Free spectrahedra and compatibility of quantum measurements

Ion Nechita (CNRS, LPT Toulouse)

— joint work with Andreas Bluhm [arXiv:1807.01508 , arXiv:1809.04514]

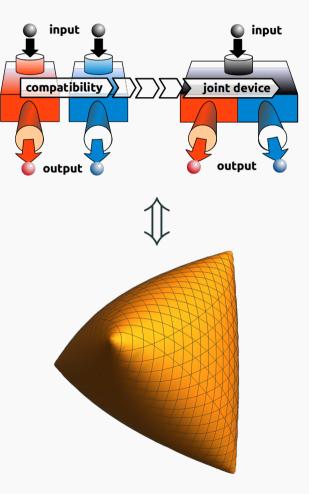
IMAR Operator Algebra seminar, April 28th, 2021

Incompatibility in QM

Free spectrahedra

Main results

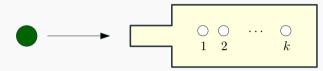
Proof ideas

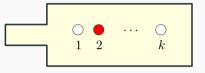


Incompatibility in QM

Measurements in Quantum Mechanics

- Quantum states \rightsquigarrow density matrices: $\rho \in \mathcal{M}_d(\mathbb{C})$, $\rho \ge 0$, Tr $\rho = 1$
- Quantum measurements ~>> give probabilities of obtaining outcomes





• Mathematically, measurements are modeled by POVMs

$$A_1,\ldots,A_k\in M_d(\mathbb{C})^{\mathrm{sa}},\quad A_i\geq 0,\quad \sum_{i=1}^kA_i=I_d$$

- Born's rule: $\mathbb{P}[\text{outcome } i \text{ is observed}] = \text{Tr}[\rho A_i]$
- Projective measurements: the A_i's are projections. Every POVM can be dilated to a projective measurement (Naimark's theorem)
- Trivial measurements: $A_i = p_i I_d$, for a probability vector p. Outcome probabilities do not depend on the input state
- Dichotomic measurements (or YES/NO POVMs): k = 2 outcomes, $A = (E, I_d - E)$ for an operator $0 \le E \le I_d$, called a quatum effect

• The position and momentum of a particle cannot be simultaneously measured \rightsquigarrow Heisenberg's uncertainty relation: $\Delta_x \Delta_p \ge \hbar/2$

Definition

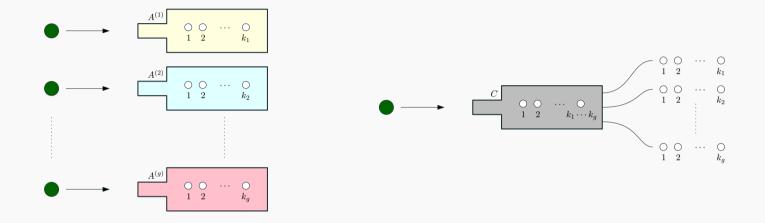
Two POVMs, $A = (A_1, ..., A_k)$ and $B = (B_1, ..., B_l)$, are called compatible if there exists a third POVM $C = (C_{ij})_{i \in [k], j \in [l]}$ such that

$$\forall i \in [k], \quad A_i = \sum_{j=1}^l C_{ij} \quad \text{and} \quad \forall j \in [l], \quad B_j = \sum_{i=1}^k C_{ij}$$

Similarly, a *g*-tuple of POVMs $A^{(1)}, \ldots, A^{(g)}$, having respectively k_1, \ldots, k_g outcomes, are said to be compatible if there exists a joint POVM *C*, with outcome set $[k_1] \times \cdots \times [k_g]$, such that

$$\forall x \in [g], \ , \forall i \in [k_x], \qquad A_i^{(x)} = \sum_{j \in [k_1] \times \cdots \times [k_g] : \ j(x) = i} C_j$$

What does it mean?



- Compatible measurements can be simulated by a single joint measurement, by classically post-processing its outputs
- Compatibility appears also in the setting of quantum channels [HMZ16]

Examples

• Trivial POVMs $A = (p_i I_d)$ and $B = (q_j I_d)$ are compatible

Cij := Pi qj Ia

• Commuting POVMs $[A_i, B_j] = 0$ are compatible

 $C_{ij} := A_i B_j = A_i^{4_2} B_j A_i^{4_2} = B_j^{4_2} A_i B_j^{4_2} \ge 0$

• The following POVMs are not compatible

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } B_1 = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, B_2 = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

- note that A;, B; are rank - 1 projections

- assume (A:), (Bj) compatible - D = C=(Cij) such that

Noisy POVMs

- POVMs can be made compatible by adding noise, i.e. mixing in trivial POVMs
- Example: dichotomic POVMs and white noise, $s \in [0,1]$

$$(E, I-E) \mapsto s(E, I-E) + (1-s)(\frac{l}{2}, \frac{l}{2})$$
 or $E \mapsto sE + (1-s)\frac{l}{2}$

• Taking s = 1/2 suffices to render any pair of dichotomic POVMs compatible [DFK19] : take E, F two effects

Then, $C_{ij} := \frac{1}{4} E_i + \frac{1}{4} F_j$ is a joint POVM for $\frac{1}{2} E + \frac{1}{2} \frac{1}{2}$ and $\frac{1}{2} F + \frac{1}{2} \frac{1}{2}$

→ from now on, we focus on dichotomic (YES/NO) POVMs

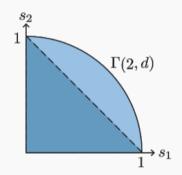
Definition

The compatibility region for g measurements on \mathbb{C}^d is the set

$$\begin{split} \Gamma(g,d) &:= \{s \in [0,1]^g \ : \ \text{for all quantum effects} \ E_1,\ldots,E_g \in \mathcal{M}_d(\mathbb{C}), \\ & \text{the noisy versions} \ s_iE_i + (1-s_i)I_d/2 \ \text{are compatible} \} \end{split}$$

$$\begin{split} \Gamma(g,d) &:= \{s \in [0,1]^g \ : \ \text{for all quantum effects} \ E_1,\ldots,E_g \in \mathcal{M}_d(\mathbb{C}), \\ & \text{the noisy versions} \ s_iE_i + (1-s_i)I_d/2 \ \text{are compatible} \} \end{split}$$

- The set $\Gamma(g, d)$ is convex
- For all i ∈ [g], e_i ∈ Γ(g, d): every measurement is compatible with g − 1 trivial measurements
- For d ≥ 2, (1,1,...,1) ∉ Γ(g,d): there exist incompatible measurements



- For all $d \ge 2$, $\Gamma(2, d)$ is a quarter-circle [BH08, BHSS13]
- Generally speaking, the set $\Gamma(g, d)$ tells us how robust (to noise) is the incompatibility of g dichotomic measurements on \mathbb{C}^d

GOAL: compute the set $\Gamma(g, d)$ for all g, d

Free spectrahedra

Free spectrahedra

• A polyhedron is defined as the intersection of half-spaces

$$\{x \in \mathbb{R}^g : \langle h_i, x \rangle \leq 1, \quad \forall i \in [k]\}$$



• A spectrahedron is given by PSD constraints: for $A = (A_1, \dots, A_g) \in (\mathcal{M}_d^{sa})^g$ $\mathcal{D}_A(1) := \{x \in \mathbb{R}^g : \sum_{i=1}^g x_i A_i \leq I_d\}$

- Example: $\mathcal{D}_{(\sigma_X,\sigma_Y,\sigma_Z)} = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1 \}$ ~o unit ball of ℓ^2
- A free spectrahedron is the matricization of a spectrahedron [Vin14]

$$\mathcal{D}_A := \bigsqcup_{n=1}^{\infty} \mathcal{D}_A(n) \quad \text{with} \quad \mathcal{D}_A(n) := \{X \in (\mathcal{M}_n^{sa})^g : \sum_{i=1}^g X_i \otimes A_i \leq I_{nd}\}$$

Examples: the cube and the diamond

The matrix cube is the free spectrahedron defined by

$$\mathcal{D}_{\Box,g} := \bigsqcup_{n=1}^{\infty} \{ X \in (\mathcal{M}_n^{sa})^g : \|X_i\| \le 1, \quad \forall i \in [g] \}$$

• At level one, $\mathcal{D}_{\Box,g}(1)$ is the unit ball of the ℓ^∞ norm on \mathbb{R}^g

• As a free spectrahedron, it is defined by $2g \times 2g$ diagonal matrices $\mathcal{D}_{\Box,g} = \mathcal{D}_{K_1,...,K_g}$, with $K_i = \text{diag}(e_i) \oplus \text{diag}(-e_i)$

The matrix diamond is the free spectrahedron defined by

$$\mathcal{D}_{\diamondsuit,g} := \bigsqcup_{n=1}^{\infty} \{ X \in (\mathcal{M}_n^{sa})^g : \sum_{i=1}^g \varepsilon_i X_i \le I_n, \quad \forall \varepsilon \in \{\pm 1\}^g \}$$

• At level one, $\mathcal{D}_{\diamondsuit,g}(1)$ is the unit ball of the ℓ^1 norm on \mathbb{R}^g

• As a free spectrahedron, it is defined by $2^g \times 2^g$ diagonal matrices $\mathcal{D}_{\diamondsuit,g} = \mathcal{D}_{L_1,\dots,L_g}$, with $L_i = I_2 \otimes \dots \otimes I_2 \otimes \text{diag}(1,-1) \otimes I_2 \otimes \dots \otimes I_2$

Spectrahedral inclusion

- Consider two free spectrahedra defined by g-tuples of matrices (A_1, \ldots, A_g) and (B_1, \ldots, B_g)
- We say that D_A is contained in D_B and we write D_A ⊆ D_B if, for all n ≥ 1, D_A(n) ⊆ D_B(n)
- Clearly, $\mathcal{D}_A \subseteq \mathcal{D}_B \implies \mathcal{D}_A(1) \subseteq \mathcal{D}_B(1)$. For the converse implication to hold, one may need to shrink \mathcal{D}_A ...

Definition

For a free spectrahedron \mathcal{D}_A , we define its set of inclusion constants as $\Delta_A(g, d) := \{s \in [0, 1]^g : \text{for all } g\text{-tuples } B_1, \dots, B_g \in \mathcal{M}_d(\mathbb{C})^{\mathrm{sa}},$ $\mathcal{D}_A(1) \subseteq \mathcal{D}_B(1) \implies s.\mathcal{D}_A \subseteq \mathcal{D}_B\}$

- The inclusion constants for the matrix cube play an important role in combinatorial optimization [HKMS19]
- We shall be concerned with the inclusion set for the matrix diamond, which we denote by $\Delta(g, d)$

Main results

Compatibility in QM \iff matrix diamond inclusion

To a *g*-tuple of selfadjoint matrices $E \in (\mathcal{M}_d^{sa})^g$, we associate the free spectrahedron defined by the matrices $2E_i - I_d$:

$$\mathcal{D}_{2E-I} := \bigsqcup_{n=1}^{\infty} \{ X \in (\mathcal{M}_n^{sa})^g : \sum_{i=1}^g X_i \otimes (2E_i - I_d) \le I_{nd} \}$$

Theorem ([BN18])

Let $E \in (\mathcal{M}_d^{sa})^g$ be g-tuple of selfadjoint matrices. Then:

- The matrices E are quantum effects $\iff \mathcal{D}_{\diamondsuit,g}(1) \subseteq \mathcal{D}_{2E-I}(1)$
- The matrices E are compatible quantum effects $\iff \mathcal{D}_{\diamondsuit,g} \subseteq \mathcal{D}_{2E-I}$

At the intermediate levels $1 \le n \le d$, $\mathcal{D}_{\diamondsuit,g}(n) \subseteq \mathcal{D}_{2E-I}(n)$ iff for all isometries $V : \mathbb{C}^n \to \mathbb{C}^d$, the compressed effects V^*E_iV are compatible.

Moreover, the compatibility region is equal to the set of inclusion constants of the matrix diamond: $\forall g, d, \Gamma(g, d) = \Delta(g, d)$.

The same results hold in the general (non-dichotomic) setting. One has to replace the matrix diamond by the matrix jewel $\mathcal{D}_{\mathfrak{P},\mathbf{k}}$ [BN20]

Consequences

Many things are known about the matrix diamond

- For all $g, d, \ rac{1}{2d}(1,1,\ldots,1) \in \Delta(g,d)$ [HKMS19]
- For all g, d, $\operatorname{QC}_g := \{s \in [0,1]^g : \sum_i s_i^2 \le 1\} \subseteq \Delta(g,d)$ [PSS18]

Many things are known about (in-)compatibility

- Many small g, d cases completely solved
- Approximate quanutum cloning [Kay16] \implies compatibility $\operatorname{Clone}(g, d) := \{s \in [0, 1]^g : \exists \text{ quantum channel } \Phi : \mathcal{M}_d \to \mathcal{M}_d^{\otimes g} \text{ s.t.}$ $\operatorname{Tr} X$

$$\forall i \in [g], \quad \Phi_i(X) = s_i X + (1 - s_i) \frac{\operatorname{Tr} X}{d}$$

Theorem ([BN18])

For all g and $d \ge 2^{\lceil (g-1)/2 \rceil}$, $\Gamma(g, d) = \Delta(g, d) = QC_g$

Proof ideas

Inclusion of spectrahedra and (completely) positive maps

Theorem ([HKM13])

Let $A \in (\mathcal{M}_D^{sa}(\mathbb{C}))^g$, $B \in (\mathcal{M}_d^{sa}(\mathbb{C}))^g$ such that $\mathcal{D}_A(1)$ is bounded. Then, $\mathcal{D}_A(n) \subseteq \mathcal{D}_B(n)$ iff the unital linear map

$$egin{aligned} \Phi : \mathsf{span}\{I, A_1, \dots, A_g\} &
ightarrow \mathcal{M}_d^{sa}(\mathbb{C}) \ && \mathcal{A}_i \mapsto B_i \end{aligned}$$

is n-positive.

Sketch of the proof of the main theorem:

- Level 1: the extremal points of $\mathcal{D}_{\diamondsuit,g}(1)$ are $\pm e_i$
- The inclusion $\mathcal{D}_{\diamondsuit,g} \subseteq \mathcal{D}_{2E-I}$ holds iff the unital map $\Phi: I_2 \otimes \cdots \otimes I_2 \otimes \text{diag}(1,-1) \otimes I_2 \otimes \cdots \otimes I_2 \mapsto 2E_i - I_d$ is CP
- Arveson's extension theorem [Pau02, Theorem 6.2]: Φ has a (completely) positive extension $\tilde{\Phi}$ to \mathbb{R}^{2^g}
- $C_{\varepsilon} := \tilde{\Phi}(\varepsilon)$ is a joint POVM for the E_i 's, where $\{\varepsilon\}$ is a basis of $\mathbb{R}^{2^{\varepsilon}}$

Lemma ([New32, Hru16])

For $d = 2^k$, there exist 2k + 1 anti-commuting, self-adjoint, unitary matrices $F_1, \ldots, F_{2k+1} \in U_d$. Moreover, 2^k is the smallest dimension where such a (2k + 1)-tuple exists.

• For
$$k = 0$$
, take $F_1^{(0)} := [1]$

- For $k \ge 1$, define $F_i^{(k+1)} = \sigma_X \otimes F_i^{(k)} \quad \forall i \in [2k+1]$ and $F_{2k+2}^{(k+1)} = \sigma_Y \otimes I_{2^k}$, $F_{2k+3}^{(k+1)} = \sigma_Z \otimes I_{2^k}$
- These matrices satisfy, for all $x \in \mathbb{R}^g_+$, $\left\|\sum_{i=1}^g x_i F_i\right\|_{\infty} = \|x\|_2$, and $\left\|\sum_{i=1}^g x_i \overline{F}_i \otimes F_i\right\|_{\infty} = \|x\|_1$
- For *d* large enough, the maximally incompatible *g*-tuple of quantum effects in M_d is given by $E_i = (F_i + I_d)/2$

The take-home slide

Measurement compatibility in QM \iff free spectrahedron inclusion

- A measurement in QM (POVM): $A_i \in \mathcal{M}_d(\mathbb{C})$, $A_i \ge 0$, $\sum_i A_i = I_d$
- Measurements $(A_i), (B_j)$ are compatible if there exists a joint measurement (C_{ij}) having marginals A, B: $A_i = \sum_i C_{ij}$ and $B_j = \sum_i C_{ij}$
- Free spectrahedra: $\mathcal{D}_A := \bigsqcup_{n=1}^{\infty} \{X \in (\mathcal{M}_n^{sa})^g : \sum_{i=1}^g X_i \otimes A_i \leq I_{nd}\}$
- Matrix diamond: $\mathcal{D}_{\diamondsuit,g} = \bigsqcup_{n=1}^{\infty} \{ X \in \mathcal{M}_n^g : \sum_{i=1}^g \varepsilon_i X_i \leq I_n, \forall \varepsilon \in \{\pm 1\}^g \}$

Theorem

Let $E \in (\mathcal{M}_d^{sa})^g$ be g-tuple of selfadjoint matrices. Then:

E are quantum effects $\iff \mathcal{D}_{\diamondsuit,g}(1) \subseteq \mathcal{D}_{2E-I}(1)$

E are compatible quantum effects $\iff \mathcal{D}_{\diamondsuit,g} \subseteq \mathcal{D}_{2E-I}$

For all g, d, compatibility region $\Gamma(g, d) = \Delta(g, d)$ inclusion constants.

References

[BH08]	Paul Busch and Teiko Heinosaari. Approximate joint measurements of qubit		Memoirs of the American Mathematical Society, 257(1232), 2019.
[BHSS13]	observables. Quantum Information & Computation, 8(8):797–818, 2008. Paul Busch, Teiko Heinosaari, Jussi Schultz, and Neil Stevens.	[HMZ16]	Teiko Heinosaari, Takayuki Miyadera, and Mário Ziman. An invitation to quantum incompatibility. <i>Journal of Physics A: Mathematical and Theoretical</i> , 49(12):123001, 2016.
	Comparing the degrees of incompatibility inherent in probabilistic physical theories. EPL (Europhysics Letters), 103(1):10002, 2013.	[Hru16]	Pavel Hrubeš. On families of anticommuting matrices. Linear Algebra and its Applications, 493:494–507,
[BN18]	Andreas Bluhm and Ion Nechita. Joint measurability of quantum effects and the matrix diamond. Journal of Mathematical Physics, 59(11):112202, 2018.	[Kay16]	2016. Alastair Kay. Optimal universal quantum cloning: Asymmetries and fidelity measures. Quantum Information and Computation, 16(11 &
[BN20]	Andreas Bluhm and Ion Nechita. Compatibility of quantum measurements and inclusion constants for the matrix jewel. <i>SIAM Journal on Applied Algebra and Geometry</i> , 4(2):255–296, 2020.	[New32]	 12):0991–1028, 2016. MHA Newman. Note on an algebraic theorem of eddington. Journal of the London Mathematical Society, 1(2):93–99, 1932.
[DFK19]	Sébastien Designolle, Máté Farkas, and Jedrzej Kaniewski. Incompatibility robustness of quantum measurements: a unified framework. New Journal of Physics, 21(11):113053, 2019.	[Pau02]	Vern Paulsen. <i>Completely bounded maps and operator algebras,</i> volume 78. Cambridge University Press, 2002.
[HKM13]	J. William Helton, Igor Klep, and Scott McCullough. The matricial relaxation of a linear matrix inequality. <i>Mathematical Programming</i> , 138(1-2):401–445, 2013.	[PSS18]	Benjamin Passer, Orr Moshe Shalit, and Baruch Solel. Minimal and maximal matrix convex sets. Journal of Functional Analysis, 274:3197–3253, 2018.
[HKMS19]		[Vin14]	Cynthia Vinzant. What is a spectrahedron. Notices Amer. Math. Soc, 61(5):492–494, 2014.