Random density matrices

Ion Nechita¹

¹Institut Camille Jordan, Université Lyon 1

Marseille, 9 November 2006

→ ∢ ≣

 Random density matrices
 Introduction

 Results at fixed size
 Pure states and denstiy matrices

 Asymptotics
 The induced measure

Random density matrices

(日)

3)) B

Introduction Pure states and denstiy matrices The induced measure

Why random density matrices ?

- Density matrices are central objects in quantum information theory, quantum computing, quantum communication protocols, etc.
- We would like to characterize the properties of *typical* density matrices ⇒ we need a probability measure on the set of density matrices
- Compute averages over the important quantities, such as von Neumann entropy, moments, etc.
- Random matrix theory: after all, density matrices are positive, trace one complex matrices

Introduction Pure states and denstiy matrices The induced measure

Why random density matrices ?

- Density matrices are central objects in quantum information theory, quantum computing, quantum communication protocols, etc.
- We would like to characterize the properties of *typical* density matrices ⇒ we need a probability measure on the set of density matrices
- Compute averages over the important quantities, such as von Neumann entropy, moments, etc.
- Random matrix theory: after all, density matrices are positive, trace one complex matrices

< □ > < □ > < □ > < □ >

Introduction Pure states and denstiy matrices The induced measure

Why random density matrices ?

- Density matrices are central objects in quantum information theory, quantum computing, quantum communication protocols, etc.
- We would like to characterize the properties of *typical* density matrices ⇒ we need a probability measure on the set of density matrices
- Compute averages over the important quantities, such as von Neumann entropy, moments, etc.
- Random matrix theory: after all, density matrices are positive, trace one complex matrices

< □ > < □ > < □ > < □ >

Introduction Pure states and denstiy matrices The induced measure

Why random density matrices ?

- Density matrices are central objects in quantum information theory, quantum computing, quantum communication protocols, etc.
- We would like to characterize the properties of *typical* density matrices ⇒ we need a probability measure on the set of density matrices
- Compute averages over the important quantities, such as von Neumann entropy, moments, etc.
- Random matrix theory: after all, density matrices are positive, trace one complex matrices

< □ > < 同 > < 回 >

Introduction Pure states and denstiy matrices The induced measure

Two classes of measures

There are two main classes of probability measures on the set of density matrices of size n:

• *Metric* measures: define a distance on the set of density matrices and consider the measure that assigns equal masses to balls of equal radii. Example: the *Bures* distance

$$d(\rho, \sigma) = 2 \arccos \operatorname{Tr}(\rho^{1/2} \sigma \rho^{1/2})^{1/2}.$$

• *Induced* measures: density matrices are obtained by partial tracing a random pure state of larger size

Introduction Pure states and denstiy matrices The induced measure

Two classes of measures

There are two main classes of probability measures on the set of density matrices of size *n*:

• *Metric* measures: define a distance on the set of density matrices and consider the measure that assigns equal masses to balls of equal radii. Example: the *Bures* distance

$$d(
ho,\sigma)=2 \arccos \operatorname{Tr}(
ho^{1/2}\sigma
ho^{1/2})^{1/2}$$

• *Induced* measures: density matrices are obtained by partial tracing a random pure state of larger size

Introduction Pure states and denstiy matrices The induced measure

Two classes of measures

There are two main classes of probability measures on the set of density matrices of size *n*:

• *Metric* measures: define a distance on the set of density matrices and consider the measure that assigns equal masses to balls of equal radii. Example: the *Bures* distance

$$d(\rho,\sigma) = 2 \arccos \operatorname{Tr}(\rho^{1/2} \sigma \rho^{1/2})^{1/2}$$

• *Induced* measures: density matrices are obtained by partial tracing a random pure state of larger size

Two classes of measures

There are two main classes of probability measures on the set of density matrices of size *n*:

• *Metric* measures: define a distance on the set of density matrices and consider the measure that assigns equal masses to balls of equal radii. Example: the *Bures* distance

$$d(\rho,\sigma) = 2 \arccos \operatorname{Tr}(\rho^{1/2} \sigma \rho^{1/2})^{1/2}$$

• *Induced* measures: density matrices are obtained by partial tracing a random pure state of larger size

 Random density matrices
 Introduction

 Results at fixed size
 Pure states and denstiy matrices

 Asymptotics
 The induced measure

Introduction

• In physics, a pure state of a quantum state is a norm one vector $|\psi\rangle$ of a complex Hilbert space ${\cal H}$ with an undetermined phase:

$$|e^{i\theta}\psi\rangle = |\psi\rangle \quad \theta \in \mathbb{R}$$

• We introduce an equivalent definition

Definition

A pure state $|\psi\rangle$ is an element of $\mathcal{E}_n = \mathcal{H} \smallsetminus \{0\}/\sim$, where \sim is the equivalence relation defined by

$$x \sim y \Leftrightarrow \exists \lambda \in \mathbb{C}^* \text{ s.t. } x = \lambda y.$$

▲ 同 ▶ ▲ 三 ▶ ▲

 Random density matrices
 Introduction

 Results at fixed size
 Pure states and denstiy matrices

 Asymptotics
 The induced measure

Introduction

• In physics, a pure state of a quantum state is a norm one vector $|\psi\rangle$ of a complex Hilbert space ${\cal H}$ with an undetermined phase:

$$|e^{i\theta}\psi\rangle = |\psi\rangle \quad \theta \in \mathbb{R}$$

• We introduce an equivalent definition

Definition

A pure state $|\psi\rangle$ is an element of $\mathcal{E}_n = \mathcal{H} \smallsetminus \{0\}/\sim$, where \sim is the equivalence relation defined by

$$x \sim y \Leftrightarrow \exists \lambda \in \mathbb{C}^* \text{ s.t. } x = \lambda y.$$

< ロ > < 同 > < 三 > < 三 >

Introduction Pure states and denstiy matrices The induced measure

Introduction

- Consider a quantum system *H* in interaction with another system *K*. The Hilbert space of the compound system is given by the tensor poduct *H* ⊗ *K*.
- One typical situation is that we have access to the system H only, for several possible reasons: K may not be accessible (e.g. H and K are in distant galaxies) or it can be too complicated to study (an unknown environemnt, a heat bath, a noisy channel, etc.).
- If the state of the compound system is pure, what can be said about the \mathcal{H} -part of $\mathcal{H}\otimes\mathcal{K}$?

 \Rightarrow density matrices

Introduction Pure states and denstiy matrices The induced measure

Introduction

- Consider a quantum system *H* in interaction with another system *K*. The Hilbert space of the compound system is given by the tensor poduct *H* ⊗ *K*.
- One typical situation is that we have access to the system H only, for several possible reasons: K may not be accessible (e.g. H and K are in distant galaxies) or it can be too complicated to study (an unknown environemnt, a heat bath, a noisy channel, etc.).
- If the state of the compound system is pure, what can be said about the $\mathcal H\text{-part}$ of $\mathcal H\otimes \mathcal K$?

 \Rightarrow density matrices

Introduction Pure states and denstiy matrices The induced measure

Introduction

- Consider a quantum system *H* in interaction with another system *K*. The Hilbert space of the compound system is given by the tensor poduct *H* ⊗ *K*.
- One typical situation is that we have access to the system H only, for several possible reasons: K may not be accessible (e.g. H and K are in distant galaxies) or it can be too complicated to study (an unknown environemnt, a heat bath, a noisy channel, etc.).
- If the state of the compound system is pure, what can be said about the \mathcal{H} -part of $\mathcal{H}\otimes\mathcal{K}$?

 \Rightarrow density matrices

(日)

Introduction Pure states and denstiy matrices The induced measure

Introduction

- Consider a quantum system *H* in interaction with another system *K*. The Hilbert space of the compound system is given by the tensor poduct *H* ⊗ *K*.
- One typical situation is that we have access to the system H only, for several possible reasons: K may not be accessible (e.g. H and K are in distant galaxies) or it can be too complicated to study (an unknown environemnt, a heat bath, a noisy channel, etc.).
- If the state of the compound system is pure, what can be said about the \mathcal{H} -part of $\mathcal{H}\otimes\mathcal{K}$?

 \Rightarrow density matrices

Introduction Pure states and denstiy matrices The induced measure

Partial tracing

- One can measure for instance an observable X on H, i.e. measure X ⊗ I_K on the whole system.
- We can compute the probability of obtaining the result λ_i knowing that the state of H ⊗ K is |ψ⟩:

 $Prob(X = \lambda_i) = \langle \psi | P_i \otimes I_{\mathcal{K}} | \psi \rangle = \mathsf{Tr}(|\psi\rangle \langle \psi | (P_i \otimes I_{\mathcal{K}})) = \mathsf{Tr}(\rho P_i),$

where λ_i is the eigenvalue corresponding to the eigenspace P_i and $\rho = \text{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|)$ is the partial trace of the pure system $|\psi\rangle$ over \mathcal{K} .

• The observer of \mathcal{H} will not "see" $|\psi\rangle$, but only its partial trace ρ , the density matrix corresponding to \mathcal{H} .

< ロ > < 同 > < 三 > < 三

Introduction Pure states and denstiy matrices The induced measure

Partial tracing

- One can measure for instance an observable X on \mathcal{H} , i.e. measure $X \otimes I_{\mathcal{K}}$ on the whole system.
- We can compute the probability of obtaining the result λ_i knowing that the state of H ⊗ K is |ψ⟩:

$$Prob(X = \lambda_i) = \langle \psi | P_i \otimes I_{\mathcal{K}} | \psi \rangle = \mathsf{Tr}(|\psi\rangle \langle \psi | (P_i \otimes I_{\mathcal{K}})) = \mathsf{Tr}(\rho P_i),$$

where λ_i is the eigenvalue corresponding to the eigenspace P_i and $\rho = \text{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|)$ is the partial trace of the pure system $|\psi\rangle$ over \mathcal{K} .

• The observer of \mathcal{H} will not "see" $|\psi\rangle$, but only its partial trace ρ , the density matrix corresponding to \mathcal{H} .

(日)

Introduction Pure states and denstiy matrices The induced measure

Partial tracing

- One can measure for instance an observable X on \mathcal{H} , i.e. measure $X \otimes I_{\mathcal{K}}$ on the whole system.
- We can compute the probability of obtaining the result λ_i knowing that the state of H ⊗ K is |ψ⟩:

$$Prob(X = \lambda_i) = \langle \psi | P_i \otimes I_{\mathcal{K}} | \psi \rangle = \mathsf{Tr}(|\psi\rangle \langle \psi | (P_i \otimes I_{\mathcal{K}})) = \mathsf{Tr}(\rho P_i),$$

where λ_i is the eigenvalue corresponding to the eigenspace P_i and $\rho = \text{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|)$ is the partial trace of the pure system $|\psi\rangle$ over \mathcal{K} .

• The observer of \mathcal{H} will not "see" $|\psi\rangle$, but only its partial trace ρ , the density matrix corresponding to \mathcal{H} .

< ロ > < 同 > < 三 > < 三 >

Introduction Pure states and denstiy matrices The induced measure

Density matrices and partial tracing

Definition

A *density matrix* on a Hilbert space \mathcal{H} is a positive and unit trace matrix of size $n = \dim \mathcal{H}$. We note the convex set of density matrices of size n with \mathcal{D}_n .

We consider the partial trace map

$$T_{n,k}: \mathcal{E}_{nk} \longrightarrow \mathcal{D}_n$$
$$|\psi\rangle \longmapsto \operatorname{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|).$$

If we write $\psi \; (\|\psi\|=1)$ in a basis $\mathit{e_i} \otimes \mathit{f_j}$ of $\mathcal{H} \otimes \mathcal{K}$, then

$$T_{n,k}(|\psi\rangle)_{i,j} = \sum_{s=1}^{k} \psi_{is} \overline{\psi_{js}},$$

Introduction Pure states and denstiy matrices The induced measure

Density matrices and partial tracing

Definition

A *density matrix* on a Hilbert space \mathcal{H} is a positive and unit trace matrix of size $n = \dim \mathcal{H}$. We note the convex set of density matrices of size n with \mathcal{D}_n .

We consider the partial trace map

$$\begin{aligned} \mathcal{T}_{n,k} &: \mathcal{E}_{nk} \longrightarrow \mathcal{D}_n \\ & |\psi\rangle \longmapsto \mathsf{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|). \end{aligned}$$

If we write ψ $(\|\psi\| = 1)$ in a basis $e_i \otimes f_j$ of $\mathcal{H} \otimes \mathcal{K}$, then

$$T_{n,k}(|\psi\rangle)_{i,j} = \sum_{s=1}^{k} \psi_{is} \overline{\psi_{js}},$$

Introduction Pure states and denstiy matrices The induced measure

Density matrices and partial tracing

Definition

A *density matrix* on a Hilbert space \mathcal{H} is a positive and unit trace matrix of size $n = \dim \mathcal{H}$. We note the convex set of density matrices of size n with \mathcal{D}_n .

We consider the partial trace map

$$\begin{aligned} \mathcal{T}_{n,k} &: \mathcal{E}_{nk} \longrightarrow \mathcal{D}_n \\ & |\psi\rangle \longmapsto \mathsf{Tr}_{\mathcal{K}}(|\psi\rangle\langle\psi|). \end{aligned}$$

If we write ψ ($\|\psi\| = 1$) in a basis $e_i \otimes f_j$ of $\mathcal{H} \otimes \mathcal{K}$, then

$$T_{n,k}(|\psi\rangle)_{i,j} = \sum_{s=1}^{k} \psi_{is} \overline{\psi_{js}},$$

Introduction Pure states and denstiy matrices The induced measure

Random pure states

- One would like to endow \mathcal{E}_n with an uniform probability measure ν_n . But what does *uniform* mean ?
- As there is no preferred basis for this space, we will ask that the uniform probability measure ν_n should be invariant under any change of basis. As basis changes are realized via unitary matrices, ν_n should be invariant under the action of the unitary group U(n).

Definition

We call a measure ν_n on \mathcal{E}_n unitarily invariant if

 $\nu_n(UA)=\nu_n(A),$

for all unitary U and for all Borel subset $A \subset \mathcal{E}_n$.

< D > < A > < B > < B >

Introduction Pure states and denstiy matrices The induced measure

Random pure states

- One would like to endow \mathcal{E}_n with an uniform probability measure ν_n . But what does *uniform* mean ?
- As there is no preferred basis for this space, we will ask that the uniform probability measure ν_n should be invariant under any change of basis. As basis changes are realized via unitary matrices, ν_n should be invariant under the action of the unitary group $\mathcal{U}(n)$.

Definition

We call a measure ν_n on \mathcal{E}_n unitarily invariant if

 $\nu_n(UA)=\nu_n(A),$

for all unitary U and for all Borel subset $A \subset \mathcal{E}_n$.

(日)

Introduction Pure states and denstiy matrices The induced measure

Random pure states

- One would like to endow \mathcal{E}_n with an uniform probability measure ν_n . But what does *uniform* mean ?
- As there is no preferred basis for this space, we will ask that the uniform probability measure ν_n should be invariant under any change of basis. As basis changes are realized via unitary matrices, ν_n should be invariant under the action of the unitary group $\mathcal{U}(n)$.

Definition

We call a measure ν_n on \mathcal{E}_n unitarily invariant if

 $\nu_n(UA) = \nu_n(A),$

for all unitary U and for all Borel subset $A \subset \mathcal{E}_n$.

< ロ > < 同 > < 三 > < 三 >

Introduction Pure states and denstiy matrices The induced measure

Existence and unicity - the general result

Definition

Let G be a topological group acting on a topological space X. We call the action

- *transitive* if for all $x, y \in X$, there is $g \in G$ such that $y = g \cdot x$
- proper if for all g ∈ G, the application X ∋ x → g ⋅ x is proper, i.e. the pre-image of a compact set is compact

Theorem

Let G be a topological group that acts transitively and properly on a topological space X. Suppose that both G and X are locally compact and separable. Then there exists an unique (up to a constant) measure ν on X which is G-invariant.

(日)

Introduction Pure states and denstiy matrices The induced measure

Existence and unicity - uniform pure states

Theorem

The action of $\mathcal{U}(n)$ on \mathcal{E}_n is transitive and proper and thus there exists an unique unitarily invariant probability measure ν_n on \mathcal{E}_n .

This measure can be obtained directly in two ways:

- Let X be a random complex vector of law Nⁿ_C(0,1). Then the class |X⟩ of X is distributed along ν_n.
- ② Let U be a random unitary matrix distributed along the Haar measure on U(n) and let Y be the first column of U. Then the class |Y⟩ has law v_n.

< 同 > < 三 >

Introduction Pure states and denstiy matrices The induced measure

Existence and unicity - uniform pure states

Theorem

The action of $\mathcal{U}(n)$ on \mathcal{E}_n is transitive and proper and thus there exists an unique unitarily invariant probability measure ν_n on \mathcal{E}_n .

This measure can be obtained directly in two ways:

- Let X be a random complex vector of law Nⁿ_C(0,1). Then the class |X⟩ of X is distributed along ν_n.
- ② Let U be a random unitary matrix distributed along the Haar measure on U(n) and let Y be the first column of U. Then the class |Y⟩ has law v_n.

< 一 一 一 ト 、 、 三 ト

Introduction Pure states and denstiy matrices The induced measure

Existence and unicity - uniform pure states

Theorem

The action of $\mathcal{U}(n)$ on \mathcal{E}_n is transitive and proper and thus there exists an unique unitarily invariant probability measure ν_n on \mathcal{E}_n .

This measure can be obtained directly in two ways:

- Let X be a random complex vector of law Nⁿ_C(0,1). Then the class |X⟩ of X is distributed along ν_n.
- 2 Let U be a random unitary matrix distributed along the Haar measure on U(n) and let Y be the first column of U. Then the class |Y⟩ has law v_n.

(日)

Introduction Pure states and denstiy matrices The induced measure

Existence and unicity - uniform pure states

Theorem

The action of $\mathcal{U}(n)$ on \mathcal{E}_n is transitive and proper and thus there exists an unique unitarily invariant probability measure ν_n on \mathcal{E}_n .

This measure can be obtained directly in two ways:

- Let X be a random complex vector of law $\mathcal{N}^n_{\mathbb{C}}(0,1)$. Then the class $|X\rangle$ of X is distributed along ν_n .
- ② Let U be a random unitary matrix distributed along the Haar measure on U(n) and let Y be the first column of U. Then the class |Y⟩ has law v_n.

Introduction Pure states and denstiy matrices The induced measure

The induced measure

Choose a pure state on $\mathcal{H}\otimes\mathcal{K}$ distributed accordingly to the uniform measure ν_{nk} . The density matrix obtained by taking a partial trace is distributed along the image measure

$$\mu_{n,k}=T_{n,k\#}\nu_{nk},$$

where $T_{n,k}$ is the partial trace over the k-dimensional system.

Definition

We call $\mu_{n,k}$ the induced measure on \mathcal{D}_n by partial tracing over an environment of size k.

• From now on, we will focus on the measures $\mu_{n,k}$ and their properties.

< ロ > < 同 > < 三 > < 三 >

Introduction Pure states and denstiy matrices The induced measure

The induced measure

Choose a pure state on $\mathcal{H}\otimes\mathcal{K}$ distributed accordingly to the uniform measure ν_{nk} . The density matrix obtained by taking a partial trace is distributed along the image measure

$$\mu_{n,k}=T_{n,k\#}\nu_{nk},$$

where $T_{n,k}$ is the partial trace over the k-dimensional system.

Definition

We call $\mu_{n,k}$ the induced measure on \mathcal{D}_n by partial tracing over an environment of size k.

From now on, we will focus on the measures μ_{n,k} and their properties.

< ロ > < 同 > < 三 > < 三 >

Introduction Pure states and denstiy matrices The induced measure

The induced measure

Choose a pure state on $\mathcal{H}\otimes\mathcal{K}$ distributed accordingly to the uniform measure ν_{nk} . The density matrix obtained by taking a partial trace is distributed along the image measure

$$\mu_{n,k}=T_{n,k\#}\nu_{nk},$$

where $T_{n,k}$ is the partial trace over the k-dimensional system.

Definition

We call $\mu_{n,k}$ the induced measure on \mathcal{D}_n by partial tracing over an environment of size k.

• From now on, we will focus on the measures $\mu_{n,k}$ and their properties.

(日)

Random density matrices Results at fixed size Asymptotics Wishart random matrices Probability density function Numerical simulations

Results at fixed size

Ion Nechita Random density matrices

э

(日)

Random density matrices Results at fixed size Asymptotics Wishart random matrices Probability density function Numerical simulations

Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in C^{nk} then the class |Z⟩ is uniformly distributed on E_{nk}.
- Thus, if we set $\rho = \operatorname{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$, we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

• Equivalently, if we arrange the components of Z in a $n \times k$ matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\operatorname{Tr}(X \cdot X^*)}.$$

• Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries

 \Rightarrow the Wishart ensemble

< D > < A > < B > < B >

Random density matrices Results at fixed size Asymptotics Wishart random matrices Probability density function Numerical simulations

Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in C^{nk} then the class |Z⟩ is uniformly distributed on E_{nk}.
- Thus, if we set $\rho = \operatorname{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$, we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

• Equivalently, if we arrange the components of Z in a $n \times k$ matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\operatorname{Tr}(X \cdot X^*)}.$$

• Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries

 \Rightarrow the Wishart ensemble

Image: A math a math
Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in C^{nk} then the class |Z⟩ is uniformly distributed on E_{nk}.
- Thus, if we set $\rho = \operatorname{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$, we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

• Equivalently, if we arrange the components of Z in a $n \times k$ matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\operatorname{Tr}(X \cdot X^*)}.$$

• Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries

 \Rightarrow the Wishart ensemble

Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in C^{nk} then the class |Z⟩ is uniformly distributed on E_{nk}.
- Thus, if we set $\rho = \operatorname{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$, we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

 Equivalently, if we arrange the components of Z in a n × k matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\operatorname{Tr}(X \cdot X^*)}.$$

• Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries

 \Rightarrow the Wishart ensemble

• □ ▶ • < </p>
• □ ▶ • < </p>

Connection with the Wishart ensemble

- We have seen that if Z is a complex Gaussian vector in C^{nk} then the class |Z⟩ is uniformly distributed on E_{nk}.
- Thus, if we set $\rho = \operatorname{Tr}_{\mathcal{K}}(|Z\rangle\langle Z|)$, we obtain

$$\rho_{ij} = \frac{1}{\|Z\|^2} \sum_{s=1}^k Z_{is} \overline{Z_{js}}.$$

 Equivalently, if we arrange the components of Z in a n × k matrix X, then we obtain

$$\rho = \frac{X \cdot X^*}{\operatorname{Tr}(X \cdot X^*)}.$$

• Notice that in the previous formula, the matrix X has i.i.d. complex Gaussian entries

 \Rightarrow the Wishart ensemble

Wishart random matrices

Definition

Let X be a $n \times k$ complex matrix such that the entries are i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ random variables. The $n \times n$ matrix $W = X \cdot X^*$ is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{\operatorname{Tr} W}$$

 \Rightarrow strong connection between density and the Wishart matrices

Wishart random matrices

Definition

Let X be a $n \times k$ complex matrix such that the entries are i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ random variables. The $n \times n$ matrix $W = X \cdot X^*$ is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{\operatorname{Tr} W}$$

 \Rightarrow strong connection between density and the Wishart matrices

Wishart random matrices

Definition

Let X be a $n \times k$ complex matrix such that the entries are i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ random variables. The $n \times n$ matrix $W = X \cdot X^*$ is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{\operatorname{Tr} W}$$

 \Rightarrow strong connection between density and the Wishart matrices

Wishart random matrices

Definition

Let X be a $n \times k$ complex matrix such that the entries are i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ random variables. The $n \times n$ matrix $W = X \cdot X^*$ is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{{\rm Tr}\,W}$$

 \Rightarrow strong connection between density and the Wishart matrices

Wishart random matrices

Definition

Let X be a $n \times k$ complex matrix such that the entries are i.i.d. $\mathcal{N}_{\mathbb{C}}(0,1)$ random variables. The $n \times n$ matrix $W = X \cdot X^*$ is called a Wishart (random) matrix of parameters n and k.

- The first model of random matrices; introduced in the 30's to study covariance matrices in statistics.
- Since, it has found many applications, both theoretical and practical: PCA, engineering, random matrix theory, etc.
- The preceding formula describing a random density matrix reads now

$$\rho = \frac{W}{\operatorname{Tr} W}$$

 $\Rightarrow\,$ strong connection between density and the Wishart matrices

< ロ > < 同 > < 三 > < 三 >

Wishart random matrices Probability density function Numerical simulations

The eigenvalues of Wishart matrices

Theorem

The distribution of the (unordered) eigenvalues $\lambda_1(W), \ldots, \lambda_n(W)$ has density with respect to the Lebesgue measure on \mathbb{R}^n_+ given by

$$\Phi_{n,k}^{(w)}(\lambda_1,\ldots,\lambda_n) = C_{n,k}^{(w)} \exp(-\sum_{i=1}^n \lambda_i) \prod_{i=1}^n \lambda_i^{k-n} \Delta(\lambda)^2$$

where

$$C_{n,k}^{(w)} = \left[\prod_{j=0}^{n-1} \Gamma(n+1-j)\Gamma(k-j)\right]^{-1}$$

and

Wishart random matrices Probability density function Numerical simulations

The eigenvalues of Wishart matrices

Theorem

The distribution of the (unordered) eigenvalues $\lambda_1(W), \ldots, \lambda_n(W)$ has density with respect to the Lebesgue measure on \mathbb{R}^n_+ given by

$$\Phi_{n,k}^{(w)}(\lambda_1,\ldots,\lambda_n) = C_{n,k}^{(w)} \exp(-\sum_{i=1}^n \lambda_i) \prod_{i=1}^n \lambda_i^{k-n} \Delta(\lambda)^2$$

where

$$C_{n,k}^{(w)} = \left[\prod_{j=0}^{n-1} \Gamma(n+1-j)\Gamma(k-j)\right]^{-1}$$

and

Generalities

- One would like to know the distribution of the eigenvalues $(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n)$ of a random density matrix of law $\mu_{n,k}$.

$$\Sigma_{n-1} = \{(x_1, \cdots, x_n) \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}.$$

 Recall that if W is a Wishart matrix of parameters n and k, then ρ = W/Tr(W) has distribution μ_{n,k}. It follows that if (λ₁,...,λ_n) are the eigenvalues of W and (λ̃₁,..., λ̃_n) are those of ρ, then we have

$$\tilde{\lambda}_i = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j} \quad \forall 1 \le i \le n.$$

Generalities

- One would like to know the distribution of the eigenvalues $(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n)$ of a random density matrix of law $\mu_{n,k}$.

$$\Sigma_{n-1} = \{(x_1, \cdots, x_n) \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}.$$

 Recall that if W is a Wishart matrix of parameters n and k, then ρ = W/Tr(W) has distribution μ_{n,k}. It follows that if (λ₁,...,λ_n) are the eigenvalues of W and (λ̃₁,..., λ̃_n) are those of ρ, then we have

$$\tilde{\lambda}_i = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j} \quad \forall 1 \le i \le n.$$

Generalities

- One would like to know the distribution of the eigenvalues $(\tilde{\lambda}_1, \ldots, \tilde{\lambda}_n)$ of a random density matrix of law $\mu_{n,k}$.

$$\Sigma_{n-1} = \{(x_1, \cdots, x_n) \in \mathbb{R}^n_+ : \sum_{i=1}^n x_i = 1\}.$$

Recall that if W is a Wishart matrix of parameters n and k, then ρ = W/Tr(W) has distribution μ_{n,k}. It follows that if (λ₁,...,λ_n) are the eigenvalues of W and (λ̃₁,..., λ̃_n) are those of ρ, then we have

$$\tilde{\lambda}_i = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j} \quad \forall 1 \le i \le n.$$

Wishart random matrices Probability density function Numerical simulations

The density function

Theorem

The distribution of the (unordered) eigenvalues $\tilde{\lambda}_1(\rho), \ldots, \tilde{\lambda}_{n-1}(\rho)$ has density with respect to the Lebesgue measure on Σ_{n-1} given by

$$\Phi_{n,k}(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_{n-1})=C_{n,k}\prod_{i=1}^n(\tilde{\lambda}_i)^{k-n}\Delta(\tilde{\lambda})^2,$$

where $\tilde{\lambda}_n$ is not itself a variable, but merely a function of the other eigenvalues:

$$\tilde{\lambda}_n = 1 - (\tilde{\lambda}_1 + \cdots + \tilde{\lambda}_{n-1}).$$

Wishart random matrices Probability density function Numerical simulations

The density function

Theorem

The distribution of the (unordered) eigenvalues $\tilde{\lambda}_1(\rho), \ldots, \tilde{\lambda}_{n-1}(\rho)$ has density with respect to the Lebesgue measure on Σ_{n-1} given by

$$\Phi_{n,k}(\tilde{\lambda}_1,\ldots,\tilde{\lambda}_{n-1})=C_{n,k}\prod_{i=1}^n (\tilde{\lambda}_i)^{k-n}\Delta(\tilde{\lambda})^2,$$

where $\tilde{\lambda}_n$ is not itself a variable, but merely a function of the other eigenvalues:

$$\tilde{\lambda}_n = 1 - (\tilde{\lambda}_1 + \cdots + \tilde{\lambda}_{n-1}).$$

Wishart random matrices Probability density function Numerical simulations

Numerical simulations, n = 2

Figure: Theoretical eigenvalue distribution for n = 2, k = 2 (left) and n = 2, k = 3 (right)

< □ > < 同 > < 回 >

э

Wishart random matrices Probability density function Numerical simulations

Numerical simulations, n = 2

Figure: Theoretical eigenvalue distribution for n = 2, k = 10 (left) and n = 2, k = 100 (right)

< □ > < 同 > < 回 >

Wishart random matrices Probability density function Numerical simulations

Numerical simulations, n = 3

Figure: Empirical eigenvalue distribution for n = 3, k = 3 (left) and n = 3, k = 5 (right)

< □ > < 同 > < 回 >

Wishart random matrices Probability density function Numerical simulations

Numerical simulations, n = 3

Figure: Empirical eigenvalue distribution for n = 3, k = 10 (left) and n = 3, k = 100 (right)

< □ > < 同 > < 回 >

Random density matrices Results at fixed size Asymptotics Results at fixed size Asymptotics

Asymptotics

æ

Motivation

- Typically, quantum systems have a large number of degrees of freedom \Rightarrow large density matrices
- Properties of typical large density matrices can be expressed in function of the limit object
- There are a lot of results dealing with Wishart matrices in the large *n* and *k* limit

▲ 同 ▶ ▲ 三 ▶ ▲

Motivation

- Typically, quantum systems have a large number of degrees of freedom \Rightarrow large density matrices
- Properties of typical large density matrices can be expressed in function of the limit object
- There are a lot of results dealing with Wishart matrices in the large *n* and *k* limit

< □ > < □ > < □ > < □ >

Motivation

- Typically, quantum systems have a large number of degrees of freedom \Rightarrow large density matrices
- Properties of typical large density matrices can be expressed in function of the limit object
- There are a lot of results dealing with Wishart matrices in the large *n* and *k* limit

→ < Ξ → </p>

< □ > < 行

Two models

- 1) *n* is constant and $k \to \infty$
 - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
 - we will show that in the limit $k\to\infty,$ density matrices distributed along $\mu_{n,k}$ converge to the maximally mixed state Id/n

- describes a large system coupled to a large environment with constant ratio of size (dim $\mathcal{K}/\dim\mathcal{H}\approx c$)
- we show that the spectral measure of density matrices of law $\mu_{n,k}$ converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
- we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

Two models

- $\bullet \ n \text{ is constant and } k \to \infty$
 - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
 - we will show that in the limit $k\to\infty,$ density matrices distributed along $\mu_{n,k}$ converge to the maximally mixed state Id/n

- describes a large system coupled to a large environment with constant ratio of size (dim $\mathcal{K}/\dim\mathcal{H}\approx c$)
- we show that the spectral measure of density matrices of law $\mu_{n,k}$ converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
- we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

Two models

- - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
 - we will show that in the limit $k\to\infty,$ density matrices distributed along $\mu_{n,k}$ converge to the maximally mixed state Id/n

- describes a large system coupled to a large environment with constant ratio of size (dim $\mathcal{K}/\dim\mathcal{H}\approx c$)
- we show that the spectral measure of density matrices of law $\mu_{n,k}$ converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
- we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

Two models

- - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
 - we will show that in the limit $k\to\infty,$ density matrices distributed along $\mu_{n,k}$ converge to the maximally mixed state Id/n
- - describes a large system coupled to a large environment with constant ratio of size (dim $\mathcal{K}/\dim\mathcal{H}\approx c$)
 - we show that the spectral measure of density matrices of law $\mu_{n,k}$ converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
 - we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

Two models

- **1** *n* is constant and $k \to \infty$
 - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
 - we will show that in the limit $k\to\infty,$ density matrices distributed along $\mu_{n,k}$ converge to the maximally mixed state Id/n

$$\ \, \textbf{0} \quad \textbf{n}, \textbf{k} \to \infty, \ \textbf{k}/\textbf{n} \to \textbf{c} > 0$$

- describes a large system coupled to a large environment with constant ratio of size (dim $\mathcal{K}/\dim\mathcal{H}\approx c$)
- we show that the spectral measure of density matrices of law $\mu_{n,k}$ converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
- we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

Two models

- **1** *n* is constant and $k \to \infty$
 - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
 - we will show that in the limit $k\to\infty,$ density matrices distributed along $\mu_{n,k}$ converge to the maximally mixed state Id/n

- describes a large system coupled to a large environment with constant ratio of size $(\dim \mathcal{K} / \dim \mathcal{H} \approx c)$
- we show that the spectral measure of density matrices of law $\mu_{n,k}$ converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
- we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

Two models

We have studied two models, both motived by natural situations arising in physics:

- - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
 - we will show that in the limit $k\to\infty,$ density matrices distributed along $\mu_{n,k}$ converge to the maximally mixed state Id/n

- describes a large system coupled to a large environment with constant ratio of size $(\dim \mathcal{K} / \dim \mathcal{H} \approx c)$
- we show that the spectral measure of density matrices of law $\mu_{n,k}$ converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*

• we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

Two models

- - describes typically a small system (a qubit, a pair of qubits, etc.) coupled to a much larger environment
 - we will show that in the limit $k\to\infty,$ density matrices distributed along $\mu_{n,k}$ converge to the maximally mixed state Id/n

- describes a large system coupled to a large environment with constant ratio of size $(\dim \mathcal{K} / \dim \mathcal{H} \approx c)$
- we show that the spectral measure of density matrices of law $\mu_{n,k}$ converge to a deterministic measure known in random matrix theory as the *Marchenko-Pastur distribution*
- we also study the convergence and the fluctuations of the largest eigenvalue of random density matrices

The spectral measure

- permits to state results on the whole spectrum of a density matrix
- density matrices admit spectral decompositions:

$$\rho = \sum_{i=1}^{n} \lambda_i |\psi_i\rangle \langle \psi_i |,$$

$$L(\rho) = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}.$$

Random density matrices Results at fixed size Asymptotics The first mo The second of

The spectral measure

- permits to state results on the whole spectrum of a density matrix
- density matrices admit spectral decompositions:

$$\rho = \sum_{i=1}^{n} \lambda_i |\psi_i\rangle \langle \psi_i |,$$

where the eigenvalues $\lambda_1, \ldots, \lambda_n$ are positive and sum up to 1.

Definition

The *spectral measure* associated to a density matrix with spectrum $\{\lambda_1, \ldots, \lambda_n\}$ is the probability measure

$$L(\rho) = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}.$$

Random density matrices Results at fixed size Asymptotics The first mod The second r

The spectral measure

- permits to state results on the whole spectrum of a density matrix
- density matrices admit spectral decompositions:

$$\rho = \sum_{i=1}^{n} \lambda_i |\psi_i\rangle \langle \psi_i |,$$

where the eigenvalues $\lambda_1, \ldots, \lambda_n$ are positive and sum up to 1.

Definition

The *spectral measure* associated to a density matrix with spectrum $\{\lambda_1, \ldots, \lambda_n\}$ is the probability measure

$$L(\rho) = \frac{1}{n} \sum_{i=1}^{n} \delta_{\lambda_i}.$$

Introduction The first model The second model

Dirichlet distributions

• Consider the probability distributions $\mu_{n,k}$ at fixed n and $k \to \infty$. It has density

$$\Phi_{n,k}(\lambda_1,\ldots,\lambda_{n-1})=C_{n,k}\prod_{i=1}^n(\lambda_i)^{k-n}\Delta(\lambda)^2.$$

• Because *n* fixed, the Vandermonde factor $\Delta(\lambda)$ is constant; the other factor, properly normalized in order to get a probability density, is the Dirichlet measure of parameter $\alpha = k - n + 1$:

$$\Phi_{n,k}'(\lambda_1,\ldots,\lambda_{n-1})=C_{n,k}'\prod_{i=1}^n(\lambda_i)^{\alpha-1}.$$

Introduction The first model The second model

Dirichlet distributions

• Consider the probability distributions $\mu_{n,k}$ at fixed n and $k \to \infty$. It has density

$$\Phi_{n,k}(\lambda_1,\ldots,\lambda_{n-1})=C_{n,k}\prod_{i=1}^n(\lambda_i)^{k-n}\Delta(\lambda)^2.$$

 Because n fixed, the Vandermonde factor Δ(λ) is constant; the other factor, properly normalized in order to get a probability density, is the Dirichlet measure of parameter α = k - n + 1:

$$\Phi'_{n,k}(\lambda_1,\ldots,\lambda_{n-1})=C'_{n,k}\prod_{i=1}^n(\lambda_i)^{\alpha-1}$$

The result

It is a classical result in probability theory that

Theorem

The Dirichlet measure converges weakly as $\alpha\to\infty$ to the Dirac measure $\delta_{(1/n,\dots,1/n)}$

As the maximally mixed state ld /n is the unique state having spectrum $\{1/n, \ldots, 1/n\}$, we get:

Corollary

Density matrices of the first model converge almost surely to the maximally mixed state Id/n.

The result

It is a classical result in probability theory that

Theorem

The Dirichlet measure converges weakly as $\alpha \to \infty$ to the Dirac measure $\delta_{(1/n,...,1/n)}$

As the maximally mixed state ld /n is the unique state having spectrum $\{1/n, \ldots, 1/n\}$, we get:

Corollary

Density matrices of the first model converge almost surely to the maximally mixed state Id / n.

The Marchenko Pastur measure

The Marchenko-Pastur distribution arises naturally in random matrix theory and free probability.

Definition

For $c \in]0, \infty[$, we denote by μ_c the *Marchenko-Pastur* probability measure given by the equation

$$\mu_{\boldsymbol{c}} = \max\{1-\boldsymbol{c},0\}\delta_0 + \frac{\sqrt{(x-\boldsymbol{a})(b-x)}}{2\pi x} \mathbf{1}_{[\boldsymbol{a},\boldsymbol{b}]}(x)dx,$$

where $a = (\sqrt{c} - 1)^2$ and $b = (\sqrt{c} + 1)^2$.

An useful lemma

Lemma

Assume that $c \in]0, \infty[$, and let $(k(n))_n$ be a sequence of integers such that $\lim_{n\to\infty} \frac{k(n)}{n} = c$. Consider a sequence of random matrices $(W_n)_n$ such that for all n, W_n is a Wishart matrix of parameters n and k(n). Let $S_n = \operatorname{Tr} W_n$ be the trace of W_n . Then

$$rac{\mathcal{S}_n}{nk(n)}
ightarrow 1$$
 almost surely

and

$$\frac{S_n - nk(n)}{\sqrt{nk(n)}} \Rightarrow \mathcal{N}(0, 1),$$

| 4 同 🕨 🔺 🚍 🕨 🔺

The main result

Theorem

Assume that $c \in]0, \infty[$, and let $(k(n))_n$ be a sequence of integers such that $\lim_{n\to\infty} \frac{k(n)}{n} = c$. Consider a sequence of random density matrices $(\rho_n)_n$ such that for all n, ρ_n has distribution $\mu_{n,k(n)}$. Define the renormalized empirical distribution of ρ_n by

$$L_n = \frac{1}{n} \sum_{i=1}^n \delta_{cn\lambda_i(\rho_n)},$$

where $\lambda_1(\rho_n), \dots, \lambda_n(\rho_n)$ are the eigenvalues of ρ_n . Then, almost surely, the sequence $(L_n)_n$ converges weakly to the Marchenko-Pastur distribution μ_c .

Proof

We know that the empirical distribution of eigenvalues for the Wishart ensemble

$$L_n^{(W)} = \frac{1}{n} \sum_{i=1}^n \delta_{n^{-1}\lambda_i(W_n)},$$

converges almost surely to the Marchenko-Pastur distribution of parameter c. Recall that the eigenvalues of the density matrix $\rho_n = W_n / \operatorname{Tr}(W_n)$ are those of W_n divided by the trace S_n of W_n ; we have thus

$$L_n = \frac{1}{n} \sum_{i=1}^n \delta_{cn\lambda_i(W_n)/S_n} = \frac{1}{n} \sum_{i=1}^n \delta_{n^{-1}\lambda_i(W_n) \cdot \frac{cn^2}{S_n}}$$

Use the fact that $S_n/nk(n) \rightarrow 1$ almost surely to conclude.

• • = • • = •

Introduction The first model The second model

Numerical simulations

Figure: Empirical and limit measures for n = 500, k = 500 (left) and n = 500, k = 1000 (right)

Introduction The first model The second model

Numerical simulations

Figure: Empirical and limit measures for n = 500, k = 2500 (left) and n = 500, k = 5000 (right)

Random density matrices - largest eigenvalue

Theorem

Assume that $c \in]0, \infty[$, and let $(k(n))_n$ be a sequence of integers such that $\lim_{n\to\infty} \frac{k(n)}{n} = c$. Consider a sequence of random matrices $(\rho_n)_n$ such that for all n, ρ_n has distribution $\mu_{n,k(n)}$, and let $\lambda_{max}(\rho_n)$ be the largest eigenvalue of ρ_n . Then, almost surely,

$$\lim_{n\to\infty} cn\lambda_{max}(\rho_n) = (\sqrt{c}+1)^2.$$

Moreover,

$$\lim_{n\to\infty}\frac{n^{2/3}\left[cn\lambda_{max}(\rho_n)-(\sqrt{c}+1)^2\right]}{(1+\sqrt{c})(1+1/\sqrt{c})^{1/3}}=\mathcal{W}_2\quad\text{in distribution}.$$

Fin

Questions ?

< ロ > < 回 > < 回 > < 回 > < 回 >

æ