Enumerating meanders - three perspectives

Ion Nechita (CNRS, LPT Toulouse)
— joint with Motohisa Fukuda arXiv:1609.02756 \& arXiv:2103.03615

OpAlg21, Istanbul, June 9th, 2021

Talk outline

Enumerating meanders

Meandric systems with many connected components

Shallow top meandric systems

Random matrix models

Enumerating meanders

Meanders

A meander of order n is a simple closed loop intersecting a horizontal line at $2 n$ points.

A meandric system of order n is a non-intersecting set of simple closed loops intersecting a horizontal line at $2 n$ points.

In other words, a meander is a meandric system with 1 connected component. The problem of enumerating meanders is a notoriously difficult open problem in combinatorics [DFGG97].

Non-crossing pairings and partitions

Meanders and meandric systems can be seen as the union of their top and their bottom parts. These are non-crossing pairings

$$
\mathrm{NC}_{2}(2 n):=\left\{\pi=\sqcup_{i=1}^{n}\left\{a_{i}, b_{i}\right\} \text { partition of }[2 n]: \nexists a_{i}<a_{j}<b_{i}<b_{j}\right\} .
$$

Non-crossing pairings on $2 n$ points are in bijection with non-crossing partitions on n points

Both sets are counted by the Catalan numbers Cat $_{n}=\frac{1}{n+1}\binom{2 n}{n}$.
Formally,

$$
\{\text { meandric systems of order } n\}=\left\{(\pi, \rho) \in \mathrm{NC}_{2}(2 n)^{2} \cong \mathrm{NC}(n)^{2}\right\} \text {. }
$$

Number of connected components

Non-crossing partitions are in bijection with a subset of the symmetric group, the geodesic permutations

$$
\sigma \in \mathcal{S}_{\mathrm{NC}}(n) \Longleftrightarrow|\sigma|+\left|\sigma^{-1} \gamma\right|=|\gamma|=n-1,
$$

where $\gamma=(123 \cdots n)$ and $|\cdot|$ denotes the length of a permutation

$$
|\sigma|=\min \left\{k: \sigma=\tau_{1} \tau_{2} \cdots \tau_{k} \text { with } \tau_{i} \text { transpositions }\right\} .
$$

For all permutations $\sigma \in \mathcal{S}(n)$, we have $|\sigma|=n-\# \sigma$, where $\# \sigma$ is the number of cycles of σ.

Proposition ([Nic16])

The number of connected components of the meandric system built out of two non-crossing partitions π, ρ is $\#\left(\pi^{-1} \rho\right)$.

We denote by $M_{n, r}$ the set of meandric systems of order n with r connected components $M_{n, r}=\left\{(\pi, \rho) \in \operatorname{NC}(n): \#\left(\pi^{-1} \rho\right)=r\right\}$. In particular, $M_{n, 1}$ is the set of meanders.

Number of meanders

Understanding the number of meanders $\left(\left|M_{n, 1}\right|\right)_{n}$ (sequence A005315) is an important problem in combinatorics.
It is known that $\mathrm{Cat}_{n} \leq\left|M_{n, 1}\right| \leq \mathrm{Cat}_{n}^{2}$.
Asymptotically, $\left|M_{n, 1}\right| \sim C a^{n} n^{-b}$, for constants C, a, b. It is known that $11.380 \leq a \leq 12.901$ [AP05]; numerically, $a \approx 12.269$. It is conjectured that $b=(29+\sqrt{145}) / 12$ [DFGGoo, DFGJoo].

Nica used free probability tools to study meanders in [Nic16]. Later, the notion of shallow top meanders was introduced: these are meanders (π, ρ) for which the top partition is an interval partition.

Proposition ([GNP20])

The number of shallow top meanders of order n is

$$
M_{n, 1}^{\mathrm{ST}}=\frac{1}{b} \sum_{k=1}^{n}\binom{n}{k-1}\binom{n+k-1}{n-k}
$$

Meandric systems with many connected components

Enumerating meandric systems

Recall that $M_{n, r}$ is the set of meandric systems on $2 n$ points having r connected components

$$
M_{n, r}=\left\{(\pi, \rho) \in \operatorname{NC}(n): \#\left(\pi^{-1} \rho\right)=r\right\} .
$$

$$
\begin{equation*}
\left|M_{n, 1}\right|=\mid\{\text { meanders }\} \mid \tag{hard}
\end{equation*}
$$

$$
\begin{array}{rr}
\left|M_{n, n-r}\right|=? & r \text { fixed } \\
\left|M_{n, n}\right|=\text { Cat }_{n} & (\text { easy }, \pi=\rho)
\end{array}
$$

Generating series

Define the generating series

$$
M(X, Y):=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|M_{n, r}\right|
$$

Compute

$$
\begin{aligned}
M(X, Y) & =\sum_{n \geq 1} X^{n} \sum_{\pi, \rho \in N C(n)} Y\left|\pi^{-1} \rho\right| \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n)} \sum_{\substack{\pi, \rho \in N C(n) \\
\pi \vee \rho=\omega}} Y\left|\pi^{-1} \rho\right| \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n)} \prod_{b} \sum_{b \text { block of } \omega} \left\lvert\, \begin{array}{c}
\pi, \rho \in N C(|b|) \\
\pi \vee \rho=1|b| \\
\end{array} Y^{\left|\pi^{-1} \rho\right|}\right. \\
& =\sum_{n \geq 1} X^{n} \sum_{\omega \in N C(n) b} \prod_{b \text { block of } \omega} \text { FUNCTION }(|b|, Y) .
\end{aligned}
$$

We recognize the moment - free cumulant formula from free probability theory [VDN92, NS06, MS17].

Moment - free cumulant transformations

Put

$$
\begin{aligned}
K_{n, r} & :=\left\{(\pi, \rho) \in \mathrm{NC}(n): \pi \vee \rho=1_{n},\left|\pi^{-1} \rho\right|=r\right\} \\
K(X, Y) & :=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|K_{n, r}\right| .
\end{aligned}
$$

The series M and K are related by the moment - free cumulant formula

$$
M(X, Y)=K(X(1+M(X, Y)), Y)
$$

Using a similar reduction and a Kreweras complement, we can go deeper: if

$$
\begin{aligned}
& I_{n, r}:=\left\{(\pi, \rho) \in \mathrm{NC}(n): \pi \wedge \rho=0_{n}, \pi \vee \rho=1_{n},\left|\pi^{-1} \rho\right|=r\right\} \\
& I(X, Y):=\sum_{n \geq 1} \sum_{r \geq 0} X^{n} Y^{r}\left|I_{n, r}\right|
\end{aligned}
$$

then

$$
K(X, Y)=I(X(1+K(X, Y)), Y)
$$

Moment - free cumulant transformations

Recall

$$
\begin{aligned}
& M_{n, r}=\left\{(\pi, \rho) \in \mathrm{NC}(n):\left|\pi^{-1} \rho\right|=r\right\} \\
& K_{n, r}=\left\{(\pi, \rho) \in \mathrm{NC}(n): \pi \vee \rho=1_{n},\left|\pi^{-1} \rho\right|=r\right\} \\
& I_{n, r}=\left\{(\pi, \rho) \in \mathrm{NC}(n): \pi \wedge \rho=0_{n}, \pi \vee \rho=1_{n},\left|\pi^{-1} \rho\right|=r\right\}
\end{aligned}
$$

and let M, K, I the respective generating series.

If \mathcal{F} is the operation transforming free cumulant generating series into moment generating series, we conclude

$$
I \stackrel{\mathcal{F}_{X}}{\longrightarrow} K \stackrel{\mathcal{F}_{X}}{\longmapsto} M
$$

The sets $I_{n, r}$ should be easier to enumerate...

Key technical lemma

Lemma

For fixed r, the series I has finite support in n. More precisely, $I_{n, r}=\emptyset$, unless $r+1 \leq n \leq 2 r+\mathbf{1}_{r=0}$.

For $r=1, I_{2,1}=\{(!, \square),.(\square,!)$.$\} , and all the other I_{n, 1}$ are empty.

All meanders in $I_{n, r=2}$. We have $\left[Y^{2}\right] /(X, Y)=8 X^{3}+4 X^{4}$.

The main theorem

Recall that $\left|M_{n, s}\right|$ is the number of meandric systems of order n with s connected components.

Theorem ([FN19])

For any fixed $r \geq 1$ there exists a polynomial \tilde{P}_{r} of degree at most $3 r-3$ such that the generating function of the number of meandric systems of order n with $n-r$ connected components

$$
F_{r}(t)=\sum_{n=r+1}^{\infty}\left|M_{n, n-r}\right| t^{n},
$$

after the change of variables $t=w /(1+w)^{2}$, reads

$$
F_{r}(t)=\frac{w^{r+1}(1+w)}{(1-w)^{2 r-1}} \tilde{P}_{r}(w) .
$$

Exact results and asymptotics

With the help of a computer, we can enumerate $I_{n, r}$ for $1 \leq r \leq 6$ (we just have to look at $\mathrm{NC}(\leq 12)$ to do this) to find

$$
\begin{aligned}
& \tilde{P}_{1}(w)=2 \\
& \tilde{P}_{2}(w)=4 w^{3}-12 w^{2}+4 w+8 \\
& \tilde{P}_{3}(w)=18 w^{6}-92 w^{5}+134 w^{4}+8 w^{3}-146 w^{2}+52 w+42
\end{aligned}
$$

Corollary

For any fixed $r \geq 1$, assuming that $\tilde{P}_{r}(1) \neq 0$ (this holds at least for $1 \leq r \leq 6$), the number of meandric systems of order n having $n-r$ connected components has the following asymptotic behavior:

$$
\left|M_{n, n-r}\right| \sim \frac{\tilde{P}_{r}(1)}{2^{2 r-2} \Gamma((2 r-1) / 2)} 4^{n} n^{(2 r-3) / 2} .
$$

Shallow top meandric systems

Shallow top meandric systems

Recall that shallow top meanders are meanders (π, ρ) with the property that the top partition ρ is an interval partition: its blocks are made out of consecutive integers.

We can replace one free transform with a boolean transform

$$
I \stackrel{\mathcal{F}_{X}}{\longmapsto} K \stackrel{\mathcal{B}_{X}}{\longmapsto} M
$$

Theorem ([FN21])

The generating function for shallow top meandric systems is given by

$$
M^{\mathrm{ST}}(X, Y, A, B)=\sum_{n=1}^{\infty} X^{n} \sum_{\substack{\pi \in \operatorname{Int}(n) \\ \rho \in \operatorname{NC}(n)}} Y^{\left|\pi^{-1} \rho\right|} A^{|\pi|} B^{|\rho|}=\frac{K(X, Y, A, B)}{1-K(X, Y, A, B)}
$$

where $K(X)=h(X(1+\hat{g}(X)))$, with $\hat{g}=\mathcal{F}(g)$, and

$$
\begin{gathered}
g(X)=\sum_{n=1}^{\infty} g_{n} X^{n} \text { where } g_{n}=B Y\left[(1+A Y)^{n}+(A Y)^{n}\left(Y^{-2}-1\right)\right] \\
h(X)=\sum_{n=1}^{\infty} h_{n} X^{n} \text { where } h_{n}=(A Y)^{n-1}
\end{gathered}
$$

Random matrix models

Previous constructions

- Recall the meander polynomial

$$
m_{n}(Y)=\sum_{\alpha, \beta \in N C(n)} Y^{\#\left(\alpha^{-1} \beta\right)}
$$

- di Francesco showed [DFGG97] that it can be related to the moments of a random matrix model built out of tensor products of GUE matrices, for integer $Y=k$:

$$
m_{n}(k)=\lim _{d \rightarrow \infty} \mathbb{E} \frac{1}{d^{2}} \operatorname{Tr}\left(\sum_{i=1}^{k} \frac{B_{i} \otimes \bar{B}_{i}}{d}\right)^{2 n}
$$

where $B_{1}, \ldots, B_{k} \in \mathcal{M}_{d}(\mathbb{C})$ are i.i.d. GUE matrices.

- Fukuda and Śniady relate [FŚ13] the meander polynomial to the partial transposition of Wishart matrices: if W is a Wishart matrix of parameters $\left(d^{2}, k\right)$, then

$$
m_{n}(k)=\lim _{d \rightarrow \infty} \mathbb{E} \frac{1}{d^{2}} \operatorname{Tr}\left(\frac{W^{\Gamma}}{d}\right)^{2 n}
$$

where $W^{\Gamma}=[$ id $\otimes \operatorname{transp}](W)$ is the partial transposition of W.

New models

- We show [FN21] that it is related to tensor products of independent random completely positive maps, applied to a maximally entangled state.
- Let $G, H \in \mathcal{M}_{d^{2} \times k}(\mathbb{C})$ be two independent Ginibre matrices. Consider the random $C P$ maps $\Phi_{G, H}: \mathcal{M}_{k}(\mathbb{C}) \rightarrow \mathcal{M}_{d}(\mathbb{C})$, where

$$
\Phi_{A}(X)=[\mathrm{id} \otimes \operatorname{Tr}]\left(A X A^{*}\right)
$$

- Define $Z:=\left[\Phi_{G} \otimes \Phi_{H}\right]\left(\omega_{k}\right) \in \mathcal{M}_{d^{2}}(\mathbb{C})$, where ω_{k} is the max. ent quantum state $\omega_{k}=\sum_{i, j=1}^{k} e_{i} \otimes e_{i} \cdot\left(e_{j} \otimes e_{j}\right)^{*}$.
- Then, for all $n, k \geq 1$,

$$
m_{n}(k)=\lim _{d \rightarrow \infty} \mathbb{E} \frac{1}{d^{2}} \operatorname{Tr}\left(\frac{Z}{d^{2}}\right)^{n}
$$

- For shallow top meanders, replace one of the CP maps with a depolarizing channel $\Psi(X)=X+\operatorname{Tr}(X) I$:

$$
m_{n}^{\mathrm{ST}}(k)=\lim _{d \rightarrow \infty} \mathbb{E} \frac{1}{d} \operatorname{Tr}\left[\left(d^{-1} Z_{0}\right)\left(d^{-1} Z\right)^{n-1}\right]
$$

where $Z:=\left[\Phi_{G} \otimes \Psi\right]\left(\omega_{k}\right)$ and $Z_{0}:=\left[\Phi_{G} \otimes \mathrm{id}\right]\left(\omega_{k}\right)$ are $d k \times d k$ matrices.

Take home slide

A meander of order n is a simple closed loop intersecting a horizontal line at $2 n$ points.

A meandric system of order n is a non-intersecting set of simple closed loops intersecting a horizontal line at $2 n$ points.

GOAL: Enumerate meanders (asymptotically).
Result 1: Generating function for meandric systems with large number of connected components $n-r$, for small r.

Shallow top meanders are meanders (π, ρ) with the property that the top partition ρ is an interval partition.

Result 2: Explicit generating function for shallow top meandric systems.

References

[AP05] Michael H Albert and MS Paterson.
Bounds for the growth rate of meander numbers.
Journal of Combinatorial Theory, Series A, 112(2):250-262, 2005.
[DFGG97] Ph Di Francesco, O Golinelli, and E Guitter. Meander, folding, and arch statistics.
Mathematical and Computer Modelling,
26(8-10):97-147, 1997.
[DFGG00] P Di Francesco, O Golinelli, and E Guitter.
Meanders: exact asymptotics.
Nuclear Physics B, 570(3):699-712, 2000.
[DFGJ00] Philippe Di Francesco, Emmanuel Guitter, and Jesper Lykke Jacobsen.
Exact meander asymptotics: a numerical check. Nuclear Physics B, 580(3):757-795, 2000.
[FN19] Motohisa Fukuda and Ion Nechita.
Enumerating meandric systems with large number of loops.
Annales de I'Institut Henri Poincaré D, 6(4):607-640, 2019.
[FN21] Motohisa Fukuda and Ion Nechita.
Generating series and matrix models for meandric systems with one shallow side.
arXiv preprint arXiv:2103.03615, 2021.
[FŚ13] Motohisa Fukuda and Piotr Śniady.

Partial transpose of random quantum states: Exact formulas and meanders.
Journal of Mathematical Physics, 54(4):042202, 2013.
[GNP20] IP Goulden, Alexandru Nica, and Doron Puder.
Asymptotics for a class of meandric systems, via the Hasse diagram of $N C(n)$.
International Mathematics Research Notices,
2020(4):983-1034, 2020.
James A Mingo and Roland Speicher.
Free probability and random matrices, volume 35.
Springer, 2017.
[Nic16] Alexandru Nica.
Free probability aspect of irreducible meandric systems, and some related observations about meanders.
Infinite Dimensional Analysis, Quantum Probability and Related Topics, 19(02):1650011, 2016.
[NS06] Alexandru Nica and Roland Speicher.
Lectures on the combinatorics of free probability, volume 13.
Cambridge University Press, 2006.
[VDN92] Dan V Voiculescu, Ken J Dykema, and Alexandru Nica.

Free random variables.

1. American Mathematical Soc., 1992.
