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Definition and graphical notation



What is a tensor?

A scalar (0D object): x ∈ C
A vector (1D object): v = (vi)i∈[d] ∈ Cd

A matrix (2D object): A = (Aij)i,j∈[d] ∈Md(C) ∼= Cd ⊗ Cd

A tensor (3D object): T = (Tijk)i,j,k∈[d] ∈ Cd ⊗ Cd ⊗ Cd

Definition
A n-mode tensor is an element T ∈ Cd1 ⊗ Cd2 ⊗ · · · ⊗ Cdn . It can be
decomposed in the computational basis as

T =
∑

i∈[d1]×···×[dn]

Ti1i2···in ei1 ⊗ ei2 ⊗ · · · ⊗ ein︸ ︷︷ ︸
=:|ii i2···in〉

.



Abstract definition

Tensors are related to multilinear forms via the universal-property.

Proposition
Any F : Cd1 × Cd2 × · · · × Cdn → C factors through Cd1 ⊗ · · · ⊗ Cdn

uniquely. There exists a unique linear form 〈ϕ| ∈ [Cd1 ⊗ · · · ⊗ Cdn ]∗ such
that

F (x1, x2, . . . , xn) = 〈ϕ, x1 ⊗ x2 ⊗ · · · ⊗ xn〉, ∀xi .

Cd1 × · · · × Cdn Cd1 ⊗ · · · ⊗ Cdn

C

〈ϕ|

ι

F

where ι(x1, . . . , xn) = x1 ⊗ · · · ⊗ xn.



Graphical notation: tensor diagrams

A tensor diagram is a collection of boxes and wires.

1 Boxes  tensors
A box with n legs corresponds to a n-tensor. Each leg is associated to a
vector space Cdi .
Scalars are leg-less boxes, vectors have 1 leg, matrices have two legs, etc.

x v A T

The Kronecker product of tensors corresponds to juxtaposition.

v
A

w̄
B

A⊗B =|v〉〈w| =

Writing indices over a leg gives the corresponding coordinate.

v AAij =vi = i i j



Graphical notation: tensor diagrams

2 Wires  tensor contractions
A wire between two tensors corresponds to a sum over a common index.
Only legs corresponding to the same vector space can be connected by a
wire. Mathematically, a wire corresponds to the evaluation map:

ev : V ∗ × V → C

(α, v) 7→ α(v).

S

T

i

i

∑
i



Operations on tensors

v Aw̄ B=〈w, v〉 = A·B

ATrA = Tr2C
C=

I =
= TrId = d

A> = A

AΓ = [id⊗ transp](A)
=

A

|Ω〉 =
∑

i |ii〉 =



Tensor rank(s)



Tensor rank

A tensor of the form x = x1 ⊗ x2 ⊗ · · · ⊗ xn is called a simple (or
product) tensor. In QIT, these are the separable pure states.

Definition
The rank of a tensor x is the minimum number of terms in a
decomposition of x as a sum of simple tensors

R(x) := min{r : x =
r∑

i=1
x (i)

1 ⊗ x (i)
2 ⊗ · · · ⊗ x (i)

n }.

For matrices, this is the usual notion of rank:

R(A) = min{r : A =
r∑

i=1
|xi〉〈yi |}.

Examples for 3-qubit tensors:

The GHZ state |GHZ〉 = |000〉+ |111〉 has rank 2.
The W state |W〉 = |001〉+ |010〉+ |100〉 has rank 3.



Border rank

In the case of matrices, the set of tensors of rank ≤ r is an algebraic
variety (i.e. 0-set of some polynomials), hence closed.

For 3-tensors, this is no longer true: one can write a tensor of rank 3 as a
limit of rank-2 tensors:

|W〉 = |001〉+ |010〉+ |100〉 = lim
ε→0

(|0〉+ ε |1〉)⊗3 − |000〉
ε

.

Definition
Border rank of a tensor

R(x) := min{r : x = lim
k→∞

xk , with R(xk) = r ∀k}.

So R(|W〉) = 2 < 3 = R(|W〉).



Symmetric tensors

An element of ∨n(Cd) is called a symmetric tensor. The tensors |GHZ〉
and |W〉 are symmetric.

Since span{x⊗n}x∈Cd = ∨n(Cd), one can define the symmetric rank

Rs = min{r : x =
r∑

i=1
x⊗n

i }.

Clearly, Rs ≥ R for symmetric tensors. The inequality can be strict
(Shitov’s counterexample to Comon’s conjecture from 2018, tensor of
size 8003, with R ≤ 903 and Rs ≥ 904).

Remarkably, symmetric tensors are in bijection with homogeneous
polynomials in d variables of degree n

t ∈ ∨n(Cd)↔ p(x1, . . . xd) = 〈t, (x1, . . . , xd)⊗n〉.

This correspondence has many interesting properties (GHZ-type tensors
correspond to norms, partial traces correspond to derivatives, etc).



Tensor decompositions



The singular value decomposition

Any d × d matrix A can be decomposed as

A =
d∑

i=1
si |xi〉〈yi |,

where si ≥ 0 are the singular values and {xi}, resp {yi} are orthonormal
bases of Cd . The number of non-zero singular values is the rank of A.

In QIT, this is know as the Schmidt decomposition

Cd ⊗ Cd 3 |ϕ〉 =
d∑

i=1

√
λi |xi〉 ⊗ |yi〉 .

If the vector |ϕ〉 is normalized, the Schmidt coefficients {λi}i∈[d] form a
probability vector. The Schmidt coefficients contain most of the
physically relevant information in the bipartite pure state |ϕ〉, such as the
entropy of entanglement

E (|ϕ〉) = H(λ) = −
d∑

i=1
λi log λi .



Tensor decompositions

Not all tensors (n ≥ 3) can be decomposed as

x =
d∑

i=1
six (1)

i ⊗ x (2)
i ⊗ · · · ⊗ x (n)

i ,

with orthonormal {x (k)
i }i∈[d] for all k. Naive dimension count:

dimR(Cd)⊗n = 2dn � d + nd2 − d .

Tensors admitting such a decomposition are called udeco. Their best
rank-1 approximation is given by the term with the largest si .

Tucker and HOSVD decompositions: isometries + a core tensor

Cd1 ⊗ · · · ⊗ Cdn 3 T = (V1 ⊗ V2 ⊗ · · · ⊗ Vn)C ,

with C ∈ Cp1 ⊗ · · · ⊗ Cpn and Vi : Cpi → Cdi are isometries. For some
applications, we want C to be as “diagonal” as possible.
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