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Sums of squares and Reznick’s
Positivstellensatz



Hilbert’s 17th problem

R[x ] 3 P(x) ≥ 0 ⇐⇒ P = Q1(x)2 + Q2(x)2, for Q1,2 ∈ R[x ].

Pos(d , n) := {P ∈ R[x1, . . . , xd ] hom. of deg. 2n, P(x) ≥ 0, ∀x}.

SOS(d , n) := {
∑

i Q2
i with Qi ∈ R[x1, . . . , xd ] hom. of deg. n}.

In general, SOS is a strict subset of Pos [Hil88]

SOS(d , n) ⊆ Pos(d , n), eq. iff (d , n) ∈ {(d , 1), (2, n), (3, 2)}.

The Motzkin polynomial x4y2 + y4z2 + z4x2 − 3x2y2z2 is positive but
not SOS.

Membership in SOS can be efficiently decided with a semidefinite
program (SDP) and provides an algebraic certificate for positivity.



More on the Motzkin polynomial

The non-homogeneous Motzkin polynomial
(set z = 1) x4y2 + y4 + x2 − 3x2y2 can be
seen to be positive by the AMGM inequality.

There exist computer algebra packages to check SOS and perform
polynomial optimization using SOS ([NC]SOSTOOLS, Gloptipoly)

» syms x y z; findsos(x^4*y^2 + y^4 + x^2 - 3*x^2*y^2)

Size: 49 19
...
No sum of squares decomposition is found.

http://ncsostools.fis.unm.si/
http://www.cds.caltech.edu/sostools/
https://homepages.laas.fr/henrion/software/gloptipoly/


Reznick’s Positivstellensatz

Artin’s solution to Hilbert’s 17th problem [Art27]

P ≥ 0 ⇐⇒ P =
∑

i

Q2
i

R2
i

In particular, if P ≥ 0, there exists R such that R2P is SOS

Theorem ([Rez95])
Let P ∈ Pos(d , k) such that m(P) := min‖x‖=1 P(x) > 0. Let also
M(P) := max‖x‖=1 P(x). Then, for all

n ≥ dk(2k − 1)
2 ln 2

M(P)
m(P) −

d
2 ,

we have
(x2

1 + · · ·+ x2
d )n−kP(x) =

r∑
j=1

(a(j)
1 x1 + · · · a(j)

d xd )2n.

In particular, ‖x‖2(n−k)P is SOS.



Polynomials vs. symmetric
operators



From the symmetric subspace to polynomials — R

Homogeneous polynomials of degree n in d real variables x1, . . . , xd are in
one-to-one correspondence with symmetric tensors:

∨nRd 3 v  Pv (x1, . . . , xd ) = 〈x⊗n, v〉

where x = (x1, . . . , xd ) is the vector of variables.

Examples:

n = 1, Pv (x) =
∑d

i=1 vixi ;
|GHZ 〉 = |000〉+ |111〉 P|GHZ〉(x , y) = x3 + y3;
|W 〉 = |001〉+ |010〉+ |001〉 P|W 〉(x , y) = 3x2y ;
if |Ω〉 =

∑d
i=1 |ii〉, then P|Ω〉⊗n (x1, . . . , xd ) = (

∑d
i=1 x2

i )n = ‖x‖2n.

We denote d [n] := dim∨nRd =
(n+d−1

n
)

[Har13].



From the symmetric subspace to polynomials — C

In the complex case, we are interested in bi-homogeneous polynomials of
degree n in d complex variables: P(z1, . . . , zd ) is hom. in the variables zi

and also in z̄i .

Bi-hom. polynomials are in one-to-one correspondence with operators on
∨nCd :

P(z1, . . . , zd ) = 〈z⊗n|W |z⊗n〉.

Self-adjoint W are associated to real, bi-hom. polynomials.

The norm: ‖z‖2n = 〈z⊗n|P(d,n)
sym |z⊗n〉.

More generally, polynomials which are bi-hom. of degree n in complex
variables z1, . . . , zd and, separately, bi-hom. of degree k in complex
variables u1, . . . , uD are in one-to-one correspondence with operators on
∨nCd ⊗ ∨kCD :

Q(z1, . . . , zd , u1, . . . , uD) = 〈z⊗n ⊗ u⊗k |W |z⊗n ⊗ u⊗k〉.



The different notions of positivity

A self-adjoint matrix W ∈ B(∨nCd ) is called:

block-positive if 〈z⊗n|W |z⊗n〉 ≥ 0, ∀z ∈ Cd ;
positive semidefinite (PSD) if 〈u|W |u〉 ≥ 0, ∀u ∈ ∨nCd ;
separable if W ∈ conv{|z〉〈z |⊗n}z∈Cd .

We have: W separable =⇒ W PSD =⇒ W block-positive.

W is block-positive ⇐⇒ PW is non-negative:

PW (z) = 〈z⊗n|W |z⊗n〉 ≥ 0, ∀z ∈ Cd .

W is PSD ⇐⇒ PW is Sum Of hom. Squares:

W =
∑

j
λj |wj〉〈wj | =⇒ PW (z) =

∑
j
λj |〈z⊗n,wj〉|2.

W is separable ⇐⇒ PW is Sum Of hom. Powers:

W =
∑

j
tj |aj〉〈aj |⊗n =⇒ PW (z) =

∑
j

tj |〈z , aj〉|2n.



Tensoring with the identity

For k ≤ n, let Tr∗k→n : B(∨kCd )→ B(∨nCd ) be the map

Tr∗k→n(W ) = P(d,n)
sym

[
W ⊗ I⊗(n−k)

d

]
P(d,n)

sym .

We have: PTr∗k→n(W )(z) = ‖z‖2(n−k)PW (z).

Clonek→n := d[k]
d[n] Tr∗k→n is the

optimal Keyl-Werner cloning
quantum channel [Wer98, KW99]:
among all quantum channels
sending states ρ⊗k to symmetric
n-partite states σ, it is the one
which achieves the largest fidelity
between ρ and Tr2···n σ.

Clone1→2



The partial trace

For k ≤ n, let Trn→k : B(∨nCd )→ B(∨kCd ) be the partial trace

Trn→k(W ) =
[
id⊗k ⊗Tr⊗(n−k)

]
(W ).

Lemma
We have: PTrn→k (W ) = ((n)n−k)−2∆n−k

C PW , where
(x)p = x(x − 1) · · · (x − p + 1) and ∆C is the complex Laplacian

∆C =
d∑

i=1

∂2

∂z̄i∂zi

Lemma (complex Bernstein inequality ← we need analysis here)

For any W = W ∗ ∈ B(∨nCd ) we have

∀‖z‖ ≤ 1,
∣∣∣(∆s

CPW )(z)
∣∣∣ ≤ 4−s(2d)s(2n)2sM(W )



The Dictionary

Sym. operators ∈ B(∨nCd ) Polynomials (d vars, bi-hom. deg. n)

W PW (z) = 〈z⊗n|W |z⊗n〉

Positivity notions

block-positive non-negative

positive semidefinite Sum Of Squares

separable Sum Of Powers

Operations

Tensor with identity mult. with the norm2

Partial trace complex Laplacian



The complex Positivstellensatz



A complex version of Reznick’s PSS

Theorem ([MHNR19])

Consider W = W ∗ ∈ B(∨kCd ⊗ CD) with m(W ) > 0 and k ≥ 1. Then,
for any

n ≥ dk(2k − 1)
ln
(
1 + m(W )

M(W )

) − k

with n ≥ k, we have

‖x‖2(n−k)PW (x , y) =
∫

PW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ

with PW̃ (ϕ, y) ≥ 0 for all ϕ ∈ Cd and y ∈ CD , where the matrix
W̃ ∈ B(∨kCd ⊗ CD) is explicitly computable in terms of W , and dϕ is
any (n + k)-spherical design. In the case k = 1, the bound on n can be
improved to n ≥ dM(W )/m(W )− 1.

A similar result was obtained by To and Yeung [TY06] with worse bounds
and in a less general setting, by “complexifying” Reznick’s proof.



Spherical designs

A complex n-spherical design in dimension d [DGS91] is a probability
measure dϕ on the unit sphere of Cd which approximates the uniform
measure dz in the following sense: for any degree n bi-hom. polynomial
P(z) in d complex variables,

∫
P(ϕ)dϕ =

∫
P(z)dz . Equivalently,∫

|ϕ〉〈ϕ|⊗ndϕ =
∫
‖z‖=1

|z〉〈z |⊗ndz = P(d,n)
sym

d [n] .

For all d , n, there exist finite n-designs: the measure dϕ has support of
size ≤ (n + 1)2d ; in particular, the integral in the main theorem can be a
finite sum

Designs of orders 60, 120, 216 in R3
c©John Burkardt



Proof idea

‖x‖2(n−k)PW (x , y) =
∫

PW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ

We want to transform a non-negative polynomial into a sum of powers
by multiplying with some power of the norm.
In terms of operators, this amounts to transforming a block-positive
operator into a separable operator.
Ansatz: use the measure-and-prepare map

MPn→k : B(∨nCd )→ B(∨kCd )

X 7→ d [n]
∫
〈ϕ⊗n|X |ϕ⊗n〉|ϕ〉〈ϕ|⊗kdϕ,

for some (n + k)-spherical design dϕ.
The linear map MPn→k is completely positive, and it is normalized to be
trace preserving (i.e. it is a quantum channel).



Chiribella’s identity

Theorem ([Chi10])
For any k ≤ n, we have

MPn→k =
k∑

s=0
c(n, k, s) Clones→k ◦Trn→s ,

where c(n, k, s) =
(n

s
)(k+d−1

k−s
)
/
(n+k+d−1

k
)
.

Above, c(n, k, ·) is a probability distribution:
∑k

s=0 c(n, k, s) = 1.

The proof of the Chiribella identity is a straightforward computation in
the group algebra of G = Sn+k :

εG =
min(n,k)∑

s=0

(n
s
)(k

s
)(n+k

n
) εHσsεH

where εX is the average of the elements in X , H = Sn × Sk ≤ G is a
Young subgroup and σs is some permutation swapping s elements from
[1, n] with s elements from [n + 1, n + k].



The result is about the interplay between Clone and MP

The equality ‖x‖2(n−k)PW (x , y) =
∫

PW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ reads, in
terms of linear maps over symmetric spaces

Clonek→n⊗ idD = [MPk→n ◦Ψ]⊗ idD .

The fact that the polynomial PW̃ is non-negative reads

W̃ := Ψ(W ) is block-positive ⇐⇒ 〈z⊗n|W̃ |z⊗n〉 ≥ 0.

Re-write the Chiribella identity as

MPn→k =
k∑

s=0
c(n, k, s) Clones→k ◦Trn→s

=
k∑

s=0
c(n, k, s) Clones→k ◦Trk→s ◦Trn→k

= Φ(n)
k→k ◦ Trn→k .



Invert the Chiribella formula

Recall that MPn→k = Φ(n)
k→k ◦ Trn→k , for some linear map Φ(n)

k→k .

Key fact.

The linear map Φ(n)
k→k : ∨kCd → ∨kCd is invertible, with inverse

Ψ(n)
k→k :=

k∑
s=0

q(n, k, s) Clones→k ◦Trk→s

with

q(n, k, s) := (−1)s+k
(n+s

s
)(k

s
)(n

k
) d [k]

d [s]

Hence, up to some constants, Clonek→n = MPk→n ◦Ψ(n)
k→k .

Final step: use hypotheses on n, k,m(W ),M(W ) to ensure Ψ(n)
k→k(W ) is

block-positive whenever W is (strictly) block-positive.



Use the Bernstein inequality to prove PW̃ non-negative

Assume, wlog, D = 1, i.e. there is no y . We have

PW̃ (ϕ) =
k∑

s=0
q(n, k, s)〈ϕ⊗k |Clones→k ◦Trk→s(W )|ϕ⊗k〉

=
k∑

s=0
q(n, k, s)‖ϕ‖2(k−s)〈ϕ⊗s |Trk→s(W )|ϕ⊗s〉

=
k∑

s=0
q(n, k, s)‖ϕ‖2(k−s)PTrk→s (W )(ϕ)

=
k∑

s=0
q̂(n, k, s)‖ϕ‖2(k−s)(∆k−s

C pW )(ϕ).

Use the complex version of the Bernstein inequality to ensure that

PW̃ (ϕ) ≥
[

m(W )q̃(n, k, k)−M(W )
k−1∑
s=0
|q̃(n, k, s)|

]
≥ 0.



How good are the bounds?

Consider the modified Motzkin polynomial

Pε(x , y , z) = x4y2 + y4z2 + z4x2 − 3x2y2z2 + ε(x2 + y2 + z2).

We have m(Pε) = ε; M(Pε) = ε+ 4/27. Multiply with denominator
Pn,ε(x , y , z) := (x2 + y2 + z2)n−3Pε(x , y , z). If a PSS decomposition for
Pn,ε exists, then the [2p, 2q, 2r ] coefficient of Pn,ε must be positive  
lower bound on optimal n.
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The take-home slide

W ∈ Bsa(∨nCd ) hom. poly. in d vars of deg. n PW (z) = 〈z⊗n|W |z⊗n〉

W is block-positive ⇐⇒ PW is non-negative.

W is PSD ⇐⇒ PW is Sum Of hom. Squares:

W =
∑

j
λj |wj〉〈wj | =⇒ PW (z) =

∑
j
λj |〈z⊗n,wj〉|2.

W is separable ⇐⇒ PW is Sum Of hom. Powers:
W =

∑
j

tj |aj〉〈aj |⊗n =⇒ PW (z) =
∑

j
tj |〈z , aj〉|2n.

Theorem ([MHNR19])

For any W ∈ Bsa(∨kCd ⊗CD) and n ≥ [dk(2k − 1)]/ ln
(
1 + m(W )

M(W )

)
− k,

‖x‖2(n−k)PW (x , y) =
∫

PW̃ (ϕ, y)|〈ϕ, x〉|2ndϕ ∈ SOP(x) ⊆ SOS(x),

where the polynomial PW̃ (·, ·) ≥ 0.
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