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Entanglement in quantum theory



Quantum states — single systems

@ Pure quantum states of one particle: unit norm vectors inside a complex
Hilbert space H = C¢

@ Mixed quantum states (or density matrices): positive semidefinite
matrices of unit trace p > 0, Trp = 1. Importantly, the set of quantum
states is not a simplex (as in classical probability)

@ In other words

quantum states = PSDy N {Tr = 1}

quantum states

@ Metric point of view: {X € MF(C) : TrX = [ X|ss =1} ~ S¢
@ Extreme points: pure states P, = |x)(x|, with x € C?, ||x|| = 1



@ More particles ~» tensor product of the Hilbert spaces C* @ --- @ Cn
@ Notion of positivity?

PSD g, @minPSDg, € Ry -{quantum states on C*®C%} C PSD, ., PSDg,
@ Nature chose intermediate setting

{quantum states on C#* @ C%} = PSDy,4, N {Tr = 1}

@ Elements in the min tensor product are called separable
r
p=>_ pupk ® pi
k=1
with pi’z € PSDg, , and Trpi’2 =1 and p a probability distribution
@ Separable states can be prepared locally (+ shared randomness)
o Non-separable states PSDy, 4, \ PSDy, @minPSDg, are called entangled
o Example: the maximally entangled state wy := %Zij:l lei ® ei) (e ® ¢
@ Pure state p = |x)(x| is separable iff x = x! @ x?



Entanglement vs separability

@ Deciding whether a given state is separable or entangled
(i.e. membership in PSD ®pyin PSD) is NP-hard [Gurvits]
@ Necessary conditions for separability (or sufficient conditions for

entanglement), which are computationally efficient

@ Partial transposition criterion (PPT) [Peres, Horodecki®]: given p

bipartite quantum state (T is the transposition map)

p separable = p' == [id®T](p) >0
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e PPT is also sufficient in dimensions 2 x 2 and 2 x 3 [Woronowicz]
@ Since Trp' =Trp=1, we have p' >0 <= |p'[lo =1
1

e Hence p separable — ||p[|s2 =1
1



Realignment criterion

@ Realignment criterion [Chen, Wu; Rudolph]: define the realignment pf
of pEMG® My as pfj?,kl = Pik.jl

\R/:\/ )|
S\ N

e p separable —> [|pf||s 2 <1
1

@ Matrices p" and pR correspond to permutations of the tensor legs of p

p separable

—

o s =1 IRl < 1

@ Both PPT and realignment criteria detect all pure entangled states



Tensor norms in Banach spaces



Injective and projective tensor norms

Consider m Banach spaces A;,...,A,. Foratensor x € Ai® - ® A,

we define its projective tensor norm

r r
Il = inf{z|au|---||am| A X:Zai@--@az"}
k=1

k=1

and its injective tensor norm

Ix]le = sup{|<a1®~--®a’",x)| cal e A, ||ai|| < 1}

@ The projective and injective norms are examples of tensor norms (aka

reasonable cross-norms):

o' ® - ®@a™x = lla' @ ®a"|e = [|a"] -+ [|a"]|
Il @+ @ aMrs = lla! ® - @ a™[lex = lla |-« [l
o For any other tensor norm || - || on Ay ® -+ ® A, we have
VxeM®: - @An  [Ix[le < x| <lxllx

@ The injective and projective norms are dual to each other



Operator and nuclear norms

@ For an operator X € My4(C), the operator norm (or the Schatten oo
norm) is defined as

IXllsg, = ~sup [(a, Xb)|
lall. bl <1

@ Seeing X as a 2-tensor X € (¢ ® g, we have

X s¢ = sup |(a®b,)~<>\:\f<\_ _rd

llall. [l bl <1

@ The nuclear norm of X (or the Schatten 1 norm) is dual to the operator
norm, so we have
I XNsg = I1Xllegeg

o This can be seen directly from the SVD: || X]|ss = Z:.jzl o; for
d ; d
X:ZO’;|3;><[);| <~ XIZO’;Q,‘@[);
i=1 i=1

for non-negative o; and orthonormal bases {a;}, {bi}
o Computing the || - |5, s and || - [[g, ¢ nOrms is efficient (SVD)



Entanglement with tensor norms

Proposition

A pure quantum state ) € C* ® - .. ® Cn,

|2 = 1, is separable iff
=1

”1[}”(;1@5'”@5@;’” = ||1z[}||g‘2’1®ﬂ.,.®wé‘2’m

@ The geometric measure of entanglement:

G)=—log sup [p1®: - @ pmP)|* = —2log Y]l
wi€H;, |lpill=1

For a multipartite mixed quantum state p € M4 (C) ® --- ®@ M, (C),
p >0, Trp =1, the following assertions are equivalent:
@ p is separable

® ”p”Sldlsa@Tr.‘.@”Sfr:a =1
=1

C ||p||5f’1®ﬂ_...®ﬂ51dm

e Caveat: computing tensor norms (> 3 factors) is NP-hard [Hillar, Lam]



A new perspective on the PPT and realignment criteria

o Let p € My ® My be a bipartite quantum state, p: AB — A'B’

A—] 4
B'—| B

@ p separable <— HpHsf_w@WSlsﬁsf =1 < Hp\|@®wé£\/®ﬂgzg®ﬂ£§' =il
@ Main idea: group the four ¢> spaces 2 by 2, and use

H/j Y = HH{}*

The above is true since the euclidean norm on X ® Y is a tensor norm
(] (AB‘A/B/) P Sep. = 1 Z HPHEQB@)W@;"B’ = HpHSIAB"A/BI = Trp = 1
o (AB'|A'B) ~~» PPT criterion:
p separable —> 12> [|p[|pper gy e = llpllperas = ||pr|\sfz — p' >0

e (AA'| BB') ~~ realignment criterion:

p separable =5 1> [|pll g _qeor = llollspw oo = 16715



Entanglement testers



Entanglement testers

To a n-tuple of matrices (Ey, ..., E,) € M4(C)",
we associate the linear map — ¢

£: My(C) = C"

k=1

where {|k)}7_; is some orthonormal basis of C".

The map £ is called an entanglement tester if —_

€]l s7—ep =1

y

@ The main idea of this work is to use m testers £&; ® -+ ® &, to embed
the projective tensor product of S; spaces inside the projective tensor
product of the (simpler, commutative) ¢, spaces

@ In other words, we reduce the problem of multipartite mixed
entanglement to that of multipartite pure entanglement



Detecting entanglement

If &, ..., Em are entanglement testers, then, for
any multipartite quantum state p, we have o
— 5 7\
p separable <— ”p”Sf'l@,r---@st’m =1 — \Od di
||51 Q- Em(p)||[g1®w.,,®ﬁ@gm <1 — & \’ 7’;)

Reciprocally, we have the following entanglement

criterion:

1628+ @ EnlPllrg, .. erm > 1

= p is entangled

@ We reduce the evaluation of the tensor norm
SHQp - R SIm = (U R, 08) R - D (03" @ £3™)  [2 factors]
to that of

£'271 QR - Qr ggm [m factors]



Example 1: Realignment

@ Recall the realignment criterion: |[pf||g2 > 1 = p entangled
1

o Let R =id: My4(C) — C*. R is a tester: ”R”sfaegzgsg =l

@ We have

\.

sz Zg2 ®7r Zg2
@ Hence, the realignment criterion corresponds to the R ® R tester

o Natural generalization to the multipartite setting: R®™



Example 2: SIC POVM

@ A spherical 2-design {|x)}N_, is a finite subset of the unit sphere of C¢
having the same first 2 moments as the Haar measure

®2 _ 5}”"
NZW Cl™ = Jav 2

@ Spherical 2-designs with N = d? are known as
SIC POVMs. we have |(x;, x| = 1/(d + 1) for

i#]
@ Existence is conjectured in every dimension, , e i
proven for d = 1,...,16,19,24,35,48

o Any 2-design with d? elements defines a tester

d2
[d+1
S: X W;(xk|x|xk>|k>
s [ - :IC




The power of testers



Perfect testers

A tester £ : Sf — (5 is called perfect if, for any pure states
©,x € CY ® CY, at least one of them entangled,

1E22(l0) (X)lleg g > 1

Theorem

| A\

For a linear map & : S — (3 the following statements are equivalent:
o & is a perfect tester
® The norm ||€||ss_,eg =1 is attained at all the extremal points of the
unit ball of SZ: for all unit vectors x,y € C? we have

IE(x) (YDl =1
e & is an isometry S§ — 43

@ The realignment tester R is perfect, while the SIC POVM map S is a
R-perfect tester, detecting all pure self-adjoint entanglement



Realignment vs. SIC POVM

o In [SAZG18] the authors conjectured that any entangled state detected
by the realignment criterion in also detected by the SIC POVM criterion

For any quantum state p on C? ® C?, we have
IR®2(p)ll g2, 05 + 1

®2
15520l et > :

@ Proof idea: perturbation theory for S; norm by non-unitary conjugations

n n
5= Z’Yi|3i><bi| = [|SXS" |1 = [ X]ls + Z(|’Yi|2 — 1)(bi|X|b;)
i=1 i=1
@ For many families of quantum states, such as
e isotropic states: p = pwg + (1 — p)I/d?
o Werner states p = qPsym + (1 — q)Pasym
the inequality is saturated



Completeness of the testers for mixed bipartite states

Theorem

Let p be an entangled state on C¢ ® C9. Then, there exists a tester
£:59 1 such that

H[(‘:ﬁ ® 5] ('5)”1332&,@52 > ].7

where E% : S¢ — 19 is the tester whose operators are the adjoints of
those of €, and j is obtained by permuting the legs of p as follows:

TV . D
SIS

S\

o Note that [lplsss, 57 = I7lste s

@ Start from an entanglement witness W such that (W, p) > 1 and
[Wilsg 6,54 =1

@ Massage W and take & = v W'



Completeness for multiparite pure states

@ Recall

||80||(1eg)®5m = sup (Y1 ® - @ Ym, )
llwill<1

For any unit vector ¢ € (C?)®™m,

IR (e o)l g

- 1
®xm = 11
||<P||(gg)®sm
If in addition ¢ is non-negative (meaning that its coefficients in the

canonical basis of (C?)®™ are all non-negative), then

1
RE™(|o)(pl) s ———
H v ||(eg2)® ||<P||%gg)®5m

In particular, we have

>1

¢ entangled = ||R®™(|p) (¢

)

CRk




The take-home slide

@ Mixed quantum state: p € My4(C), p>0, Trp=1
@ Multipartite quantum state p is separable if

P= PPk ® - ® pff
k=1

@ Equiv. charact. in terms of projective tensor norm j Lo

Hp||51d1®ﬂ--~®,rsf"' = - &m

e Entanglement tester: contraction & : S¢ — (3

e Ent. criterion: [|[[£1 ® -+ @ Eml(p)llng, .0, m > 1 = p entangled

@ General framework, encompasses (and extends) many known criteria
(PPT, realignment R, SIC POVM S). Proof of conjecture R C S

@ Testers complete for mixed bipartite states” and pure multipartite states

Open problems

o Completeness for mixed multipartite states
@ Imperfect testers £ : S¢ — (5 with n < d?
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