proof idea: perturbation theory for S_1 norm by non-unitary conjugations

$$\mathcal{S} = \sum_{i=1}^n \gamma_i |a_i
angle \langle b_i| \implies \|\mathcal{S} X \mathcal{S}^*\|_1 \ge \|X\|_1 + \sum_{i=1}^n (|\gamma_i|^2 - 1) \langle b_i | X | b_i
angle$$

- For many families of quantum states, such as
 - isotropic states: $\rho = p\omega_d + (1-p)I/d^2$
 - Werner states $ho = q \hat{P}_{sym} + (1-q) \hat{P}_{asym}$

the inequality is saturated

Completeness of the testers for mixed bipartite states

Theorem

Let ρ be an entangled state on $\mathbb{C}^d \otimes \mathbb{C}^d$. Then, there exists a tester $\mathcal{E} : S_1^d \to \ell_2^{d^2}$ such that

$$\left\| \left[\mathcal{E}^{\sharp} \otimes \mathcal{E} \right] \left(\widetilde{\rho} \right) \right\|_{\ell_2^{d^2} \otimes_{\pi} \ell_2^{d^2}} > 1,$$

where $\mathcal{E}^{\sharp}: S_1^d \to \ell_2^{d^2}$ is the tester whose operators are the adjoints of those of \mathcal{E} , and $\tilde{\rho}$ is obtained by permuting the legs of ρ as follows:

- Note that $\|\rho\|_{S_1^d\otimes_\pi S_1^d} = \|\tilde\rho\|_{S_1^d\otimes_\pi S_1^d}$
- Start from an entanglement witness W such that $\langle W, \rho \rangle > 1$ and $\|W\|_{S^d_\infty \otimes_\varepsilon S^d_\infty} = 1$

$$ullet$$
 Massage W and take $\mathcal{E}=\sqrt{W'}$

Completeness for multiparite pure states

• Recall

$$\|\varphi\|_{(\ell_2^d)^{\otimes_{\varepsilon} m}} = \sup_{\|\psi_i\| \leq 1} \langle \psi_1 \otimes \cdots \otimes \psi_m, \varphi \rangle$$

Theorem

For any unit vector $\varphi \in (\mathbb{C}^d)^{\otimes m}$,

$$\left\| \mathcal{R}^{\otimes m}(|arphi
angle\langlearphi|)
ight\|_{(\ell_2^{d^2})^{\otimes_\pi m}} \geq rac{1}{\left\|arphi
ight\|_{(\ell_2^d)^{\otimes_arphi m}}}$$

If in addition φ is non-negative (meaning that its coefficients in the canonical basis of $(\mathbb{C}^d)^{\otimes m}$ are all non-negative), then

$$\left\| \mathcal{R}^{\otimes m}(\ket{arphi}eta arphi |)
ight\|_{(\ell_2^{d^2})^{\otimes_\pi m}} \geq rac{1}{\left\| arphi
ight\|_{(\ell_2^d)^{\otimes_arphi}m}^2}$$

In particular, we have

 $\varphi \text{ entangled } \implies \left\|\mathcal{R}^{\otimes m}(|\varphi\rangle\langle\varphi|)\right\|_{(\ell_2^{d^2})^{\otimes_\pi m}} > 1$

The take-home slide

- Mixed quantum state: $ho \in \mathcal{M}_d(\mathbb{C})$, $ho \geq$ 0, Tr ho = 1
- Multipartite quantum state ρ is separable if

$$\rho = \sum_{k=1}^{r} p_k \rho_k^1 \otimes \cdots \otimes \rho_k^m$$

• Equiv. charact. in terms of projective tensor norm

$$\|\rho\|_{\mathcal{S}_1^{d_1}\otimes_\pi\cdots\otimes_\pi \mathcal{S}_1^{d_m}}=1$$

- Entanglement tester: contraction $\mathcal{E}: S_1^d
 ightarrow \ell_2^n$
- Ent. criterion: $\|[\mathcal{E}_1 \otimes \cdots \otimes \mathcal{E}_m](\rho)\|_{\ell_2^{n_1} \otimes \pi \cdots \otimes \pi \ell_2^{n_m}} > 1 \implies \rho$ entangled
- General framework, encompasses (and extends) many known criteria (PPT, realignment *R*, SIC POVM *S*). Proof of conjecture *R* ⊂ *S*
- Testers complete for mixed bipartite states* and pure multipartite states

Open problems

- Completeness for mixed multipartite states
- Imperfect testers $\mathcal{E}:S^d_1 o \ell^n_2$ with $n \ll d^2$

