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Incompatibility in QM



Measurements in Quantum Mechanics

Quantum states  density matrices: fl œ Md(C), fl Ø 0, Tr fl = 1
Quantum measurements  give probabilities of obtaining outcomes

1 2 k
· · ·

1 2 k
· · ·

Mathematically, measurements are modeled by POVMs

A1, . . . , Ak œ Md(C)sa, Ai Ø 0,
kÿ

i=1
Ai = Id

Born’s rule: P[outcome i is observed] = Tr[flAi ]

Projective measurements: the Ai ’s are projections. Every POVM can be
dilated to a projective measurement (Naimark’s theorem)
Trivial measurements: Ai = pi Id , for a probability vector p. Outcome
probabilities do not depend on the input state
Dichotomic measurements (or YES/NO POVMs): k = 2 outcomes,
A = (E , Id ≠ E ) for an operator 0 Æ E Æ Id , called a quatum e�ect



Compatibility of measurements

The position and momentum of a particle cannot be simultaneously
measured  Heisenberg’s uncertainty relation: �x �p Ø ~/2

Definition
Two POVMs, A = (A1, . . . , Ak) and B = (B1, . . . , Bl), are called
compatible if there exists a third POVM C = (Cij)iœ[k],jœ[l] such that

’i œ [k], Ai =
lÿ

j=1
Cij and ’j œ [l ], Bj =

kÿ

i=1
Cij

Similarly, a g-tuple of POVMs A(1), . . . , A(g), having respectively
k1, . . . kg outcomes, are said to be compatible if there exists a joint
POVM C , with outcome set [k1] ◊ · · · ◊ [kg ], such that

’x œ [g ], , ’i œ [kx ], A(x)
i =

ÿ

jœ[k1]◊···◊[kg ] : j(x)=i
Cj



What does it mean?
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C

Compatible measurements can be simulated by a single joint
measurement, by classically post-processing its outputs

Compatibility appears also in the setting of quantum channels [HMZ16]



Examples

Trivial POVMs A = (pi Id) and B = (qj Id) are compatible

Commuting POVMs [Ai , Bj ] = 0 are compatible

The following POVMs are not compatible
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Noisy POVMs

POVMs can be made compatible by adding noise, i.e. mixing in trivial
POVMs
Example: dichotomic POVMs and white noise, s œ [0, 1]

(E , I ≠ E ) ‘æ s(E , I ≠ E ) + (1 ≠ s)( I
2 ,

I
2) or E ‘æ sE + (1 ≠ s) I

2
Taking s = 1/2 su�ces to render any pair of dichotomic POVMs
compatible [DFK19]

 from now on, we focus on dichotomic (YES/NO) POVMs

Definition
The compatibility region for g measurements on Cd is the set

�(g , d) := {s œ [0, 1]g : for all quantum e�ects E1, . . . , Eg œ Md(C),
the noisy versions siEi + (1 ≠ si)Id/2 are compatible}

i take E F twoeffects
Then Cig 14Ei114Fj is a joint Poum for Et E and EF Iz



Compatibility region

�(g , d) := {s œ [0, 1]g : for all quantum e�ects E1, . . . , Eg œ Md(C),
the noisy versions siEi + (1 ≠ si)Id/2 are compatible}

The set �(g , d) is convex
For all i œ [g ], ei œ �(g , d): every measurement is
compatible with g ≠ 1 trivial measurements
For d Ø 2, (1, 1, . . . , 1) /œ �(g , d): there exist
incompatible measurements
For all d Ø 2, �(2, d) is a quarter-circle [BH08, BHSS13]

Generally speaking, the set �(g , d) tells us how robust (to noise) is the
incompatibility of g dichotomic measurements on Cd

GOAL: compute the set �(g , d) for all g , d



Free spectrahedra



Free spectrahedra

A polyhedron is defined as the intersection of
half-spaces

{x œ Rg : Èhi , xÍ Æ 1, ’i œ [k]}

A spectrahedron is given by PSD constraints:
for A = (A1, . . . , Ag ) œ (Msa

d )g

DA(1) := {x œ Rg :
gÿ

i=1
xiAi Æ Id}

Example: D(‡X ,‡Y ,‡Z ) =

A free spectrahedron is the matricization of a spectrahedron [Vin14]

DA :=
Œh

n=1
DA(n) with DA(n) := {X œ (Msa

n )g :
gÿ

i=1
Xi ¢ Ai Æ Ind}

K y Z E1123 24 y
2 22 e r nounitballof l Z



Examples: the cube and the diamond

The matrix cube is the free spectrahedron defined by

D⇤,g :=
Œh

n=1
{X œ (Msa

n )g : ÎXiÎ Æ 1, ’i œ [g ]}

At level one, D⇤,g (1) is the unit ball of the ¸Œ norm on Rg

As a free spectrahedron, it is defined by 2g ◊ 2g diagonal matrices
D⇤,g = DK1,...,Kg , with Ki = diag(ei) ü diag(≠ei)

The matrix diamond is the free spectrahedron defined by

D˚,g :=
Œh

n=1
{X œ (Msa

n )g :
gÿ

i=1
ÁiXi Æ In, ’Á œ {±1}g}

At level one, D˚,g (1) is the unit ball of the ¸1 norm on Rg

As a free spectrahedron, it is defined by 2g ◊ 2g diagonal matrices
D˚,g = DL1,...,Lg , with Li = I2 ¢ · · · ¢ I2 ¢ diag(1, ≠1) ¢ I2 ¢ · · · ¢ I2



Spectrahedral inclusion

Consider two free spectrahedra defined by g-tuples of matrices
(A1, . . . , Ag ) and (B1, . . . , Bg )
We say that DA is contained in DB and we write DA ™ DB if, for all
n Ø 1, DA(n) ™ DB(n)
Clearly, DA ™ DB =∆ DA(1) ™ DB(1). For the converse implication
to hold, one may need to shrink DA...

Definition
For a free spectrahedron DA, we define its set of inclusion constants as

�A(g , d) := {s œ [0, 1]g : for all g-tuples B1, . . . , Bg œ Md(C)sa,

DA(1) ™ DB(1) =∆ s.DA ™ DB}

The inclusion constants for the matrix cube play an important role in
combinatorial optimization [HKMS19]

We shall be concerned with the inclusion set for the matrix diamond,
which we denote by �(g , d)



Main results



Compatibility in QM ≈∆ matrix diamond inclusion

To a g-tuple of selfadjoint matrices E œ (Msa
d )g , we associate the free

spectrahedron defined by the matrices 2Ei ≠ Id :

D2E≠I :=
Œh

n=1
{X œ (Msa

n )g :
gÿ

i=1
Xi ¢ (2Ei ≠ Id) Æ Ind}

Theorem ([BN18])
Let E œ (Msa

d )g be g-tuple of selfadjoint matrices. Then:
The matrices E are quantum e�ects ≈∆ D˚,g (1) ™ D2E≠I(1)
The matrices E are compatible quantum e�ects ≈∆ D˚,g ™ D2E≠I

At the intermediate levels 1 Æ n Æ d, D˚,g (n) ™ D2E≠I(n) i� for all
isometries V : Cn æ Cd , the compressed e�ects V úEiV are compatible.

Moreover, the compatibility region is equal to the set of inclusion
constants of the matrix diamond: ’g , d, �(g , d) = �(g , d).

The same results hold in the general (non-dichotomic) setting. One has
to replace the matrix diamond by the matrix jewel D�,k [BN20]



Consequences

Many things are known about the matrix diamond

For all g , d , 1
2d (1, 1, . . . , 1) œ �(g , d) [HKMS19]

For all g , d , QCg := {s œ [0, 1]g :
q

i s2
i Æ 1} ™ �(g , d) [PSS18]

Many things are known about (in-)compatibility

Many small g , d cases completely solved
Approximate quanutum cloning [Kay16] =∆ compatibility

Clone(g , d) := {s œ [0, 1]g : ÷ quantum channel � : Md æ M¢g
d s.t.

’i œ [g ], �i(X ) = siX + (1 ≠ si)
Tr X

d }

Theorem ([BN18])

For all g and d Ø 2Á(g≠1)/2Ë, �(g , d) = �(g , d) = QCg



Proof ideas



Inclusion of spectrahedra and (completely) positive maps

Theorem ([HKM13])
Let A œ (Msa

D (C))g , B œ (Msa
d (C))g such that DA(1) is bounded.

Then, DA(n) ™ DB(n) i� the unital linear map
� : span{I, A1, . . . , Ag} æ Msa

d (C)
Ai ‘æ Bi

is n-positive.

Sketch of the proof of the main theorem:

Level 1: the extremal points of D˚,g (1) are ±ei
The inclusion D˚,g ™ D2E≠I holds i� the unital map
� : I2 ¢ · · · ¢ I2 ¢ diag(1, ≠1) ¢ I2 ¢ · · · ¢ I2 ‘æ 2Ei ≠ Id is CP
Arveson’s extension theorem [Pau02, Theorem 6.2]: � has a (completely)
positive extension �̃ to R2g

CÁ := �̃(Á) is a joint POVM for the Ei ’s, where {Á} is a basis of R2g



Maximally incompatible quantum e�ects

Lemma ([New32, Hru16])
For d = 2k , there exist 2k + 1 anti-commuting, self-adjoint, unitary
matrices F1, . . . , F2k+1 œ Ud . Moreover, 2k is the smallest dimension
where such a (2k + 1)-tuple exists.

For k = 0, take F (0)
1 := [1]

For k Ø 1, define F (k+1)
i = ‡X ¢ F (k)

i ’i œ [2k + 1] and
F (k+1)

2k+2 = ‡Y ¢ I2k , F (k+1)
2k+3 = ‡Z ¢ I2k

These matrices satisfy, for all x œ Rg
+,

..qg
i=1 xiFi

..
Œ = ÎxÎ2, and..qg

i=1 xi F̄i ¢ Fi
..

Œ = ÎxÎ1

For d large enough, the maximally incompatible g-tuple of quantum
e�ects in Md is given by Ei = (Fi + Id)/2



The take-home slide

Measurement compatibility in QM ≈∆ free spectrahedron inclusion

A measurement in QM (POVM): Ai œ Md(C), Ai Ø 0,
q

i Ai = Id
Measurements (Ai), (Bj) are compatible if there exists a joint
measurement (Cij) having marginals A, B: Ai =

q
j Cij and Bj =

q
i Cij

Free spectrahedra: DA :=
gŒ

n=1{X œ (Msa
n )g :

qg
i=1 Xi ¢ Ai Æ Ind}

Matrix diamond: D˚,g =
gŒ

n=1{X œ Mg
n :

qg
i=1 ÁiXi Æ In, ’Á œ {±1}g}

Theorem
Let E œ (Msa

d )g be g-tuple of selfadjoint matrices. Then:
E are quantum e�ects ≈∆ D˚,g (1) ™ D2E≠I(1)

E are compatible quantum e�ects ≈∆ D˚,g ™ D2E≠I

For all g , d, compatibility region �(g , d) = �(g , d) inclusion constants.
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