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Compatibility in GPTs



General Probabilistic Theories
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e A GPT is a triple (V, VT, 1), where V is a vector space, VT C V is a
cone, and 1 is a linear form on V; A= V* AT =(V*)* and 1 € A"
@ The set of states K := VT n171({1})



Measurements and compatibility

@ A GPT measurement with k outcomes is an
| T
affine map K — Ay
@ A g-tuple of GPT measurements with o ﬂ
k = (ki,..., kg) outcomes are encoded in an

affine map K — Ay x --- x Ay, =: Py (the
polysimplex) o

@ Measurements f = (f(), ... f(8)) are compatible if there exists a joint
measurement g having ki - - - k; outcomes such that

Vx € [g], Vié€ [k, £ = Z &j
JE[k]x - x[kg] : j(x)=i
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Compatibility

g-tuple of GPT measurements

K

joint measurement

@ Take duals and linearize!

g-tuple of GPT measurements

(Ex. ) i=span(Qy X -+ X Ay )* (A,AT)

lift joint measurement

(Rkl'“kg’ Rj}kg)



Positivity & tensor products



Bipartite systems in GPTs

e Consider two GPTs (Va, Vi, 14) and (Vi, Vg, 1g). Joint system AB?
(VA by V37 ???a ]lA 02y ]lB)

@ Minimal tensor product cone

V ®min V, {Zal@b Za;EVX,b;EVér}
@ [Vlaximal tensor product cone
VX Qmax Vér = (( VX)* Smin (Vg)*)
@ A tensor cone is anything in between

V: Omin Vér c @ - VA+ O max Vér

*

@ In general, a linear map ¢ : A — B is positive if its associated tensor
© € A* @ B is an element of (A")* @max BT

Question: What is PSDg, ®min PSDg,? How about PSDy, ®max PSDg,



Measurements as positive maps

We consider g measurements (1), ... f(&) having ki,..., k; outcomes:

kx
vx e lgl, Vielkd, £ €At and Y £ =1
i=1

Proposition

The following are equivalent

©® The tuple f = (f), ... f&) consists of GPT measurements

® The following map is positive
o (B, BF) — (A, A")
Iy— 1

) s £

© The associated tensor p\1) € (EF)* @, AT

n(x):1®...®1®ei®1®...®1

x—1 times

x € [g], i € [ke — 1]

g—x times



Compatible measurements as entanglement breaking maps

Theorem

The following are equivalent
©® The tuple f = (f1), ... f&) consists of compatible GPT meas.

@® The map &) admits a positive extension ®F) : (R, RX) — (A, A1)
© The map o) js entang/ement breaking

@ The associated tensor p(f) € (EF)* @, A+

Definition

.
| A\

A positive map @ : (C, C*) — (D, D) is called entanglement breaking if
any of the following equivalent conditions holds

@ Forall (L,LT), d®id, : CT @max LT — DT @pmin LT is positive

@ The condition above holds for (L, L) = (D*,(D")*)

@ The associated tensor ¢ € (CT)* @min DT

l

Ifg =1, (E(t))* is simplicial = (E(T()) Rmin AT (E(J;)) @max AT




Generalized spectrahedra



Free spectrahedra

@ A polyhedron is defined as the intersection of
half-spaces

{x eRé : (h;,x) <1, Vie€lk|}

@ A spectrahedron is given by PSD constraints:
for A= (Aq,...,Ag) € (M5)%

g
Da(l) = {x €RE : > xA; < Iy}

i=1

@ Question: What is D(

2
0x,0y,0z7) "

@ A free spectrahedron is the matricization of a spectrahedron

/DA = D DA(H) with DA( ) = {X 6 Msa ZX ®A < /nd}



Compatibility in QM via free spectrahedra

@ The matrix diamond is the free spectrahedron defined by

Do g f|_|{Xe (M32)e st</n, Ve € {£1}8}

n=1 i=1
@ To a g-tuple of self-adjoint matrices f € (M37)€, we associate the free
spectrahedron defined by the matrices 2f; — I:

Df = | |{X € (MP)E Zx ® (2f = 14) < Ing}
n=1 i=1

@ The matrices f are quantum effects <= D¢ (1) C Dr(1)

@ The matrices f are compatible quantum effects <= D¢, o € Dr

@ The general (non-dichotomic) version is similar ~» matrix jewel Dep



Compatibility in GPTs via generalized spectrahedra

o Consider two ordered vector spaces (M, M™), (L, L"), and a tensor cone
Con M® L. A tuple a € M# defines a generalized spectrahedron

g
Dy(L,C):={velf:) a®veC}
i=1
@ The GPT jewel is induced by E” (w are some elements related to the 7)
DGPT@(k; L, L+) = DW(L7 EkJr Gmax [—+)
@ Shifted versions of GPT elements induce a generalized spectrahedron

Df(L,L*) :=Dz(L, AT @pmin LT)

@ The elements f are GPT meas. <= Dgprp(ki R, Ry) C Dr(R,R;)
@ The elements f are compatible <= Dgprep(k;V, V) C De(V, V)




Compatibility regions and inclusion constants

@ Noisy version of GPT measurements (white noise)

(s./)% = 5, £ 4 (1 - sx)kl

@ The set of noise parameters s rendering all measurements compatible is
called the compatibility region

F(k; V,V"):={s€0,1]¢ : f measurements = s.f compatible}
@ Symmetric version: the compatbility degree
v(k; V, V) :=max{s : (s,s,...,s) € [(k; V,VT)}
@ The inclusion constants for the GPT jewel
Ak; V, V) = {s € [0,1)8 : Va® € A, Dgprep(k; R,RT) C D,(R,R")

— (1,50 D) pre(k V, V) C Dy(V, v+)}

For all GPTs and all k, we have ['(k; V, V1) = A(k; V, VT)




Tensor norms & applications



Injective and projective tensor norms

Consider m Banach spaces A1, ..., A,. Foratensor x € A; ® - ® An,
we define its projective tensor norm

r r
X[l = inf{leail---aL"II A €A x=) 4 ®--~®82"}
k=1 k=1

and its injective tensor norm

Ix]le = sup{|(a1 ®---®a™ x)| o €A, ||| < 1}

@ The projective and injective norms are examples of tensor norms (aka
reasonable cross-norms):

la' @ ®a"x=la' ®---®@a"|. = [|a']| - |a"]
lat @ @ aMes = lla? ® - @ a™lex = lla |-~ [l
@ For any other tensor norm || - || on A; ® --- ® A, we have
VxeM® - ®@Am  xlle < lIxIl < lixllx

@ The injective and projective norms are dual to each other



Operator and nuclear norms

@ For an operator X € M,(C), the operator norm (or the Schatten oo
norm) is defined as

I X|lsg, = sup [(a, Xb)]
lall. bl <1

@ Seeing X as a 2-tensor X € £ ® (4, we have

X|se. = sup |[(a® b, X)| = || X]|pe.
[ENEIES! 104

@ The nuclear norm of X (or the Schatten 1 norm) is dual to the operator

norm, so we have
1Xllsy = 1X Il

o This can be seen directly from the SVD: || X||ss = 27:1 o; for

d d
XZZO’;|3,‘><[)[| <~ XIZU;E;@[);
i=1 i=1

for non-negative o; and orthonormal bases {a;}, {b;}



Compatibility and tensor norms

@ We shall only consider here the case of dichotomic measurements and
centrally symmetric GPTs: K is the unit ball of a norm || - ||

V=Rwa®V and A=R1aA

For dichotomic measurements in centrally symmetric GPTs, we have
V(28 V, V) =1/p(LE,, A)
where the quantity p was introduced in [Aubrun et al '20]

Izllxe, v
X,Y)= max ——"—
pX,Y) 2eX®Y ||z]|xe. v

<

In the same setting as before

lim ~(2%&; V, V1) = 1/m(V)
g— 00

where 71(V) is the 1-summing norm of the Banach space V




Applications

e For the hypercubic GPT V = 07, we have
r(2x;¢5) ={s<[0,1]8 : VI C [g] s.t. |I| < n,

ZS,‘ < 1}

icl
@ We have y(2%&;¢7 ) = 1/ min(g, n)

@ Quantum mechanics for d = 2 (qubits) is centrally
symmetric: V = (3

o It was known that, for g = 2,3, 7(2%&;QM,) =1/,/g

Proposition

For all g > 4,

0.5 < (2"&,QM,) < 1/v3 = 0.577




The take-home slide

Tensor norms

« only available in the dichotomic case
_) « connection to ration of extremal norms
« allows for the computation of exact compatibility
degrees in many cases, including qubits
« connection to 1-summing norms

Measurement compatibility
in GPTs

Positivity in tensor cones

Generalized spectrahedra
- natural language for GPTs

+ geometric picture « different structures for bi-partite GPTs

«scaling < noise ®min VS Omax

+ many tools available from optimization theory « compatibility is obtained by using a smaller cone
- allows to encode the existence of map extension
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