Category: random matrices

Random quantum measurements

We have a new paper together with Teiko Heinosaari and Maria Anastasia Jivulescu: Random positive operator valued measures. We introduce and analyze different models of random quantum measurements (POVMs). We prove that two very natural procedures for generating random POVMs are actually identical and then we analyze in detail the

Continue reading

Seoul lectures on some applications of random matrices to quantum information theory

Last week, at the invitation of Hun Hee Lee, I gave a series of three lectures on some applications of random matrix theory to problems in quantum information theory. The notes are available here. After discussing the Marchenko–Pastur theorem, I present my result with Teo Banica on partial transposition of

Continue reading