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Enumerating meanders



A meander of order n is a simple closed loop

intersecting a horizontal line at 2n points.

A meandric system of order n is a
non-intersecting set of simple closed loops
intersecting a horizontal line at 2n points.

In other words, a meander is a meandric system with 1 connected
component. The problem of enumerating meanders is a notoriously
difficult open problem in combinatorics [DFGG97].



Non-crossing pairings and partitions

Meanders and meandric systems can be seen as the union of their top
and their bottom parts. These are non-crossing pairings

NCy(2n) := {7 = U_1{a;, b;} partition of [2n] : Aa; < a; < b; < b;}.
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Non-crossing pairings on 2n points are in bijection with non-crossing
partitions on n points

m\\mHml

Both sets are counted by the Catalan numbers Cat, = -1 (°").

Formally,

{meandric systems of order n} = {(=, p) € NC»(2n)? = NC(n)?}.



Number of connected components

Non-crossing partitions are in bijection with a subset of the symmetric
group, the geodesic permutations

0 € Snc(n) <= o] +lo7 My =hl=n-1,
where v = (123 --- n) and | - | denotes the length of a permutation
|o| = min{k : 0 = 717 - T, with 7; transpositions}.

For all permutations o € S(n), we have |o| = n — #0, where #0o is the
number of cycles of o.

Proposition ([ ])

The number of connected components of the meandric system built out
of two non-crossing partitions m, p is #-(7 ' p).

We denote by M, , the set of meandric systems of order n with r
connected components M, , = {(m,p) € NC(n) : #(7 1p) =r}. In
particular, M, ; is the set of meanders.



Number of meanders

Understanding the number of meanders (|M, 1]), (sequence A005315) is
an important problem in combinatorics.

It is known that Cat, < |M, 1| < Cat?,.

Asymptotically, |V, ;| ~ Ca"n" ", for constants C, a, b. It is known that
11.380 < a < 12.901 [apPos); numerically, a &~ 12.269. It is conjectured
that b = (29 + v/145)/12 [DFGG00, DFGJ00].

Nica used free probability tools to study depth < 2
meanders in [Nicie]. Later, the notion of

shallow top meanders was introduced: these

are meanders (7, p) for which the top

partition is an interval partition.

Proposition ([

The number of shallow top meanders of order n is

/\/’5’? - %22:1 (kﬁl) ("ﬁfll)



https://oeis.org/A005315

Meandric systems with many
connected components



Enumerating meandric systems

Recall that M, , is the set of meandric systems on 2n points having r
connected components

M, = {(m,p) € NC(n) : #(r"p) = r}.

|Mp1| = [{meanders}| (hard)
(Man—r| = 7 r fixed
|Mhn,n| = Cat, (easy, ™ = p)




Generating series

Define the generating series

Y) =)D XYMy,

n>1r>0

Compute
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=> x> [ Fu~crion(jp], Y).

n>1 w€&NC(n) b block of w

We recognize the moment - free cumulant formula from free probability
theory [VDN92, NS06, MS17].



Moment - free cumulant transformations

Put
Knr:={(m,p) ENC(n) : 7V p=1,, |7 p| =r}
)= XY K.
n>1r>0

The series M and K are related by the moment - free cumulant formula
M(X,Y) = K(X(1+ M(X, Y)), Y).

Using a similar reduction and a Kreweras complement, we can go deeper:

if
= {(m,p) ENC(n) : TAp=0, 7Vp=1, |77 | =r}
V)= 3 XY |
n>1r>0
then

K(X,Y) = I(X(1+ K(X, Y)), Y).



Moment - free cumulant transformations

Recall
Mn,r - {(W,p) & NC(H) : |7T_1p| = r}
Kn,r = {(7T,,0) € NC(I'I) T Vp=1,, |7T_1p‘ = r}
/n,r:{(ﬂ',ﬂ)eNC(n) . 7T/\p:0n77'r\/p:1n’ |7T71/)|:r}

and let M, K, | the respective generating series.

If F is the operation transforming free cumulant generating series into
moment generating series, we conclude

X K+

Fx Fx

M

The sets I, , should be easier to enumerate...



Key technical lemma

For fixed r, the series | has finite support in n. More precisely, I, , =0,
unlessr+1<n<2r+1,_,.

Forr=1,hy={( L[ ), L, )}, and all the other /,; are empty.
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All meanders in I, ,—>. We have [Y?]/(X,Y) =8X3 +4X*.



The main theorem

Recall that [M,, 5| is the number of meandric systems of order n with s
connected components.

For any fixed r > 1 there exists a polynomial P, of degree at most 3r — 3
such that the generating function of the number of meandric systems of
order n with n — r connected components

Fr(t) = Z |M,,7,,,r|tn,

n=r+1
after the change of variables t = w/(1 + w)?, reads
wi 1(1 L W)

TG

P.(w).




Exact results and asymptotics

With the help of a computer, we can enumerate /, , for 1 < r <6 (we
just have to look at NC(< 12) to do this) to find

/51(W) =5
Py(w) = 4w® — 12u? + 4w + 8
Ps(w) = 18w® — 92w® 4 134w* + 8w — 146w? + 52w + 42

For any fixed r > 1, assuming that P,(1) # 0 (this holds at least for
1 < r <6), the number of meandric systems of order n having n — r

connected components has the following asymptotic behavior:
P.(1)

40 (2r—3) 2.
2 2M(2r—1)/2) "

‘Mn.nfr‘ -~




Shallow top meandric systems



Shallow top meandric systems

Recall that shallow top meanders are deptj’<2

meanders (7, p) with the property that the
top partition p is an interval partition: its
blocks are made out of consecutive integers.

We can replace one free transform with a boolean transform
[ 2 K+ Sk M.

The generating function for shallow top meandric systems is given by

K(X Y,A, B)
MST(X,Y, A, B) X" ylm ol plwl glol — ) Uodth .
Z:: mzm ) — K(X,Y,A,B)
pPENC(n)

where K(X) = h(X(1 + &(X))), with & = F(g), and
g(X) =302, ga X" where g, = BY [(1+ AY)" + (AY)"(Y 2 —1)],
h(X) =32 h,X" where h, = (AY)"" L.




Random matrix models



Previous constructions

@ Recall the meander polynomial
ma(Y) = Z y#(a” '8).
«,BeNC(n)
@ di Francesco showed [DFGGo7] that it can be related to the moments of a
random matrix model built out of tensor products of GUE matrices, for
integer Y = k:

Kk _ 2n
B ® B;
where By, ..., By € My4(C) are i.i.d. GUE matrices.
o Fukuda and éniady relate [F$13] the meander polynomial to the partial

transposition of Wishart matrices: if W is a Wishart matrix of

parameters (d?, k), then
WI’
mp(k) = C/I|_>mOOEd2 Tr( 7 ) ,

where W' = [id ® transp](W) is the partial transposition of W.



New models

@ We show [FN21] that it is related to tensor products of independent
random completely positive maps, applied to a maximally entangled
state.

o Let G, H € M4, (C) be two independent Ginibre matrices. Consider
the random CP maps ®¢ 1y : My(C) — My4(C), where

d4(X) = [id ® Tr(AXA).

@ Define Z := [®¢ @ Py](wk) € My2(C), where wy is the
max. ent quantum state wy = ij:l e®ei-(6®e)".
@ Then, for all n, k > 1,

, 1 Z\"
mpu(k) = d||_>moo Eﬁ Tr (d2> .

@ For shallow top meanders, replace one of the CP maps with a
depolarizing channel W(X) = X + Tr(X)!:

m3T (k) = lim El Tr[(d712Z)(d712) 1,
d—oc0o d

where Z := [®¢ @ V](wk) and Zy := [P ®id](wk) are dk x dk matrices.



Take home slide

A meander of order n is a simple closed loop
intersecting a horizontal line at 2n points.

A meandric system of order n is a
non-intersecting set of simple closed loops
intersecting a horizontal line at 2n points.

GOAL: Enumerate meanders (asymptotically).

Result 1: Generating function for meandric systems with large number

of connected components n — r, for small r.
depth <2

Shallow top meanders are meanders (, p)
with the property that the top partition p is

an interval partition.

Result 2: Explicit generating function for shallow top meandric systems.
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