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Entanglement in QIT



Quantum states and entanglement
» Quantum systems with d degrees of freedom are described by
density matrices or mixed states
p € MbT(CY); Trp =1 and p > 0.

» Pure states are the particular case of rank one projectors, and
correspond to unit vectors ¢ € C9

[} (] € MHF(C).
They are the extreme points of the convex body MY+ (C9).
» Two quantum systems: pag € M+ (C9 @ C%).

> A mixed state pap is called separable if it can be written as a
convex combination of product states

paB € SEP < pag = Z t,'UI(A) ®U§B),

with t; >0, 3, t; = 1, 0B € MU+ (Cdas).

» Non-separable states are called entangled.



Pure state entanglement is easy

» For pure quantum states, entanglement can be detected and
measured. The standard measure of the entanglement of a pure
state x = |x)ap is the entropy of entanglement

E(x) = — Z si(x) log si(x),

where s;(x) are the Schmidt coefficients of x:

X)aB = Z Vsi(x)lena® |fi)B.

» E(x)=0 <= x=y®z.

> All bi-partite quantum pure
Ball surface

states have dimension dadg — 1, all states. <

whereas product states have ®

d|men5|on da + dg — 2, WhIC.h is lake ihite line
strictly smaller = a generic % separable states

pure state is entangled!



Mixed state entanglement is hard, but...

» Deciding if a given pag is separable is NP-hard. Detecting
entanglement for general states is a difficult, central problem in

QIT.

» A map f: M(C%) — M(C?) is called
» positive if A>0 = f(A) >0;
» completely positive if idx ® f is positive for all k > 1.

> If f: M(C9) — M(C9) is CP, then for every state pag one
has [iddA & f](pAB) > 0.

> If f: M(C9) — M(C9) is only positive, then for every
separable state pag, one has [id4, ® f](pag) > 0.



Entanglement detection via positive, but not CP maps

v

Positive, but not CP maps f yield entanglement criteria: given
pag. if [idg, @ fl(pag) # 0, then pag is entangled.

The following converse holds: if, for all positive, but not CP maps
f, [idg, ® f](pag) > 0, then pap is separable.

v

The transposition map ©(X) = X ' is positive, but not CP. Put
PPT :={pag € M (C% @ C%)|[idg, ® Oq,](pas) > 0}.
The reduction map R(X) = Tr(X) - I — X is positive, but not CP.
RED = {pap € M (C% ® C%)|[idy, ® Ras](pas) > 0}.

v

v

v

Both criteria above detect pure entanglement: for f = ©, R,

[ida, ® fl([¥)ag(¥]) > 0 <= [¢)aB is entangled.



The PPT criterion at work
» Recall the Bell state p12 = [¢)) (1|, where

2(\0>A ®[0)e +[1)a®[1)8).

» Written as a matrix in Mé;(@)

C?@C2s |y) =

1 00

[id> ® ©](pas) = %

O O =
= O O O

> This matrix is no longer positive = the state is entangled.



The problem we consider

MYT ={p: Trp=1and p >0}

SEP = {Z tip,(-A) ® pgs)}

PPT = {PAB : [iddA X @dB](PAB) > 0}
RED = {pap : [idg, ® Ras](pas) > 0}

Problem
Compare the convex sets

SEP C PPT C RED C MYT(C%%),

» For (da,dg) € {(2,2),(2,3),(3,2)} we have SEP = PPT. In
other dimensions, the inclusion SEP C PPT is strict.

» For dg = 2 we have PPT = RED. In other dimensions, the
inclusion PPT C RED is strict.



Random quantum states



Probability measures on M} (C)

>

We want to measure volumes of subsets of M:,’JF(C), with

d = dads.

A natural choice is to use the Lebesgue measure (see /\/li,’Jr((C) as
a compact subset of M$(C)). The set of separable states SEP
has positive volume, since SEP contains an open ball around //d.
Another choice - open quantum systems point of view: assume
your system Hilbert space C¢ = C% ® C% is coupled to an
environment C9.

On the tri-partite system Hagc = C% @ C9 @ C9, consider a
random pure state |¢)) agc, i.e. a uniform random point on the
unit sphere of the total Hilbert space Hagc.

Trace out the environment C9 to get a random density matrix

pag = Trc|v) apc (V|-

These probability measures have been introduced by Zyczkowski
and Sommers and they are called the induced measures of
parameters d = dadp and s = dc¢; we denote them by /14 ;.
Remarkably, the Lebesgue measure is obtained for s = d.



Probability measures on M} (C)

>

Here's an equivalent way of defining the measures ji4 s, in the
spirit of Random Matrix Theory.
Let X € Myxs(C) be a d x s matrix with i.i.d. complex standard
Gaussian entries (i.e. a Ginibre random matrix). Define

XX* o Wy
Tr(XX*)  TrWgs
The random matrix Wy s is called a Wishart matrix and the
distribution of py s is precisely fig s.

Wy = XX* and MYH(CY) 3 pys =

The measure pg s is unitarily invariant: if p ~ g s and U is a
fixed unitary matrix, then UpU* ~ g s.
Density of pgs: dP(p) = Cy s det(/))sfdlpzo,np:l dp.

> Integrating out the eigenvectors, we obtain the eigenvalue density

formula for random quantum states:

dP(\1, ..., Ag) = Cls [H Af‘d] TTOV =207 | Las0,5, a—1 dX.

i i<j



Eigenvalues for induced measures

Figure: Induced measures for d =3 and s = 3,5,7, 10.




Eigenvalues for induced measures
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Figure: Induced measures for d =3 and s = 3,5,7, 10.



Thresholds for

entanglement criteria



Volume of convex sets under the induced measures
» Fix d, and let C ¢ M>T(C?) a convex body, with
I4/d € int(C). Then
s|l>n;o Md,s(C) =1

In other words, the eigenvalues of a random density matrix
PAB ~ [td.s With d fixed and s — oo converge to 1/d.

Definition
A pair of functions (sp(d), s1(d)) are called a threshold for a family
of convex sets (Ky)q if both conditions below hold

> If s(d) < so(d), then
Jim_ fid,s(d)(Ka) = 0;
» If s(d) = si1(d), then
li Kq) =1.
d'_>moo Md,s(d)( d)



Thresholds for entanglement criteria

» Below, the threshold functions sp 1(d) are of the form

so(d) = s1(d) = cd,;

we put r := min(da, dg).

Crit. \ Reg. da=dp - dg — day — ©
SEP oo (r<c<rlog?r) ? ?
PPT 4 242y/1-% | 242 /1- %
RED 0 0 U

» The results in the table above can be interpreted in the following
way: for a convex set K having a threshold ¢, a random density
matrix pag ~ [i4,s With large s, d will satisfy

> |f$/d> c, P[pAB S K] ~1
» If s/d < ¢, P[pas € K] = 0.




Proof elements

>

The main task is to compute the probability that some random
matrices are positive semidefinite or not.

This is a very difficult computation to perform at fixed Hilbert
space dimension; the asymptotic theory is much easier (one or
both dA73 — OO)

To a selfadjoint matrix X € M4(C), with spectrum

x = (x1,...,Xq), associate its empirical spectral distribution
1
px =2 0
i=1

The probability measure ux contains all the information about
the spectrum of X.

A sequence of matrices Xy converges in moments towards a
probability measure p if, for all integer p > 1,

1 Py _ i p — [ xP
dll_}moo gTr(Xd) = dll_)moo/x dpx,(x) = /x dp(x).



Wishart matrices

Theorem (Marcenko-Pastur)

Let W be a complex Wishart matrix of parameters (d, cd). Then,
almost surely with d — oo, the empirical spectral distribution of
W /d converges in moments to a free Poisson distribution

(a.k.a. Mar¢enko-Pastur distribution) w. of parameter c.

Eigenvalues of Wid Eigenvalues of Wid

0 1 2 3 4

Figure: Eigenvalue distribution for Wishart matrices. In blue, the density
of theoretical limiting distribution, 7. In the two pictures, d = 1000, and
c=1,5.



Partial transposition of a Wishart matrix

Theorem (Banica, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn).
Then, almost surely with d — oo, the empirical spectral
distribution of [id @ ©](Wag/d) converges in moments to a free

difference of free Poisson distributions of respective parameters
cn(n+1)/2.

Corollary

The limiting measure above has positive support iff

/ 1
c>cppr =242 1—?.



Partial transposition criterion - numerics

Eigenvalues of W/d
Eigenvalues of [id ® ©)(W/d)
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Figure: Wishart matrices before (left) and after (right) the application of
the partial transposition. Here, d = dy =200, n=dg =3, and c =5
(top), ¢ = 3 (bottom). Note that 5 > cppr = 3.88562 > 3.



Reduction of a Wishart matrix

Theorem (Jivulescu, Lupa, N.)

Let W be a complex Wishart matrix of parameters (dn, cdn).
Then, almost surely with d — oo, the empirical spectral
distribution of [id ® R|(Wag/d) converges in moments to a
compound free Poisson distribution T, .of parameter

Une = ¢61—n + c(n® — 1)d3.

Corollary
The limiting measure above has positive support iff
(1++/n+1)2
C > CRED ‘=
n(n—1)

Remark

We have, for n =2, cppt = crep = 2 + V/3: the two criteria are
know to be equivalent for qubit-qudit systems. For n > 3, we have
CcppT > CRED: the reduction criterion is, in general, weaker than
the PPT criterion.



Reduction criterion - numerics

Eigenvalues of W/d
Eigenvalues of id ® RI(W/d)

f lid @ RI(Wid)
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Figure: Wishart matrices before (left) and after (right) the application of
the partial reduction map. Here, d = dy =200, n=dg =3, and c =2
(top), ¢ =1 (bottom). Note that 2 > cgrgp = 1.5 > 1.



Random matrices and
free probability



The free additive convolution of probability measures

>

Given two self-adjoint matrices X, Y with spectra x, y, what is
the spectrum of X + Y7

In general, a very difficult problem, the answer depends on the
relative position of the eigenspaces of X and Y (Horn problem).
When the size of X, Y is large, and the eigenvectors are in
general position, free probability theory gives the answer.

Free additive convolution of two compactly supported probability
distributions j, v: sample x,y € RY from p, v and consider

Z = diag(x) + Udiag(y)U",
where U is a d x d Haar unitary random matrix. Then, as
d — oo, the empirical eigenvalue distribution of Z converges to a
probability measure denoted by p H v.
The operation H is called free additive convolution, and it can be

computed via the R-transform (a kind of Fourier transform in the
free world)



Free additive convolution - an example

» We have
1 1 1 1 1
0o+ =01| B | =g+ =01| = ———1 dx.
[2 0t 3 1] [2 0t 5 1] T/x(2 - x) (0:2)(x) dx
Eigenvalues of P + U Q U*
200h
15
10
00 05 1.0 15 20

» Compare to the classical situation, where * denotes the (additive)
classical convolution

1 1 1 1 1 1 1



The free Poisson distribution

» The limiting distribution of Wishart matrices (and of random
density matrices from pg cq) is the free Poisson distribution

\/4c—(x—1—c)21
27X
» One can show a free Poisson Central Limit Theorem:

lim [(1 - %) 5o + %51}% .

e = max(1l — c,0)d +

(-, (1) (X) dx.

n—o0
» The limit measure for [id @©](Wag/d) is
ﬂ—fPT ‘= Ten(n+1)/2 H D—lﬂ-cn(nfl)/2'

» The free compound Poisson measure of parameter v is defined via
a generalized free Poisson central limit theorem

lim [(1 - ”(E{)> 8o + }1”] . .

n—oo

» The limit measure for [id @R|(Wag/d) is

RED .__
T = 7Tc§1_,,+c(n2—1)61 .




Thank you!
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