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Why random density matrices ?

Density matrices are central objects in quantum information
theory, quantum computing, quantum communication
protocols, etc.

We would like to characterize the properties of typical density
matrices ⇒ we need a probability measure on the set of
density matrices

Compute averages over the important quantities, such as von
Neumann entropy, moments, etc.

Random matrix theory: after all, density matrices are positive,
trace one complex matrices
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Two classes of measures

There are two main classes of probability measures on the set of
density matrices of size n:

Metric measures: define a distance on the set of density
matrices and consider the measure that assigns equal masses
to balls of equal radii. Example: the Bures distance

d(ρ, σ) = 2 arccos Tr(ρ1/2σρ1/2)1/2.

Induced measures: density matrices are obtained by partial
tracing a random pure state of larger size

⇒ We study the induced measures
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Introduction

In physics, a pure state of a quantum state is a norm one
vector |ψ〉 of a complex Hilbert space H with an
undetermined phase:

|e iθψ〉 = |ψ〉 θ ∈ R

We introduce an equivalent definition

Definition

A pure state |ψ〉 is an element of En = Hr {0}/ ∼, where ∼ is
the equivalence relation defined by

x ∼ y ⇔ ∃λ ∈ C∗ s.t. x = λy .
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Introduction

Consider a quantum system H in interaction with another
system K. The Hilbert space of the compound system is given
by the tensor poduct H⊗K.

One typical situation is that we have access to the system H
only, for several possible reasons: K may not be accessible
(e.g. H and K are in distant galaxies) or it can be too
complicated to study (an unknown environemnt, a heat bath,
a noisy channel, etc.).

If the state of the compound system is pure, what can be said
about the H-part of H⊗K ?

⇒ density matrices
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Partial tracing

One can measure for instance an observable X on H, i.e.
measure X ⊗ IK on the whole system.

We can compute the probability of obtaining the result λi

knowing that the state of H⊗K is |ψ〉:

Prob(X = λi ) = 〈ψ|Pi⊗IK|ψ〉 = Tr(|ψ〉〈ψ|(Pi⊗IK)) = Tr(ρPi ),

where λi is the eigenvalue corresponding to the eigenspace Pi

and ρ = TrK(|ψ〉〈ψ|) is the partial trace of the pure system
|ψ〉 over K.

The observer of H will not ”see” |ψ〉, but only its partial trace
ρ, the density matrix corresponding to H.

Ion Nechita Random density matrices



Random density matrices
Results at fixed size

Asymptotics

Introduction
Pure states and denstiy matrices
The induced measure

Partial tracing

One can measure for instance an observable X on H, i.e.
measure X ⊗ IK on the whole system.

We can compute the probability of obtaining the result λi

knowing that the state of H⊗K is |ψ〉:

Prob(X = λi ) = 〈ψ|Pi⊗IK|ψ〉 = Tr(|ψ〉〈ψ|(Pi⊗IK)) = Tr(ρPi ),

where λi is the eigenvalue corresponding to the eigenspace Pi

and ρ = TrK(|ψ〉〈ψ|) is the partial trace of the pure system
|ψ〉 over K.

The observer of H will not ”see” |ψ〉, but only its partial trace
ρ, the density matrix corresponding to H.

Ion Nechita Random density matrices



Random density matrices
Results at fixed size

Asymptotics

Introduction
Pure states and denstiy matrices
The induced measure

Partial tracing

One can measure for instance an observable X on H, i.e.
measure X ⊗ IK on the whole system.

We can compute the probability of obtaining the result λi

knowing that the state of H⊗K is |ψ〉:

Prob(X = λi ) = 〈ψ|Pi⊗IK|ψ〉 = Tr(|ψ〉〈ψ|(Pi⊗IK)) = Tr(ρPi ),

where λi is the eigenvalue corresponding to the eigenspace Pi

and ρ = TrK(|ψ〉〈ψ|) is the partial trace of the pure system
|ψ〉 over K.

The observer of H will not ”see” |ψ〉, but only its partial trace
ρ, the density matrix corresponding to H.

Ion Nechita Random density matrices



Random density matrices
Results at fixed size

Asymptotics

Introduction
Pure states and denstiy matrices
The induced measure

Density matrices and partial tracing

Definition

A density matrix on a Hilbert space H is a positive and unit trace
matrix of size n = dimH. We note the convex set of density
matrices of size n with Dn.

We consider the partial trace map

Tn,k : Enk −→ Dn

|ψ〉 7−→ TrK(|ψ〉〈ψ|).

If we write ψ (‖ψ‖ = 1) in a basis ei ⊗ fj of H⊗K, then

Tn,k(|ψ〉)i ,j =
k∑

s=1

ψisψjs ,
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Random pure states

One would like to endow En with an uniform probability
measure νn. But what does uniform mean ?

As there is no preferred basis for this space, we will ask that
the uniform probability measure νn should be invariant under
any change of basis. As basis changes are realized via unitary
matrices, νn should be invariant under the action of the
unitary group U(n).

Definition

We call a measure νn on En unitarily invariant if

νn(UA) = νn(A),

for all unitary U and for all Borel subset A ⊂ En.
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Existence and unicity - the general result

Definition

Let G be a topological group acting on a topological space X . We
call the action

transitive if for all x , y ∈ X , there is g ∈ G such that y = g · x
proper if for all g ∈ G , the application X 3 x 7→ g · x is
proper, i.e. the pre-image of a compact set is compact

Theorem

Let G be a topological group that acts transitively and properly on
a topological space X . Suppose that both G and X are locally
compact and separable. Then there exists an unique (up to a
constant) measure ν on X which is G-invariant.
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Existence and unicity - uniform pure states

Theorem

The action of U(n) on En is transitive and proper and thus there
exists an unique unitarily invariant probability measure νn on En.

This measure can be obtained directly in two ways:

1 Let X be a random complex vector of law N n
C(0, 1). Then the

class |X 〉 of X is distributed along νn.

2 Let U be a random unitary matrix distributed along the Haar
measure on U(n) and let Y be the first column of U. Then
the class |Y 〉 has law νn.
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The induced measure

Choose a pure state on H⊗K distributed accordingly to the
uniform measure νnk . The density matrix obtained by taking a
partial trace is distributed along the image measure

µn,k = Tn,k#νnk ,

where Tn,k is the partial trace over the k-dimensional system.

Definition

We call µn,k the induced measure on Dn by partial tracing over an
environment of size k.

From now on, we will focus on the measures µn,k and their
properties.
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Connection with the Wishart ensemble

We have seen that if Z is a complex Gaussian vector in Cnk

then the class |Z 〉 is uniformly distributed on Enk .
Thus, if we set ρ = TrK(|Z 〉〈Z |), we obtain

ρij =
1

‖Z‖2

k∑
s=1

ZisZjs .

Equivalently, if we arrange the components of Z in a n × k
matrix X , then we obtain

ρ =
X · X ∗

Tr(X · X ∗)
.

Notice that in the previous formula, the matrix X has i.i.d.
complex Gaussian entries

⇒ the Wishart ensemble

Ion Nechita Random density matrices



Random density matrices
Results at fixed size

Asymptotics

Wishart random matrices
Probability density function
Numerical simulations

Connection with the Wishart ensemble

We have seen that if Z is a complex Gaussian vector in Cnk

then the class |Z 〉 is uniformly distributed on Enk .
Thus, if we set ρ = TrK(|Z 〉〈Z |), we obtain

ρij =
1

‖Z‖2

k∑
s=1

ZisZjs .

Equivalently, if we arrange the components of Z in a n × k
matrix X , then we obtain

ρ =
X · X ∗

Tr(X · X ∗)
.

Notice that in the previous formula, the matrix X has i.i.d.
complex Gaussian entries

⇒ the Wishart ensemble

Ion Nechita Random density matrices



Random density matrices
Results at fixed size

Asymptotics

Wishart random matrices
Probability density function
Numerical simulations

Connection with the Wishart ensemble

We have seen that if Z is a complex Gaussian vector in Cnk

then the class |Z 〉 is uniformly distributed on Enk .
Thus, if we set ρ = TrK(|Z 〉〈Z |), we obtain

ρij =
1

‖Z‖2

k∑
s=1

ZisZjs .

Equivalently, if we arrange the components of Z in a n × k
matrix X , then we obtain

ρ =
X · X ∗

Tr(X · X ∗)
.

Notice that in the previous formula, the matrix X has i.i.d.
complex Gaussian entries

⇒ the Wishart ensemble

Ion Nechita Random density matrices



Random density matrices
Results at fixed size

Asymptotics

Wishart random matrices
Probability density function
Numerical simulations

Connection with the Wishart ensemble

We have seen that if Z is a complex Gaussian vector in Cnk

then the class |Z 〉 is uniformly distributed on Enk .
Thus, if we set ρ = TrK(|Z 〉〈Z |), we obtain

ρij =
1

‖Z‖2

k∑
s=1

ZisZjs .

Equivalently, if we arrange the components of Z in a n × k
matrix X , then we obtain

ρ =
X · X ∗

Tr(X · X ∗)
.

Notice that in the previous formula, the matrix X has i.i.d.
complex Gaussian entries

⇒ the Wishart ensemble

Ion Nechita Random density matrices



Random density matrices
Results at fixed size

Asymptotics

Wishart random matrices
Probability density function
Numerical simulations

Connection with the Wishart ensemble

We have seen that if Z is a complex Gaussian vector in Cnk

then the class |Z 〉 is uniformly distributed on Enk .
Thus, if we set ρ = TrK(|Z 〉〈Z |), we obtain

ρij =
1

‖Z‖2

k∑
s=1

ZisZjs .

Equivalently, if we arrange the components of Z in a n × k
matrix X , then we obtain

ρ =
X · X ∗

Tr(X · X ∗)
.

Notice that in the previous formula, the matrix X has i.i.d.
complex Gaussian entries

⇒ the Wishart ensemble

Ion Nechita Random density matrices



Random density matrices
Results at fixed size

Asymptotics

Wishart random matrices
Probability density function
Numerical simulations

Wishart random matrices

Definition

Let X be a n × k complex matrix such that the entries are i.i.d.
NC(0, 1) random variables. The n× n matrix W = X · X ∗ is called
a Wishart (random) matrix of parameters n and k.

The first model of random matrices; introduced in the 30’s to
study covariance matrices in statistics.

Since, it has found many applications, both theoretical and
practical: PCA, engineering, random matrix theory, etc.

The preceding formula describing a random density matrix
reads now

ρ =
W

Tr W
⇒ strong connection between density and the Wishart matrices
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The eigenvalues of Wishart matrices

Theorem

The distribution of the (unordered) eigenvalues λ1(W ), . . . , λn(W )
has density with respect to the Lebesgue measure on Rn

+ given by

Φ
(w)
n,k (λ1, . . . , λn) = C

(w)
n,k exp(−

n∑
i=1

λi )
n∏

i=1

λk−n
i ∆(λ)2,

where

C
(w)
n,k =

n−1∏
j=0

Γ(n + 1− j)Γ(k − j)

−1

and
∆(λ) =

∏
1≤i<j≤n

(λi − λj).
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The eigenvalues of Wishart matrices

Theorem
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Φ
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Generalities

One would like to know the distribution of the eigenvalues
(λ̃1, . . . , λ̃n) of a random density matrix of law µn,k .
As the trace of a density matrix equals one, the (random)
vector (λ̃1, . . . , λ̃n) is confined on the (n − 1)-dimensional
probability simplex

Σn−1 = {(x1, · · · , xn) ∈ Rn
+ :

n∑
i=1

xi = 1}.

Recall that if W is a Wishart matrix of parameters n and k,
then ρ = W /Tr(W ) has distribution µn,k . It follows that if
(λ1, . . . , λn) are the eigenvalues of W and (λ̃1, . . . , λ̃n) are
those of ρ, then we have

λ̃i =
λi∑n
j=1 λj

∀1 ≤ i ≤ n.
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The density function

Theorem

The distribution of the (unordered) eigenvalues λ̃1(ρ), . . . , λ̃n−1(ρ)
has density with respect to the Lebesgue measure on Σn−1 given by

Φn,k(λ̃1, . . . , λ̃n−1) = Cn,k

n∏
i=1

(λ̃i )
k−n∆(λ̃)2,

where λ̃n is not itself a variable, but merely a function of the other
eigenvalues:

λ̃n = 1− (λ̃1 + · · ·+ λ̃n−1).
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Numerical simulations, n = 2
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Figure: Theoretical eigenvalue distribution for n = 2, k = 2 (left) and
n = 2, k = 3 (right)
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Numerical simulations, n = 3
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Figure: Empirical eigenvalue distribution for n = 3, k = 3 (left) and
n = 3, k = 5 (right)
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Numerical simulations, n = 3
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Figure: Empirical eigenvalue distribution for n = 3, k = 10 (left) and
n = 3, k = 100 (right)
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Motivation

Typically, quantum systems have a large number of degrees of
freedom ⇒ large density matrices

Properties of typical large density matrices can be expressed in
function of the limit object

There are a lot of results dealing with Wishart matrices in the
large n and k limit
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Two models

We have studied two models, both motived by natural situations
arising in physics:

1 n is constant and k →∞
describes typically a small system (a qubit, a pair of qubits,
etc.) coupled to a much larger environment
we will show that in the limit k →∞, density matrices
distributed along µn,k converge to the maximally mixed state
Id /n

2 n, k →∞, k/n→ c > 0

describes a large system coupled to a large environment with
constant ratio of size (dimK/ dimH ≈ c)
we show that the spectral measure of density matrices of law
µn,k converge to a deterministic measure known in random
matrix theory as the Marchenko-Pastur distribution
we also study the convergence and the fluctuations of the
largest eigenvalue of random density matrices
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The spectral measure

permits to state results on the whole spectrum of a density
matrix

density matrices admit spectral decompositions:

ρ =
n∑

i=1

λi |ψi 〉〈ψi |,

where the eigenvalues λ1, . . . , λn are positive and sum up to 1.

Definition

The spectral measure associated to a density matrix with spectrum
{λ1, . . . , λn} is the probability measure

L(ρ) =
1

n

n∑
i=1

δλi
.
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Dirichlet distributions

Consider the probability distributions µn,k at fixed n and
k →∞. It has density

Φn,k(λ1, . . . , λn−1) = Cn,k

n∏
i=1

(λi )
k−n∆(λ)2.

Because n fixed, the Vandermonde factor ∆(λ) is constant;
the other factor, properly normalized in order to get a
probability density, is the Dirichlet measure of parameter
α = k − n + 1:

Φ
′
n,k(λ1, . . . , λn−1) = C

′
n,k

n∏
i=1

(λi )
α−1.
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The result

It is a classical result in probability theory that

Theorem

The Dirichlet measure converges weakly as α→∞ to the Dirac
measure δ(1/n,...,1/n)

As the maximally mixed state Id /n is the unique state having
spectrum {1/n, . . . , 1/n}, we get:

Corollary

Density matrices of the first model converge almost surely to the
maximally mixed state Id /n.
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The Marchenko Pastur measure

The Marchenko-Pastur distribution arises naturally in random
matrix theory and free probability.

Definition

For c ∈]0,∞[, we denote by µc the Marchenko-Pastur probability
measure given by the equation

µc = max{1− c, 0}δ0 +

√
(x − a)(b − x)

2πx
1[a,b](x)dx ,

where a = (
√

c − 1)2 and b = (
√

c + 1)2.
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An useful lemma

Lemma

Assume that c ∈]0,∞[, and let (k(n))n be a sequence of integers

such that limn→∞
k(n)

n = c. Consider a sequence of random
matrices (Wn)n such that for all n, Wn is a Wishart matrix of
parameters n and k(n). Let Sn = Tr Wn be the trace of Wn. Then

Sn

nk(n)
→ 1 almost surely

and
Sn − nk(n)√

nk(n)
⇒ N (0, 1),
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The main result

Theorem

Assume that c ∈]0,∞[, and let (k(n))n be a sequence of integers

such that limn→∞
k(n)

n = c. Consider a sequence of random
density matrices (ρn)n such that for all n, ρn has distribution
µn,k(n). Define the renormalized empirical distribution of ρn by

Ln =
1

n

n∑
i=1

δcnλi (ρn),

where λ1(ρn), · · · , λn(ρn) are the eigenvalues of ρn. Then, almost
surely, the sequence (Ln)n converges weakly to the
Marchenko-Pastur distribution µc .
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Proof

We know that the empirical distribution of eigenvalues for the
Wishart ensemble

L
(W )
n =

1

n

n∑
i=1

δn−1λi (Wn),

converges almost surely to the Marchenko-Pastur distribution of
parameter c. Recall that the eigenvalues of the density matrix
ρn = Wn/Tr(Wn) are those of Wn divided by the trace Sn of Wn;
we have thus

Ln =
1

n

n∑
i=1

δcnλi (Wn)/Sn
=

1

n

n∑
i=1

δ
n−1λi (Wn)· cn2

Sn

.

Use the fact that Sn/nk(n)→ 1 almost surely to conclude.
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Numerical simulations
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Figure: Empirical and limit measures for n = 500, k = 500 (left) and
n = 500, k = 1000 (right)
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Numerical simulations
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Figure: Empirical and limit measures for n = 500, k = 2500 (left) and
n = 500, k = 5000 (right)
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Random density matrices - largest eigenvalue

Theorem

Assume that c ∈]0,∞[, and let (k(n))n be a sequence of integers

such that limn→∞
k(n)

n = c. Consider a sequence of random
matrices (ρn)n such that for all n, ρn has distribution µn,k(n), and
let λmax(ρn) be the largest eigenvalue of ρn. Then, almost surely,

lim
n→∞

cnλmax(ρn) = (
√

c + 1)2.

Moreover,

lim
n→∞

n2/3
[
cnλmax(ρn)− (

√
c + 1)2

]
(1 +

√
c)(1 + 1/

√
c)1/3

=W2 in distribution.
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Fin
Questions ?
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