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Quantum supremacy



The quest for quantum supremacy

Simulating classically physics (and chemistry) is hard due to the
exponential complexity of quantum phenomena dim(C2)⊗n = 2n

Feynman suggested that a quantum computer would be an effective
tool for such problems [Fey82]

Quantum supremacy, introduced by Preskill [Pre12]:

“The day when well controlled quantum systems can perform tasks
surpassing what can be done in the classical world”
What is needed to achieve it:

1 A mathematical specification of a computational problem with a well
defined solution

2 A high-fidelity programmable computational device able to perform the
task

3 A scaling runtime difference between the quantum and classical
computational processes that can be made large enough as a function of
problem size so that it becomes impractical for a supercomputer to solve
the task using any known classical algorithm



Quantum supremacy — so what???

1 Experimental evidence against the Extended Church-Turing thesis
The Church-Turing thesis: any behavior of a real-world physical system
can be simulated on a probabilistic Turing machine
The Extended Church-Turing thesis [BV97]: any behavior of a real-world
physical system can be simulated on a probabilistic Turing machine using
computational resources polynomial in the size of the system
Theoretical evidence against the Extended Church-Turing thesis: Shor’s
algorithm:

(Factoring /∈ P =⇒ ) BQP 6= P

2 Certified randomness
3 Silence quantum computing skeptics



Google’s experiment



The computational task

RCS : Sampling from a random quantum circuit

1 Let n be a given number of qubits
2 Choose a random quantum circuit C on n qubits, corresponding to a

Haar-distributed random unitary matrix U ∈ U(2n)
3 Sample from the output distribution PU :

PU(y) = |〈y |U|0〉|2 ∀y ∈ {0, 1}n

|0〉

U y|0〉

|0〉



The experiment [A+19]

“We designed a quantum processor named ‘Sycamore’ which consists of
a two-dimensional array of 54 transmon qubits, where each qubit is
tunably coupled to four nearest neighbors, in a rectangular lattice. [...]
One qubit did not function properly, so the device uses 53 qubits and 86
couplers”

“Our largest random quantum circuits have 53 qubits, 1,113
single-qubit gates, 430 two-qubit gates, and a measurement on each
qubit, for which we predict a total fidelity of 0.2%”
“For the largest circuit with 53 qubits and 20 cycles, we collected
Ns = 30 · 106 samples over ten circuit instances. [...] We have
archived the data”
“The data is thus in the quantum supremacy regime”



Random quantum circuits



Pseudo-random unitary circuits

We want: Haar-distributed U ∈ U(2n)
What Google has:

Random unitary circuit model: 2D version of
|0〉

U1 U5

|0〉
U3 U7

|0〉
U2 U6

|0〉
U4 U8

|0〉

, where Ui ∈ U(4) are i.i.d. Haar



Approximating the Haar measure

Definition
A probability measure µ on U(N) is called a k-design [DCEL09] if it agrees
with the Haar measure for moments up to k:

∀a, b, c, d ∈ [N]k , Eµ[Ua1b1 · · ·Uak bk Ūc1d1 · · · Ūck dk ] = EHaar[· · · ]

Equivalently [CŚ06]

Eµ[U⊗k ⊗ (U∗)⊗k ] = EHaar[U⊗k ⊗ (U∗)⊗k ] =
∑

α,β∈Sk

Pα,β WgN(α, β)

Example
The Weyl unitaries Wxy = Ux V y , with U |k〉 = |k + 1〉 and
V |k〉 = ωk |k〉, ω = exp(2πi/N) form a 1-design

Theorem ([BHH16, HM18])
Random circuits on n qubits in D dimension of depth T become
approximate k-designs when

T & n1/DkO(1)



Random circuit sampling



Porter-Thomas distribution

RCS: given a description of a random circuit C , sample output
bit-strings y ∈ {0, 1}n, with probabilities PC (y) = |〈y |UC |0〉|2

U is (approx.) Haar distributed, so z = U |0〉 is distributed uniformly on
the unit sphere of CN

What is the distribution of the squared amplitudes |zi |2?
If g is a standard complex Gaussian vector, z law= g/‖g‖
Fact: (|zi |2)i∈[N] and ‖g‖2 are independent random variables
‖g‖2 is χ2 distributed as a sum of squared Gaussians
We have

EU |zi |2k = k!
N(N + 1) · · · (N + k − 1) ∼

k!
Nk

As N →∞, for all i , |zi |2 is close the distribution with density
N exp(−Nx), the Porter-Thomas distribution
Note that the probabilities fluctuate exponentially on the scale 1/N, so
the distribution is far from “flat” [RSK20]



Verifying the output



How it’s done

Circuit C

Samples y1, y2, . . . , ys

The verifier (i.e. Google!) uses the linear cross entropy benchmark
(LXEB):

Is
s∑

i=1
PC (yi ) =

s∑
i=1
|〈yi |C |0〉|2 ≥

bs
2n for some b > 1 + ε ?

Uniform guessing: b = 1
Perfect quantum computer:

b =
∫ ∞

0
x · xe−x dx = 2

Google reports b = 1.002  quantum supremacy



Verifier’s job

The (classical) verifier needs to compute PC (yi ) =
∑s

i=1 |〈yi |C |0〉|2

The best classical algorithms for computing output probabilities are a
mixture of the Schrödinger method (evolving the full state vector, fast,
but exp. memory use  IBM’s speedup claim) and the Feynman
method (contracting the tensor network in an efficient way; finding
optimal contraction is hard)



Classical hardness



“Evidence” for classical hardness

Let ExactSampBPP be the class of sampling problems: given a
family of prob. distributions {Dx}x∈{0,1}n , produce a sample in poly
time using a randomized classical alg.; same for ExactSampBQP

Theorem
If ExactSampBPP = ExactSampBQP, then PH collapses

Idea: equality would imply BPPNP = P#P [AA11, BFNV18, BIS+18, Mov19]

Same definition for ApproxSampBPP but allowing for an error ε in
total variation and requiring poly-time in n and 1/ε

Conjecture
If ApproxSampBPP = ApproxSampBQP, then PH collapses

Conjecture
There is no poly-time classical algorithm which can pass the LXEB∑s

i=1 |〈yi |C |0〉|2 ≥ bs
2n for b ≥ 1 + ε



Take-home slide: Google’s supremacy computational task
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